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1 Introduction and
Objectives

The construction of a dam and reservoir to provide flood control, hydropower, o
recreation, navigation, and other purposes changes the river downstream of the dam. 3
Typical changes to the river include alterations in the magnitude, duration, and tim-
ing of discharge, physicochemical changes associated with water quality processes
in the upstream impoundment and the area downstream from the impoundment, and
possible changes in the biotic community. The extent of these changes in the area
downstream of the dam is a function of these alterations as well as downstream
channel morphometry and substrate, hydrologic features such as inflows, and ripar-
ian conditions. The reach downstream of a dam is often referred to as the tailwater
region, with downstream boundaries defined by confluences with secondary tribu-
taries, downstream structures or impoundments, or a designated travel time as a
function of discharge or physicochemical equilibrium.

Efforts to describe and quantify physicochemical changes in the tailwater region
of reservoirs have been based on water quality processes described for aerobic pro-
cesses in lakes and reservoirs using reacration of anoxic hypolimnetic water (Chen,
Gunnison, and Brannon 1983), changes in chemical constituents (Gordon, Bonner,
and Milligan 1984; Nix 1986; Nix et al. 1991), and impacts of reservoir operations
(Mathur, McClellan, and Haney 1988; Webb and Walling 1993; Barillier, Garnier,
and Coste 1993; and Ashby, Kennedy, and Jabour 1995). Often studies of a parti-
cular constituent of interest provide processes information useful to other investiga-
tions. For example, while successful at predicting manganese oxidation under
certain conditions, Hess, Kim, and Roberts (1989) attributed other environmental
factors such as pH, precipitation, and unsteady flow with limiting application of an
oxidation model for manganese in reservoir releases. Reduced rates of oxidation
have also been attributed to the presence of complexing anions such as Cl" and SO,*
(Sung and Morgan 1981) and complexation with organic carbon (Theis and Singer
1974; Knocke, Shorney, and Bellamy 1994). Prediction of physicochemical
changes during steady-state rcleases has been conducted for many variables with the
steady-state model, Tailwater Quality Model (TWQM) developed by Dortch, Till-
man, and Bunch (1992). Dortch and Hamlin-Tillman (1995} were successful at
predicting manganese concentrations in tailwaters of selected reservoirs during
steady-state releases when consideration was given to substrate type. Although the
mechanism of manganese removal was not investigated, both chemical {e.g., Stumm
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and Morgan 1981) and biological (e.g., Nealson, Tebo, and Rosson 1988)
mechanisms exist.

Chemical processes associated with iron oxidation have yet to be adequately
described from field measurements for accurate prediction with the TWQM (Dortch,
Tillman, and Bunch 1992). Additionally, Dortch, Tillman, and Bunch (1992) sug-
gested inadequate speciation (the determination of the individual physicochemical
forms of that element that together make up its total concentration in a sample
(Florence 1982)) of iron via conventional field methods (i.e., filtration) limited pre-
diction of oxidation of reduced iron in tailwaters. Size fractionation or use of che-
mical speciation based on pore size of a membrane filter may not be adequate to
measure and then therefore describe species (Stumm and Morgan 1981). Effects of
membrane filtration may also lead to incomparable results between sites (Horowitz,
Elrick, and Colberg 1992). Interactions of biological, photochemical, homogeneous,
and heterogeneous processes in iron oxidation kinetics described by Barry et al.
(1994) demonstrate the complexity in assessing the processing of elements in aqua-
tic systems. Even colorimetric methods for measuring reduced iron may be subject
to interferences such as fulvic acid in oxic waters (Suzuki et al. 1992). Factors such
as oxidation state, complexation with other elements, reactions with organic com-
pounds, precipitation, adsorption, biological processes, and photochemical pro-
cesses, all of which vary by element and local water quality, channel hydrology and
morphology, and biotic community must be considered when speciation is required.

Florence (1982) provides a review of speciation of trace elements in water,
listing possibie physicochemical forms of metals in natural waters (Table 1) and a
discussion of a variety of analytical techniques. The need for speciation of metals
has been recognized in a number of investigations. Speciation of trace metals for

[Table 1

Possible Physicochemical Forms of Metals in Natural Waters
Physicochemical Form Possible Examples Approximate Diameter, nm
Particuiate Retained by 0.45-um filter >450
Simple hydrated metal ions Cd(H,0),>* 0.8
Simple inorganic complexes Pb(H,Q),Cl, 1
Simple organic complexes Cu glycinate 1-2
Stable inorganic complexas PbS, ZnCO, 1-2
Stable organic complexes Cu fulvate 2-4
Adsorbed on inorganic colloids Cu® Fe,0,, Pb* MnO, 10-500
Adsorbed on organic colloids Cu** humic acid 10-500
Adsorbed on mixed organic inorganic colloids | Cu* humic acid Fe,0, 10-500

Note: Fiorence 1882
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water quality criteria (Allen and Hansen 1996; Allen 1993a,b) and toxicity in aqua-
tic systems (Benson et al. 1994) is necessary for a better understanding of bioavail-
ability of trace metals to aquatic organisms. Toxicity is dependent on the physical
and chemical forms of the metals (Luoma 1983; O’Donnell, Kaplan, and Allen
1985), and speciation rather than total concentration may improve understanding
impacts on the biota (Kelly 1988). The water treatment industry has also recog-
nized a need for speciation for determining appropriate application of oxidants for
water treatment (Knocke, Shorney, and Bellamy 1994). Speciation of metals via
analytical techniques may improve models with oxidation kinetics based on labora-
tory and field observations that used filtration for species differentiation.

Stumm and Morgan (1981) suggest that no single method presently available
provides specific identification of a species, and they provide a general list of meth-
ods that may be used in combination to better describe the speciation of selected
elements (Table 2). Often equilibrium models are used to decide the most likely
complex form for a given metal ion within a water body of described conditions.
However, since analytical methods exist for determining the oxidation state of
selected elements, models that describe kinetics based on changes in oxidation states

would benefit from improved measurements.

The objectives of this study were to (a) review current methods for analytical
techniques for speciation of selected nutrients and metals with emphasis on
measuring iron concentrations at different oxidation states (Fe** and Fe*),

(b) evaluate applicable analytical techniques in laboratory studies, and (c) evaluate

selected techniques in field investigations.

Separation based on size {molecular weight), density, or charge

Table 2

Methods for Assisting in Specific Identification of Individual Species

Method and Principle Examples

Physical-mechanical separation Membrane filtration, dialysis, electradialysis, centrifugation,

chromatography, gel filtration

Auxiliary equilibria
A familar equilibrium system (e.g., a color-forming reaction or an ion-
exchange system) is intraduced to provide indication for the species

Effect of complex formation on acid-base equilibrium,
adsorption, ion-exchange or redox reaction, or solubifity
equilibrium; solvent extraction

Equilibrium potentiometric methods
Evaluation of an electrical potential difference related to the chemical
potential (activity) of certain species

Redox electrodes, ion-selective electrodes {metal, glass,
hydrogen, solid-state, and membrane electrodes), electrodes
of the second kind {e.g., Ag/AgCl)

Electrode kinetics
Interdependence of current, potential, and time for a given electrode
process; depends on the species participating

Polarography (square wave, pulse, inverse or ancdic
stripping), chronopotentiometry, chronoamperometry

Direct detaction of electrode or atomic slructure
Measurement of properties based on electronic or atomic structure

Optical methods (spectrophotometry), magnetic properties
{electron spin resonance), sound adsorption

Catalylic effects and bioassays

Many species, especially metal lons, act as catalysts; growth (or
inhibition) of organisms or rate of enzyme processes depends on
spacies

Initiation of coordination of electron transfer reactions, batch
or continuous-culture experiments with organisms, enzymatic
reactions

Note: Stumm and Morgan 1981
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2 Literature Review

Methods

Analytical techniques with a high potential for field application were identified
from a literature review conducted in 1993 of water resources abstracts, analytical
abstracts, and chemical abstracts. The search logic was designed to limit the articles
io analysis of water for each component with the search of chemical abstracts lim-
ited to the most recent years. Many of the 325 articles retrieved dealt primarily with
an analytical methodology, but descriptive studies on distribution of elements in
aquatic systems were also listed since these studies often include new or modified
analytical methods.

Articles were then organized into four groups: (a) metals (iron and manganese,
n = 175), (b) nitrogen (ammonia, nitrate, nitrite, n = 84), (c) sulfur (sulfate, sulfide,
sulfite, n = 50), and (d) redox (oxidation reduction potential, n = 16). References
with a high potential for field application were further reviewed with emphasis on
field determination of oxidized and reduced forms of iron and manganese and are
provided with annotation in Appendix A. Additional references (approximately
160) were reviewed, and appropriate references are included in Appendix A but not
annotated. Detailed evaluations of nitrogen, sulfur, and redox techniques were not
conducted as part of this study, and only limited analytical methods and references
were included in Appendix A.

Results and Discussion

Initial review suggested that analysis of iron and manganese is dominated by
atomic absorption (AA) techniques. There are variations that include direct
aspiration, graphite furnace, and extractions prior to AA determination. Most of
these methods probably produce results with operationally defined parameters such
as dissolved iron with differentiation or speciation determined by pretreatment of
the samples. In some cases, the extractions may be species specific. There were
numerous references to electrochemical measurements such as voltammetry that are
also often species specific and polarographic measurements that are specific for
oxidation states (¢.g., reduced iron and manganese, Davison 1977). Spectrophoto-
metric methods (usually dependent upon color development) were often cited and
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offer some opportunities for speciation. Application of electrochemical and colori-
metric measurements (Wallman et al. 1993) describes advantages of polarographic
techniques that simultaneously determine the concentration of both Fe?* and Fe* in
solution. Simultaneous spectrophotometric measurement of Fe** and Fe** has also
been demonstrated at low levels in atmospheric water using di-2-pyridyl ketone ben-
zoylhydrazone (DPKBH) as a colorimetric chelating agent (Pehkonen, Erel, and
Hoffman 1992; Tha, Pehkonen, and Hoffman 1994). Ton chromatography was also
referenced as a method to speciate metals. Commonly used analytical techniques
for selected metals and nutrients (Table 3) are also provided in handbooks such as
American Public Bealth Association (APHA) (1995) and U.S. Environmental
Protection Agency (1979).

The use of colorimetric techniques for differentiating oxidized and reduced
forms of iron and manganese were considered to have the highest potential for field
application since these techniques often use portable equipment, commercially
available reagents, and can provide rapid, onsite measurements. It should be noted
that electrochemical techniques also offer a high potential for field application but
may be Limited by lack of familiarity of the techniques by field personnel,

Although there is no specific colorimetric method for measuring manganous
(Mn**) manganese, Morgan and Stumm (1965) suggested that any manganese that
passes through a 0.22-pm filter can be considered to be in the Mn®* state when
measured with formaldoxime. Formaldoxime has even been successfully used in
colorimetric measurements of manganous concentrations in estuarine sediments
(Armstrong, Lyons, and Gaudette 1979).

APHA (1995) provides a colorimetric method that uses 1-,10-phenanthroline to
complex ferrous iron following reduction of all iron to the divalent oxidation state,
Fe?*. A variety of complexing agents have been used for determining ferrous iron
concentrations. Bathophenanthrolinedisulphonic acid; 2',2'-dipyridyl {(a,e’
dipyridyl, see Miiller (1932)); ferrozine (monosodium 3-(2-pyridyi)-5,6-bis(4-
phenylsulphonic acid)-1,2,4-triazine, monohydrate, see Stookey (1970) and
Gibbs (1976)); and TPTZ (2.4,6-tri(2'-pyridyl)-1,3,5-triazine) have been used in
assessing iron fractions in filtered samples (Box 1984); however, changes in meas-
ured concentrations of ferrous complexes changed over time in the presence of a
buffer, suggesting limitations for sample holding times. The use of bathophenan-
throline (4,7-diphenyl-1,10 phenanthroline) for determination of Fe?* in natural
waters (Smith, McCurdy, and Diehl 1952) and in the presence of Fe**, ferric iron,
has been characterized with inherent, small positive interferences under certain
conditions (e.g., pH of analysis below 6.5 and Fe* is present, Macalady et al. 1982).
The use of 2,2' bipyridyl for measurement of ferrous iron has been shown to be
applicable (Heaney and Davison 1977), but sample handling is critical for accurate
determinations. A thorough review of analytical methods for measuring oxidation
states of iron in natural waters is provided in Pehkonen (1995).

Based on the literature review and with consideration to field applicability of

available analytical techniques, colorimetric methods for determination of iron and
manganese oxidation states were selected for further evaluation. Colorimetric
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methods selected included the use of a,a’,-dipyridyl and ferrozine for iron

determinations and formaldoxime for manganese measurements.

Table 3

Environmental Analysis

Analytical Methodologies From References Commonly Used in

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020,
Revised March 1983, U.S. Environmental Protection Agency, Cincinnati, OH

fron

Method 236.1, Atomic Absorption, (direct aspiration)

Method 236.2, Graphite Fumacse AA

Method 200.7, Inductively Coupled Plasma

Manganese

Method 243.1, Atomic Absorption, (direct aspiration)

Meathod 243.2, Graphite Fumace AA

Method 200.7, Inductively Coupled Plasma

—

Ammonia Nitrogen

|
‘Method 350.1 Colorimetric, Autornated Phenate

Method 350.2 Titrimetric; Potentiometric, Distillation Procedure

Method 350.3 Patentiometric, lon Selective Electrode

i Nitate
Method 352.1 Colorimetric, Brucine
_ Nitrite
Method 354.1 Spectrophotometric
Nitrate-Nitrite

Method 353.1 Colorimetric, Automated Hydrazine Reduction

Method 353.2 Colorimetric, Automated Cadmium Reduction

Method 353.3 Calorimetric, Manual Cadmium Reduction

Sulfate

Mathod 375.1 Colorimetric, Automated Chioranilate

i Method 375.2 Colorimetric, Automated Methylthymol Blue, AA 1l

II Method 375.2 Gravimefric

" Method 375.4 Turbidimetric

(Sheet 1 of 3)
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?a?:le 3 (Continued)

Sulfide

Method 376.1 Titrimetric, lodine

Method 376.2 Colorimetric, Methylene Blue

Suifite

Meathod 377.1 Titrimetric

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA,
WPCF, American Public Health Association, Washington, DC

lron

Method 315 A, Atomic Absorption Spaectraphotometric

Method 315 B, Colorimetric, Phenanthroline

Manganese

Method 319 A, Atomic Absorption Spectrophotometric

Meathod 319 B, Colorimetric, Persulfate

Ammonia

Method 417 A, Preliminary Distillation Step

Method 417 B, Colorimetric, Nesslaerization

Methed 417 C, Colorimetric, Phenate

Method 417 D, Titrimetric

Method 417 E, Ammonia Selective Electrade

Method 417 F, Automated Phenatg

Nitrate

Method 418 A, Ultraviolet Spectrophotometric Scresning

Method 418 B, Nitrate Electrode Screening

Method 418 C, Cadmium Reduction

Mathod 418 D, Chromatropic Acid

Method 418 E, Devarda's Alloy reduction

Mathod 418 F, Automated Cadmium Reduction

Nitrite

Method 419, Azo Dye Production

(Sheet 2 of 3)
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|Table 3 (Concluded)

L_— Sulfate
I Method 426 A, Gravimetric
[ Method 426 B, Gravimetric

Method 426 C, Turbidimatric

Method 426 D, Automated Methylthymol Biue
L . Sulfide

Method 427 A, Separation of Soluble and Inscluble Sulfide

Meathod 427 B, Sample Pretreatment to Remove Interfering Substances or to Concentrate Sulfide
Method 427 C, Methylene Blue

lﬁeﬂ‘lod 427 D, lodometric

" Method 428, Titrimetric

| -

Sulfite

{Sheet 3 of ?.—)l
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3 Laboratory Studies

Methods

Selected colorimetric techniques for iron and manganese determinations were
evaluated in laboratory studies prior to application in field studies. Comparisons of
colorimetric methods for measuring concentrations of iron at specific oxidation
states that use a,a’,-dipyridyl and ferrozine were conducted to evaluate each method
and differentiation via filtration. Tests were conducted on simulated reservoir water
of known concentrations of iron and manganese. The simulated reservoir water was
treated with nitrogen to remove dissolved oxygen and then aerated, thus simulated
reaeration of anoxic hypolimnetic releases and the associated speciation of iron and
manganese. Specific methods for determining reduced forms of iron and manganese
and total concentrations were used; concentrations of oxidized forms were calcu-
lated by subtraction of reduced forms from the total concentration. Total iron in
each sample was determined following the addition of 1.0 ml 10 percent
NH,OH-HC] prior to adding the ferrozine. This reduces the Fe?* to Fe** prior to
complexation with the colorimetric reagent. Manganese was analyzed using formal-
doxime colorimetric reagent that quantifies the Mn** form of Mn on samples
passing through a 0.22-pm filter (Morgan and Stumm 1965). Colorimetric determi-
nations were conducted on unfiltered and filtered (0.4-, 0.2-., and 0.1-pm filters)
samples immediately before aeration began (0 hr) and at 6, 26, and 50 hr after aera-
tion at 520 nm (a,a’,-dipyridyl) or 526 nm (ferrozine) for iron and at 450 nm
(formaldoxime) for manganese on both a Perkin Elmer Lambda 3 and a Milton Roy
Mini 20 spectrophotometer.

Results and Discussion

Both ferrozine and a,a’,-dipyridyl are reliable colorimetric indicators of ferrous
iron. Ferrozine was considered to be more applicable for determination of ferrous
iron based on study results (Figures 1 and 2) particularly when results are read as
percent transmission on the portable Milton Roy Mini 20 spectrophotometer. Fil-
tration to differentiate oxidized and reduced iron was considered to be independent
of filter pore size. There was some loss in total iron from the solution over the dura-
tion of the study that was unexplained but may be the result of precipitation of parti-
culate iron, adhesion to the glass container, or incomplete digestion of total iron
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after acration. Analytical anomalies indicate that best results are obtained when
samples are analyzed as soon as possible with minimal sample handling. Further-
more, these studies were conducted on synthetic reservoir water with controlied
chemical concentrations and would not account for interferences such as those
previously described or other sources of error.

Determination of the oxidation state of manganese via filtration (i.c., Mn® only
passing through a filter) was considered acceptable, and only filter pore sizes were
evaluated. Manganese in the simulated reservoir water was primarily in the reduced,
manganous (Mn?*) form and remained in that form throughout the study (Figure 3).
Observations of oxidized manganese at Hour 6 were considered to be a sampling
artifact. Measurements were similar for each filter pore size, which would be
expected in the absence of oxidation and subsequent particulate formation, pre-
cluding any evaluation of differentiation via filtration. Results of these laboratory
studies have been more thoroughly described in Faulkner, Gambrell, and Ashby
(1996).
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4 Field Studies

Methods

Field studies were conducted at Nimrod Lake, Arkansas, to evaluate analytical
methods developed in laboratory studies and describe water quality processes in the
release. Nimrod Lake is a reservoir on the Fourche La Fave River in west-central
Arkansas (Figure 4), 101 km upstream from its confluence with the Arkansas River.
The ragged and wooded drainage area is about 1,760 km? or about 61 percent of the
Fourche La Fave basin. Nimrod Lake is formed by Nimrod Dam, which is operated
primarily for flood control and typically has a minimal release during stratification
to provide for low flow in the Fourche La Fave River. The low-flow release is from
the hypolimnion via Howell-Bunger valves (the center line of the penstock is
approximately 7.6 m above the streambed elevation). The valves provide a dis-
charge above the elevation of the tailwater that falls into a stilling basin. This type
of discharge provides considerable aeration of the hypolimnetic release, which
impacts dissolved oxygen concentrations and iron and manganese dynamics.

Nimrod Lake was selected based on the availability of information about channel
morphometry, substrate type, travel time of steady-state releases, and dynamic iron
and manganese processes in the release. Sampling design was similar to previous
studies conducted by Nix et al. (1991) for comparative purposes. Sampling was
conducted at Stations A, B1, and B3 to describe conditions in the immediate tail-
water (A-B1) and at a downstream location (Figure 4). These stations were selected
since previous studies indicated that iron and manganese processing was most
obvious in the pool between A and B1 and conditions downstream were not what
was anticipated for iron.

Initial conditions of low flow (near 0.6 m® sec™? or 20 ft* sec™') were sampled
prior to an increase in relcase t0 near 2.8 m? sec? or 100 ft* sec (referred to as high
flow), which was held near constant for the remainder of the study to allow the
reestablishment of steady-state conditions, The increase in flow was initiated at
1500 on Aungust 22, 1995, and held until 1700 on August 23, 1995, The increased
discharge was about half the discharge of previous studies to provide an additional
data set for model evaluation under different flow conditions.

Sampling was conducted at each station during the increased release based on
estimated travel time to describe water quality conditions of a parcel of release

Chapter 4 Field Studies
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water over time during steady-state conditions. Time of travel was determined
based on estimates from the TWQM, previous measurements using fluorescent
dyes, and physical observations of neutrally buoyant floats. Temperature, dissolved
oxygen, pH, and specific conductivity were monitored with Hydrolab data sondes at
each site during the period of increased release to describe temporal changes. An
in-lake profile of temperature, dissolved oxygen, pH, specific conductivity, and
oxidation-reduction potential was conducted in the forebay region of the lake during
the study to describe vertical gradients. One water sample was collected with a Van
Do sampler from near the lake bottom for analysis of oxidized and reduced iron
and manganese in the hypolimnion.

Water quality samples for iron and manganese analyses were collected at each
location in the tailwater during the low-flow and high-flow releases as grab samples.
Three 1-¢ samples were collected; one aliquot was analyzed without filtration, while
the remaining sample was vacuum filtered through a 0.45-um filter to remove the
mass of particulate matter, then filtered through 0.4-, 0.2-, and 0.1-pm filters with
in-line syringe holders. Ferrous iron was determined in both filtered and unfiltered
samples with ferrozine. Five milliliters of each sample was added to 1.0 ml of ferro-
zine reagent. This was diluted to 10 mt total volume with distilled, deionized water
and read at 565 nm on a Milton Roy Mini 20 spectrometer. Total iron in each sam-
ple was determined by the same procedure with the addition of 1.0 ml 10 percent
NH,OH+HCl prior to adding the ferrozine.

Manganous manganese was determined in both the filtered and unfiltered sam-
ples with formaldoxime, Five milliliters of each sample was adjusted to a basic pH
with 1.5 m! of 5 M NaOH prior to the addition of 0.5 ml of formaldoxime reagent.
This was diluted to 10 ml total volume with distilled, deionized water and read at
450 nm on a Milton Roy Mini 20 spectrometer. Total manganese in each sample
was determined by the same procedure with the addition of 1.0 mI 10 percent
NH,OH-HCI prior to adding the formaldoxime. This reduces the Mn™ to Mn?*
prior to complexation with the colorimetric reagent.

Two replicate samples were collected in 20-ml scintillation vials at each station,
including the reservoir near-bottom sample, for analysis of fotal and soluble iron
and manganese. Soluble metal samples were filtered with 0.45-um filters in the
field and preserved with three drops of nitric acid to reduce the pHto at least 2. The
samples were transferred to the Wetland Biogeochemistry Institute (WBI) at Loui-
siana State University for iron and manganese analysis using a Jarrell-Ash Atom
Comp Series 800 ICP. The detection limits on this instrument for iron and manga-
nese are 0.025 and 0.02 ppm, respectively. Total and dissolved carbon samples
were collected in 50-ml polyethylene bottles, filtered with 0.45-um filters, and
preserved with two drops of sulfuric acid'to a pH of at least 2. Samples were tran-
sferred to the WBI for total and dissolved organic carbon determinations using an
Tonics Model 1270 H analyzer with a detection limit of 1 ppm. Chloride, nitrate,
and sulfate samples were collected in 20-ml scintillation vials and kept on ice for
sample preservation. Samples were transferred to the WRI for analysis on the
Dionex Model 2010i Jon Chromatography System with a detection limit of
0.01 ppm. Alkalinity and sulfide samples were collected in 500-ml amber bottles
and transferred to an onsite laboratory for analysis. Alkalinity was measured via
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titration (American Public Health Association 1995). Sulfide analysis consisted of
extracting 5 ml of the water sample and transferring it to a 20-ml scintillation vial
that contained 5 ml of an antioxidant buffer, which prevents the oxidation of sulfide.
Sulfide concentrations were then determined with the LAZAR Model 1S-146 Sulfide
Electrode with a detection limit of 0.01 ppm.

Six 1-¢ water samples were collected in clear glass bottles at Station A for deter-
mining the importance of photochemical oxidation at this site. Three samples were
wrapped in aluminum foil to prevent light penetration, and three were left unwrap-
ped. All six samples were then incubated from 1000 to 1700 hr in the open sunlight
at ambient temperatures. Samples were collected at several intervals during the
incubation period for ferrous iron analysis.

Resulis and Discussion

Initial conditions were determined by in-lake water quality which may be inferred
from sampling in the forebay. Profiles of temperature indicate a stratified system
with temperatures ranging from 31.3 °C in the surface to 24.7 °C in the bottom
(Figure 5a), resulting in an anoxic hypolimnion (Figure 5b). Specific conductivity
displayed maximum concentrations near the bottom and relative oxidation-reduction
values (the instrument was not calibrated for oxidation-reduction) decreased in the
hypolimnion coincident with anoxia (Figures Sc and 5d). Values of pH ranged from
9.0 in the surface to 8.0 in the bottom.

The effects of changing flow, which changes residence time in the channel, were
apparent for most constituents measured at 0.6 and 2.8 m® sec”, with concentrations
decreasing with distance at the lower flow and remaining relatively constant at the
higher flow (Figures 6 through 9). During low flow, total carbon decreased from
near 12.5 mg ¢! at Station A to near 9.3 mg ¢ at Station B3, with the trend of
decreasing concentrations continuing downstream (Station D). At the constant flow
of 2.8 m® sec’!, total carbon concentrations remained near 12 mg ¢!, and inorganic
and organic fractions concentrations varied little with distance. Decreased total
carbon concentrations at the lower flow were attributed to the loss of inorganic car-
bon, as indicated by the decrease in total inorganic carbon concentration with dis-
tance and relatively constant total organic carbon concentrations (Figure 6a and 6b).
Patterns for dissolved carbon fractions were similar to those of total carbon frac-
tions (Figure 7a and 7b). Dissolved fractions accounted for about 83 percent of the
total carbon fraction, with dissolved organic carbon accounting for over half of the
total carbon and three-fourths of the total organic carbon. Alkalinity concentrations
decreased from near 29 mg ¢! CaCO, to near 20 mg ¢** CaCO, at Station B3 during
low flow, yet remained constant near 25 mg ¢! CaCO, during the steady-state
release of 2.8 m® sec”! (Figure 8a and 8b). With the exception of nitrate concentra-
tions at the 0.6-m® sec® release, chloride, nitrate, and sulfate concentrations were
relatively constant at both release levels and at similar values (Figure 9a and 9b).
Nitrate concentrations during the 0.6-m? sec! release increased with distance from
near 0.3 mg ¢ at Station A to 1.4 mg ¢ at Station B3 before decrcasing to near
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Figure 8. Alkalinity values at lower (a) and higher (b) releases

0.7 mg ¢! further downstream. Sulfide levels were below the detection limit for the
majority of the sites.

Steady-state conditions were described for the sustained release of 2.8 m? sec!
with continuous monitoring of temperature, dissolved oxygen, pH, and specific
conductivity at Stations A, B1, and B3 (Figures 10 through 12). Conditions at
Station A remained relatively constant with the exception of dissolved oxygen
concentrations, which tended to decrease with time. Field verification of dissolved
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oxygen with another instrument upon completion of the study indicated that the con-
tinuous monitor underestimated dissolved oxygen concentrations. Considerabie
fouling of the membrane with an orange precipitate occurred at this site and may
have contributed to the observed decrease in concentrations. Dissolved oxygen
measurements conducted periodically at the site indicated that dissolved 0Xygen
values were near 7 mg ¢ throughout the high-flow release. At Station B1, diurnal
effects were observed for temperature and pH, with maximum values occurring
mid-afternoon except for lower pH observed on the afternoon of August 22, which
reflected conditions prior to the arrival of the high-flow release. Temperature at
Station B3 also reflected diurnal effects, but pH, specific conductivity, and dis-
solved oxygen remained relatively constant after arrival of the high-flow release.

Iron and manganese dynamics in the release from Nimrod Dam and Lake were
evaluated with two methods. These methods used evaluation of oxidation states
with colorimetric methods during the high-flow release at Stations A,Bl,and B3 on
filtered and unfiltered samples and evaluation of total and total soluble fractions at
both the low-flow and high-flow reléases. Each of these approaches provides differ-
ent information. Evaluation of concentration changes of oxidation states, in con-
junction with time of travel sampling, describes kinetics of the release water as it
travels downstream. Differentiation of total and total soluble fractions, in conjunc-
tion with time of travel, allows description of particulate formation and comparison
with concentration changes observed for oxidation states. Sampling during the low
flow also provides information on particulate formation with increased residence
time in the channel. Initial conditions were described with the single sample col-
lected from the reservoir hypolimnion.

Iron in the reservoir bottom water was in the reduced ferrous (Fe?*) form prior to
release from the reservoir at a concentration near 17 mg ¢! (Figure 13a). There was
a decrease in both the total and ferrous Fe concentrations in the filtered samples,
indicating the presence of some particulate Fe, primarily in the Fe** form. There
was relatively good agreement in measurements on samples filtered through differ-
ent pore sizes. Concentrations at Station A were considerably lower (near
1.8 mg ¢) than those observed for the reservoir bottom water (Figure 13b), and
ferric (Fe*) concentrations accounted for nearly 40 percent of the total in the unfil-
tered sample, indicating rapid oxidation of the ferrous iron. Differences in con-
centrations between the reservoir bottom water sample and the sampie from
Station A may be attributed to dilution of withdrawal water during release and pos-
sible loss of iron in the reach from the dam to Station A. Concentrations in the 0.1-
and 0.2-pm filtered samples were similar but lower than concentrations in the
0.4-pm filtered samples, suggesting some size fractionation. However, most of the
iron in all filtered samples was in the ferrous form. Differences in total iron (and
ferrous iron) in the unfiltered and filtered samples suggest that particulate ferrous
iron was present and represented 50 percent or more of the total ferrous iron.
Greater concentrations of ferrous iron in the unfiltered sample suggest that filtration
as a means to differentiate oxidation states may underestimate ferrous concen-
trations. At Station B1, total concentrations decreased 1o near 1 mg ¢, which was
nearly half that of concentrations at Station A, (Figure 13c), indicating removal of
iron from the release water between these stations that is characterized as a pool.
Concentrations in the unfiltered sample were nearly equally represented by ferrous
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and ferric forms and were considerably greater than concentrations in filtered sam-
ples, suggesting particulate fractions were predominant. A similar pattern was
observed at Station B3 as that of Station B1 except that concentrations were slightly
greater at Station B3 and ferric iron in the filtered samples was greater than ferrous
concentrations (Figure 13d). Differences in concentrations between Stations B1 and
B3 may be related to time of travel or resuspension associated with change in flow.
Perhaps the best information is obtained in evaluation of the percent ferrous iron
relative to the total in the unfiltered sample at each station. At Station A, ferrous
iron represents about 62 percent of the total, and approximately 50 percent of the
total at Stations B1 and B3, suggesting limited oxidation occurs between these two
stations.

Manganese was in the reduced, manganous (Mn?*) form in the reservoir bottom
waters at a concentration near 8§ mg ¢! (Figure 14a). As was observed for iron, the
observed concentration in the reservoir bottom waters was greater than downstream
concentrations (Figure 14b through 14d) and may be attributed to dilution of bottom
waters in the withdrawal zone during release and loss of manganese between the
outlet and Station A. Higher concentrations of manganous Mn than total Mn in the
sample from the reservoir bottom waters was attributed to pipetting errors since the
artifact was not observed at the downstream stations. Concentrations at the down-
stream stations (A-B3) were between 1.5 and 2.5 mg ¢ and decreased only slightly
with distance in the unfiltered sample and remained relatively constant on all filtered
samples. Differences in total and manganous Mn in the filtered and unfiltered sam-
ples in the release waters indicate the presence of some particulate manganous Mn.

Measurements of iron and manganese on unfiltered and filtered samples using
ICP analyses provide additional information on iron and manganese dynarnics at the
two different release levels. Iron concentrations in the bottom waters of the reser-
voir were 17.3 and 15.3 mg ¢ for total and total soluble iron (Figure 15), which
compares with observations described above that indicated that the iron was primar-
ily in the reduced, ferrous form. Concentrations were greater in the reservoir sample
than at Station A for both release levels (as previously discussed), but total iron
concentrations were much higher at all stations (i.c., 2-6 mg ¢! compared with less
than 2 when measured with ferrozine). Concentrations of total soluble iron, while in

‘closer agreement with unfiltered samples analyzed with ferrozine, were still greater,
suggesting an iron fraction deteciable with ICP analyses that is not detected with
ferrozine. Effects of flow were also apparent with concentrations of total iron,
decreasing with distance from the dam during low flow while total soluble concen-
trations fluctuated between 1 and 2 mg ¢!, Concentrations of both total and total
soluble remained relatively constant during the high-flow release with the exception
of a slight increase in total soluble iron at Station B3. The decrease of total during
low flow may be the result of oxidation and subsequent precipitation (this is sup-
ported by visual observations of an orange flocculent turbidity during low flow). At
higher flows, precipitation is inhibited by increased velocities. Mechanisms contri-
buting to fluctuations in total soluble are less readily apparent and may include sam-
pling artifacts or size fractionation during oxidation and particulate formation.

Manganese concentrations in the bottom waters of the reservoir were near
3.4 mg ! for both total and total soluble Mn (Figure 16), but were considerably
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Figure 15. Total and soluble iron at lower (a) and higher (b) releases
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lower than observations made onsite with formaldoxime (see Figure 14). Concen-
trations in the release waters were in better agreement for the two different analyti-
cal methods when values of unfiltered samples analyzed with formaldoxime are used
in the comparison. At the low-flow release, manganese concentrations decreased
with distance from the dam, yet remained in the soluble form unti! well downstream
(Station D), where insoluble manganese was predominant. During the higher flow
release, concentrations remained relatively constant near 2.1 mg ¢! and in the solu-
ble form.

Results of the evaluation of photochemical ferric iron reduction indicated that
photochemical reduction was not occurring at ambient release water pH values
(6.8 10 7.2) (Figure 17). After 1800 hr, the samples were acidified to pH 3.0 with
concentrated HNO,, and an increase in ferrous iron was then obssrved. The increase
was much greater for the samples exposed to sunlight than those kept in the dark
and is consistent with observations of photochemical reduction of iron in oxic water
at lower pH values (near 4) and in the presence of organic matter (Collienne 1983).
These results indicate that although photochemical reduction is possible, it is not a
significant process in the Nimrod Dam release waters.
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5 Conclusions and
Recommendations

Speciation of iron and manganese for determining concentrations at different
oxidation states for description of kinetics in reservoir releases was conducted with
filtration and colorimetric methods. The use of colorimetric methods for measure-
ment of iron concentrations in different oxidation states was determined to be appli-
cable to field investigations. The use of ferrozine as a colorimetric reagent for
measurement of ferrous (Fe?*) iron with a portable colorimeter or spectrometer was
considered to be an acceptable method. The use of filtration for speciation of iron
(e.g., physical separation of oxidation states) was not supported by both laboratory
and field studies. There were discrepancies in analytical methods used for the deter-
mination of total iron that affect the calculated concentration of ferric Fe*). Deter-
mination of different oxidation states of manganese was considered possible for
field studies using a colorimetric reagent (formaldoxime) and filration. For both
iron and manganese, there were no differences among filter pore sizes.

The most applicable method for measurement of iron concenirations at different
oxidation states uses the determination of total iron via laboratory analysis on an
atomic adsorption spectrophotometer following digestion and the field determina-
tion of ferrous iron using ferrozine as a colorimetric reagent on an unfiltered sample.
Ferric iron can then be determined via subtraction. Samples collecied for total iron
analysis should be preserved with sulfuric or nitric acid to a pH near 2 when
collected.

The most applicable method for measurement of manganese concentrations at
different oxidation states uses the determination of total manganese via laboratory
analysis on an atomic adsorption spectrophotometer following digestion and the
field determination of manganous manganese using formaldoxime as a colorimetric
reagent on an unfiltered sample. Oxidized manganese can then be determined via
subtraction. The use of filtration to speciate oxidized from reduced via comparison
with a total determination may also be applicable and is independent of filter pore
size.

Analytical and field sampling techniques play a critical role in water quality

studies of reservoir releases to the extent that if inappropriately conducted, data
interpretation may be limited. A clear, well-defined objective for the study will help
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determine the level of sampling and analytical methods required for an appropriate
study. These recommendations are based on the assumption that field investigations
are conducted by personnel with training in the field analytical techniques described,
Jaboratory measurements such as atomic adsorption spectrophotometry are avail-
able, and an understanding of analytical interferences and water quality processes is
applied during interpretation of the data from the study.

Chapter 5 Conclusions and Recommendations
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General study of dissolved and particulate forms of Mn and Zn. Analytical methods
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temperature, and total suspended matter and evolution of the metals with numerous
soluble organic and inorganic ligands.
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Describes a study using electron spin resonance spectroscopy that provided infor-
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Brendel, P. I., and Luther, G. W., HI. (1995). “Development of a gold amalgam
voltammetric microelectrode for the determination of dissolved Fe, Mn, O,, and

S(-II) in porewaters of marine and freshwater sediments,” Environ. Sci. Tech.
29,751-61.

Bescribes the development of an electrode that can provide information on major
redox species at submillimeter depths in porewaters of sediments using the fast scan
of voltammetric methods for simultaneous measurement of major redox species dur-
ing one potential scan.
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mination of dissolved manganese in natural waters with I-(2-pyridylazo)-
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submersible chemical analyzer with rapid color development using flow injection.
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molar levels of iron(Il) and total dissolved iron in seawater by flow injection
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Grundl, T. (1992). “Redox inactivity of colloidal ferric oxyhydroxide solids,”
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Grundl, T. J., and Macalady, D. L. (1989). “Electrode measurement of redox poten-
tial in anaerobic ferric/ferrous chloride systems,” Journal of Contaminant
Hydrology 5,97-117.

Investigated the behavior of two inert redox electrodes (Pt and wax-impregnated
graphite) and established a Nernstian response to the Fe*/Fe?* couple for simple
iron solutions at pH levels of 4 or less. Described a new method for determining
dissolved ferric iron that permitted the calculation of Eh values that are independent
of variations in the solubility of ferric oxyhydroxides.

Hart, B. T., Noller, B. N., Legras, C., and Currey, N. (1992). “Manganese specia-
tion in Magela Creek, Northern Australia,” Aust. J. Mar. Freshwater Res. 43,
421-41.

Described the removal of colloidal Mn as an aggregation with Ca and Mg as a
function of the amount and characteristics of colloidal and particulate matter, Ca
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Heron, G., Crouzet, C., Bourg, A. C. M., and Christensen, T. H. (1994). “Specia-

tion of Fe(Il) and Fe(IH) in contaminated aquifer sediments using chemical
extraction techniques,” Environ. Sci. Tech. 28, 1698-705.
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Describes single-step extractions including 1 M CaCl,, NaAc, oxalate, dithionite,
Ti(D-EDTA, 0.5 M HCI, 5 M HCI, hot 6 M HCI, and a sequential extraction by HI
and Cr(DHCI on standard iron minerals and nine aquifer sediments to determine
oxidation states of Fe.

Hsiung, T. -M., and Tisue, T. (1994). “Manganese dynamics in Lake Richard B.
Russell.” Environmental chemistry of lakes and reservoirs. L. A. Baker, ed.,
American Chemical Society, Washington, DC, 499-524.
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King, D. W., Lounsbury, H. A., and Millero, F. J. (1995). “Rates and mechanisms
of Fe(IT) oxidation at nanomolar total iron concentrations,” Environ. Sci. Tech. :
29, 818-24. !

Describes a fully automated luminol-based chemiluminescence system for rapid
analysis of Fe(fl) at natural levels. Measured rates of Fe(Il) oxidation in 0.7 M
NaCl for nanomolar concentrations at pH levels from 7.0 to 8.3.

Luther, G. W., I, and Ferdelman, T, G. (1993). “Voltammetric characterization of
iron (II) sulfide complexes in laboratory solutions and in marine waters and
porewaters,” Environ. Sci. Technol. 27(6), 1154-63.

Describes investigations of metal sulfide complexes in marine waters and pore-
waters using voltammetric methods and comparisons with standard solutions with
Fe(Il) and sulfide.

Mallini, L. J., and Shiller, A. M. (1993). “Determination of dissolved manganese in
seawater by flow injection analysis with colorimetric detection,” Limnol.
Oceanogr. 38(6), 1290-95.

Describes a flow-injection technique that was the Mn-catalyzed oxidation of iron by
peroxide for colorimetric determination.

Spratt, H. G., Siekmann, E. C., and Hodson, R. E. (1994). “Microbial manganese
oxidation in saltmarsh surface sediments using a leuco crystal violet manganese
oxide detection technique,” Estuarine, Coastal and Shelf Science 38, 91-112.

Describes use of the oxidation of 4,4',4"-methylidynetris (N,N-dimethylaniline},
leuco crystal violet (LCV) by Mn oxides to produce crystal violet. The authors
report that the assay exhibits high specificity for Mn oxides without interference by
Mn(I0) and is sufficiently sensitive to determine rates of Mn oxidation in surface
sediment or saltmarsh creck water suspensions.

Yi, Z., Zhuang, G., Brown, P, R., and Duce, R. A. (1992). “High-performance

liquid chromatographic method for the determination of ultratrace amounts of
iron(Il) in aerosols, rainwater, and seawater,” Anal. Chem. 64, 2826-30.
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Describes a reversed-phase high performance liquid chromatography method
developed to determine Fe(Il) in low concentrations using ferrozine.

Young, L. B., and Harvey, H. (1992). “The relative importance of manganese and
iron oxides and organic matter in the sorption of trace metals by surficial lake
sediments,” Geochim. Cosmochim. Acta 56, 1175-86.

Describes the sorption of Zn, Ni, and Cu by surficial sediments in four acid

(pH < 5.6) and three circumneutral (pH 6.4-6.5) lakes using recovery from easily
reducible (exchangeable and bound to oxides of Mn), reducible {bound to oxides of
Fe), and alkaline extracted (organically bound) fractions of sediment. Some des-
cription of a concurrent pH-induced precipitation of Fe-humic complexes involving
the coprecipitation of trace metals with strongly bound Fe-humic complexes.
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Metals (iron and manganese)
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At. Spectrom 7(6), 889-94.
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Buldini, P. L., Ferri, D., and Nobili, D. (1991). “Determination of transition metals
in natural waters by microprocessor-controlled voltammetry in comparison with
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Chapin, T. P., Johnson, K. S., and Coale, K. H., (1991). “Rapid determination of
manganese in sea water by flow-injection analysis with chemiluminescence
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Chiang, P. C., and Chang, E. E. (1992). “Assessment of rapid method for
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methods for the determination of manganese in freshwaters,” Talanta 38(6),
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Davis, A., and Olsen, R. “Comparison of analytical methods used to determine
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Gandhi, M. N, and Khopkar, S. M. (1992). “Rapid method for the extractive sepa-
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