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PREFACE

The work reported herein was conducted as part of the Water Quality
Research Program (WQRP). The WQRP is sponsored by the Headquarters, US Army
Corps of Engineers (HQUSACE), and is assigned to the US Army Engineer
Waterways Experiment Station (WES) under the purview of the Environmental
Laboratory (EL). Funding was provided under Department of the Army Appropria-
tion 96X3121, General Investigation. The WQRP is managed under the Environ-
mental Resources Research and Assistance Programs (ERRAP), Mr. J. L. Decell,
Manager. Mr. Robert C. Gunkel was Assistant Manager, ERRAP, for the WQRP.
Technical Monitors during this study were Mr. David Buelow, Mr. Jim Gottesman,
and Dr. John Bushman, HQUSACE.

This report was prepared by the Hydraulics Laboratory (HL), WES, and the
St. Anthony Falls Hydraulic Laboratory (SAFHL) of the Department of Civil and
Mineral Engineering, University of Minnesota, Minneapolis, as a summary of
results from research into the area of gas transfer at low-head hydraulic
structures. This effort was funded under WQRP Work Unit 32369 entitled
"Reaeration at Low-Head Structures." The study was conducted under the
general direction of Messrs. Frank A. Herrmann, Jr., Director, HL: Richard A.
Sager, Assistant Director, HL; and Glenn A. Pickering, Chief, Hydraulic
Structures Division (HSD), HL.

This report was prepared by Mr. Steven GC. Wilhelms of the Reservoir
Water Quality Branch (RWQB), HSD; Dr. John S. Gulliver, SAFHL, and Mr. Kenneth
Parkhill, SAFHL, under the direct supervision of Dr. Jeffery P. Holland, for-
mer Chief, RWQB. Mr. Perry Johnson, US Bureau of Reclamation, and Dr, Charles
Bohac, Tennessee Valley Authority, provided review comments. TField and liter-
ature studies were conducted hy personnel from HIL, and SAFHL, Assistance in
data analysis and report preparation was provided by Ms. Laurin I. Yates,
RWQB, and Mrs. Barbara A. Parsons, HSD, and Mr. Benjamin Erickson, SAFHL. The
report was edited by Mrs. Marsha C. Gay, Information Technology Laboratory,
WES,

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander and Deputy Director was COL Leonard G.
Hassell, EN. Dr. Roger L. A. Arndt was Director, SAFHL.

This report should be cited as follows:
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"Reaeration at Low—Head Hydraulic Structures," Technical Report W-93-2,
US Army Engineer Waterways Experiment Statiom, Vicksburg, MS.

The contents of this report are not to be used for advertising, publication,
or promaotional purposes. Citation of trade names does not constitute an
official endorsement 6r approval of the use of sich commercial products.
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CONVERSION FACTORS, NON-SI TQ SI (METRIG)
UNITS OF MEASUREMENT

Non—SI units of measurement used in this report can be converted to SI

(metric) unit as follows:

Multiply By To QObtain
degrees (angle) 0.01745329 radians
feet 0.3048 metres



REAERATION AT LOW-HEAD HYDRAULIC STRUCTURES

PART I: INTRODUCTION

Background

1. Presently, one of the most, cited water quality parameters in the
freshwater hydrosphere (rivers, lakes, and reservoirs) is dissolved oxygen
(DO). The oxygen concentration in surface waters is a prime indicator of the
quality of that water for human use as well as use by the aquatic biota. Many
naturally occurring biological and chemical processes use oxygen, thereby
diminishing the DO concentration in the water. The physical process of oxygen
transfer or oxygen absorption from the atmosphere or air bubbles acts to re-—
Plenish the used oxygen. This process 1s termed reaeration,

2., Low-head hydraulic structures within the US Army Corps of Engineers
are generally associated with navigation projects. These structures are usu—
ally "run—of--the-river" and are used to maintain a constant upstream pool
elevation. The oxygen transfer in these deeper, slower pools is lower than
that of the open river. Biological and chemical oxygen demands may accumulate
and concentrate in the impoundment and thereby degrade the DO concentration in
the stored water because of the excess demand compared to reaeration poten—
tial. Without sufficient reaeration, release of this water may pose an
environmental and water quality concern.

3. Some hydraulic structures exhibit remarkable reaeration, while
others do very little to increase DO. If the DO in releases is lower than
desired or required, operational or structural modifications or artificial
aeration can be employed to improve the release DO concentration. The design
engineer will be faced with the need to evaluate the oxygen transfer charac—
teristics of existing conditions at a hydraulic structure for comparison with
the characteristics of a proposed modification. As in any engineering appli-
cation, it is imperative to possess a clear definition of the processes that
affect water quality and the expected change as a result of implementing the
particular improvement technique, Hence, the potential impacts of alternative
techniques on the reaeration processes must be thoroughly understood and
quantified,

4. 1In the past, the focus of interest in gas exchange at hydraulic



structures has been the transfer of atmospheric gases: absorption of oxygen
to replace DO used by aquatiec processes and the absorption of nitrogen,
potentially resulting in nitrogen supersaturation. More recently, however,
the desorption of volatile organics or toxics that may be dissolved in the
water has become important. The air-water transfer of any chemical is called
gas transfer because the chemical is a gas in one of the two phases., 1In gen-—
eral, the physical processes that influence oxygen absorption also affect the
transfer of any dissolved volatile compound. Thus, it becomes even more
important for the design engineer to possess a thorough understanding of

(a) the physics of gas transfer, (b) the quantification of gas transfer,

{¢) the important physical processes, and (d) the hydraulic conditions that

can enhance or degrade gas transfer.

Cbjective and Scope

5. The objective of this report is to familiarize field engineers with
the oxygen transfer process and the oxygen transfer characteristics of various
low-head hydraulic structures. The physics of gas transfer are conceptually
explained and the mathematical description of the gas transfer process is
developed. The important physical processes and their impact on the variables
in the gas transfer equation are identified. The hydraulic conditions that
contribute to these physical processes are described and applied to oxygen
transfer, or reaeration.

6. It is hoped that field engineers, when familiar with the conceptual
descriptions provided in this report, can qualitatively evaluate the oxygen
transfer characteristics at a structure based solely on observed hydraulic
conditions, e.g., they will be able to estimate whether the structure, upon
testing, would exhibit a large or small degree of gas transfer. With the
mathematical description of oxygen transfer at a “"generic" type of structure
and an understanding of how hydraulic conditions contribute to oxygen trans—
fer, field engineers should be able to "bracket" or roughly estimate the
transfer that is occurring at a specifie structure.

7. The hydraulic structures at most low-head projects usually consist
of a gated sill, gated low-head spillway, and a fixed- or adjustable-crest
weir. The gas transfer analyses reported herein emphasize these "generic"

types of structures. More complete descriptions of the geometry and flow



conditions at these structures are given in Part IV, "Hydraulics at Various

Structures.”



PART II: REAERATION THEORY

Physics of Gas Transfer

8. The transfer of any chemical across an air—-water interface can be
considered two processes acting together: (a) transport due to molecular
diffusion and (b) transport due to turbulent mixing. These are characterized
by the capture (or release) of gas molecules at the air-water interface and
subsequent distribution of the gas throughout the water body. Molecular dif-
fusion is caused by the inherent kinetic energy possessed by the gas mole—
cules, whereas transport due to turbulent mixing results from the application
of external forces on the water body.

9. Consider the quiescent body of

water shown in Figure 1. If a group of

111 ]

dissolved molecules could be placed in the
water body without disturbing the water,
the dissolved molecules would gradually
spread throughout the water body and even—
ﬁ\;éi" tually achieve a uniform distribution. The
/ﬁf' molecules would accomplish this in totally
still water because of their inherent

kinetic energy associated with their sur—

) rounding temperature. The movement of the
Figure 1. Transport due to

diffusion in quiescent molecules, which is entirely random, causes
water (after Tsivoglou and

Wallace 1972) the molecules to uniformly distribute

throughout the water body. This process is
termed molecular diffusion.

10, Molecular diffusion is usually described by Fick's first law¥

J=-p 9 (L)

which states that J , the mass flux per unit area across an interface or a

plane (in a direction away from the higher concentration, hence, the negative

* For convenience, symbols and unusual abbreviations are listed and defined
in the Notation, Appendix E.



sign), is proportional to the concentration gradient dC/ds across the
interface, where dC is the change in concentration across the interface
thickness ds . D, is the molecular diffusion coefficient and is a measure
of the ability of a medium to diffuse dissolved material. This relationship
.1mp11es that even though the molecular diffusion coefficient may be small, the
flux from one volume with a high dissolved concentration into a volume with
zero dissolved concentration will initially be very high because of the large
gradient across the interface between the volumes. '
11. For an example application of these concepts to gas transfer, again
consider a completely quiescent homogeneous body of water. Assume that the
body of water is devoid of oxygen and that the surface is instantaneously
-exposed to the atmosphere. Initially, there would be a very high rate of
oxygen absorption into a very thin layer ét the water surface because of the
large concentration gradient across the interface (Fick's law). However,
since this is a quiescent water body, only molecular diffusion will cause
oxygen molecules to move down into the water body. Since the diffusion down—
ward is impeded by the molecular structure and viscosity of the water, oxygen
molecules will tend to collect rapidly in the surface layers. Consequently,
the rate of absorption would fall quickly because of the rapid decrease in thé
concentrationlgradient across the air-water interfaqe. Thus, the rate of gas

transfer to the guiescent water would be very small without turbulent trans—

port, otr mixing.

12. Consider that same body of
water, devoid of'oxygen and with its e

surface instantaneously exposed to the **

1 KJ

atmosphere. However, this time, the water 1

is being agitated causing'tufbulent mixing
(Figure 2). Turbulent mixing transports a
water element to the water surface, which

degrades the thin film at the surface for a

short period. Although the period of expo— -

sure to the atmosphere may be very short

and the molecular diffusion coefficient may

be small, the element will absorb a signif- Figure 2. Transport due to
diffusion and turbulent

icant amount of oxygen because of the large mixing

gradient across the interface (according to

10



Fick's law, the rate of transfer would be large). Similarly, when that
element is transported by turbulent mixing into the body of fluid, the rate of
oxygen transfer to surrounding elements will be wvery high because of the
relatively large gradient. It is easily deduced from this description that
turbulent mixing greatly speeds oxypgen transfer.

13. It is important to realize that gas transfer is governed by the
same physical processes,'turbulent mixing and molecular diffusion, regardless
of the direction of transfer, i.e., gas absorption or desorption. This fact
provided the basis for developing all tracer gas technologies. Tsivoglou
et al. (1965) and Tsivoglou et al. (1968) reported this basis and the develop—
ment of a technique that used radiocactive krypton-85, injected into the water,
as a tracer for oxygen absorption. The krypton—85 was being transferred
(desorbed) to the atmosphere, while oxygen was being absorbed. Rathbun et al,
(1978) modified the radioactive tracer technique with the injection of hydro-
carbon gases, such as propane and ethylene, as tracers. Wilcock (1983) used
methyl chloride as a tracer gas in this same fashion. McDonald, Gulliver, and
Wilhelms {(1990) reported preliminary measurenments of gas transfer with in situ
methane and sulfur hexafluoride. McDonald and Gulliver (1991) presented the
development of methane as an alternative gas for measuring the gas transfer in

a particular flow situatien at hydraulic structures. The critical point upon

which all this work was based is that measurements made with one gas can be

used to calculate the transfer of another gas (Gulliver, Thene, and Rindels

1990).

Mathematical Description

14, Gas transfer is usually considered to be a first—order process in
which the rate of change of the chemical's concentration in the water is
linearly dependent on the ambient concentration. The driving force in the
transfer process is the difference between the actual concentration of the
dissolved gas in the water and the concentration that corresponds to equilib—
rium with the air. This equilibrium concentration or "saturation concentra-

tion" is defined using a Henry's law constant as follows:

Ce: = H;P, (2)

11



where
G,y = saturation concentration of gas i , g/m®
H; = Henry’'s law constant for gas i , g/m® — atm

P; = partial pressure of gas i in the atmosphere, atm

Henry's law states that at a given temperature, a liquid can absorb an amount
of gas that is proportional to the partial pressure of that gas in the overly-
ing atmosphere. Thus, an "equilibrated" state exists at the saturation con—
centration. There is a rate coefficient on the air side (gas film coeffi-
cient) and on the water side (liquid film coefficient) of the interface. The
inverse of these coefficients can be seen as "resistance" to gas transfer
(Liss and Slater 1974), where the air- and water—-side resistance act in
series. For most compounds, such as 0,, c0,, CH,, N;, etc., the water—side
resistance is much greater than the air-side resistance, and only the liquid
film coefficient is considered. The gas film coefficient can also be impor—
tant in the transfer of H;0 (evaporation), NH;, S0,, and some herbicides and
pesticides designed for this purpose. Because this report on reaeration con—
cerns oxygen transfer, only the water—side resistance need he consideféd.

15. A measure of the driving force causing oxygen transfer can there-
fore be defined as the difference between the concentration in the water and
the saturation concentration. This quantity is called the "saturation

deficit" and is mathematically defined by

D=C,-C (3)

where
D = saturation deficit
C; = saturation concentration
C = ambient concentration in water

At saturated conditions, the deficit is zero. If the deficit is positive, the
water is "undersaturated." If the deficit is negative, then the water is
"supersaturated.” Oxygen would be absorbed for the former and desorbed for
the latter to achieve the equilibrated saturated state.

16. To develop an expression that describes oxygen transfer as a

12



first—order process, the flux across the air-water interface is typically

written as
J = kL(Cs - C) = kL D (L")

where k; is the liquid film coefficient for oxygen transfer. Examination of
this equation and Equation 1 indicates that the liquid film coefficient is
related to the concentration gradient near the air-water interface, and may be
interpreted as the ease with which dissolved gases move across the air—water
interface. The liquid film coefficient is dependent on the internal structure
or ordering of water molecules and the breakdown of that structure by mixing,
17. To determine the rate of change in concentration for a well-mixed
volume of water, the total rate of mass flux into a water body must be calcu—
lated by multiplying Equation & by the surface area and then dividing this
quantity by the volume of water. Dividing the total mass flux by the volume

results in the rate of change in concentration:

JA _dC _ _ dD

TR R kL%(Cs - ¢) (5)

when C;, 1is constant and where

A = surface area associated with the volume V
oceurs

, over which transfer

V = volume of the water body over which A 1is measured
dC/dt = rate of change of concentration

dD/dt = rate of change of the saturatiomn deficit

18. Assuming that %k, , A , and V are constant over the time of
flow, Equation 5 can be integrated to the following mathematical model of

water—side controlled gas transfer:’

%f = exp (~kg % t) = exp (-kat) = exp (-K;t) (6
i

13



where

D¢,Dy = final and initial oxygen deficits, respectively

ot
Ll

elapsed time from initial to final defiecits
a = specific surface area, A/V

K, = reaeration or oxygen transfer coefficient

From the perspective of flow in a stream reach or through a hydraulic struc-—
ture, the initial and final deficits would be the upstream and downstream
deficits, respectively, and the elapsed time would be the time of flow from
the upstream to downstream locations. As presented later, some researchers
have defined a quantity r as the deficit ratio, which is the inverse of
Egquation 6 such that

D
r= Ti = exp ( kiat ) (7

However, the mathematical qualities of this formulation are less desirable
than those of Equation 6 (Wilhelms and Smith 1981; Rindels 1990).

19. A convenient parameter called transfer efficiency can be defined as
the fractional part of the incoming deficit that is satisfied as the water
flows through the structure or stream reach. This efficiency E can be

expressed mathematically with Equation 6 as

_ (G - Cp) =1 = De _ - -k A
E—W—l ']j';_l exp(kL.vt) (8)
E =1-exp (-K;t) (9>

where C; and C; are the final and initial oxygen concentrations, respec—
tively. If the transfer efficiency is zero, then there was no oxygen transfer
and the downstream concentration equals the upstream concentration. If the
transfer efficiency equals 1.0, then all of the upstream deficit was met by
the oxygen transfer and the downstream concentration is at saturation. Fur-—
thermore, the transfer efficiency of oxygen can be transferred to other gases
and vice versa through the indexing method developed by Gulliver, Thene, and

Rindels (1990).

14



Important Physical Processes

20. Three processes occur at hydraulic structures that can signifi-

cantly increase oxygen transfer. They can be related to the parameters given

in Equations 8 and 9. The impacts of these processes are governed mainly by

the fluid mechanics and flow conditions at the structure. The following pro-—

vides a general description of these processes and their effect on gas

transfer at hydraulic structures:

a.

[=n

I

Turbulent mizing at the water surface and within the body of the
flowing water. It would seem logical that the rate of turbulent
mixing would significantly affect gas transfer because of the
concept of water—surface renewal (water surface that is swept
away from the surface and "renewed" with water from below)
(Danckwerts 1951) causing increased gas transfer. A high degree
of turbulent mixing, such as occurs on the face of a spillway or
in a tailwater plunge pool, would increase k; and likewise

E .

Increased interfacial area resulting from air that has been
entrained into the flow. When air is entrained into the flow

either from the surface or at a plunge point, the surface area
available for gas transfer can increase dramatically. Gulliver,
Thene, and Rindels (1990) estimated that entrained air due to
free surface aeration in a 1-ft¥*—deep flow on a 30-degree slope
can increase the air-water surface area by a factor of nearly
500 compared to the unit area of surface exposed to the atmo—
gphere. Thus, if air is entrained, gas transfer should increase
significantly for a given flow condition. Although not defined,
the amount of entrained air should also be a factor in estab-—
lishing the oxygen transfer character of a hydraulic structure.
The water—surface area A is greatly increased when air is
entrained into the flow. This would also act to increase E

Increased saturation concentration from the higher pressure
experienced by bubbles in the plunge pool. In addition to the
contribution that air bubbles make to the air-water surface
area, absorption of atmospheric gases from the air bubbles can
be increased because of the increased pressure that the bubbles
experience as they are transported into the depth of the
structure's stilling basin. Increased hydrostatic pressure on
entrained air causes an increase in the saturation concentration
(Equation 2) and thereby increases the saturation deficit

(Buck, Miller, and Sheppard 1980; Wilhelms, Schneider, and
Howington 1987; Wilhelms and Gulliver 1990, McDonald 1990).
Thus, although the transfer efficiency does not change due to
this effect, the downstream concentration would increase because
of an increase in (g

% A table of factors for converting non-SI units of measurement to SI
(metric) units is found on page 5.

15



Each of these processes is included either directly or indirectly in Equa-
tions 8 and 9. Turbulent mixing is characterized by the liquid film coeffi—
cient k; . The increase in oxygen transfer due to greater interfacial area
because of entrained air bubbles is included in the interfacial area term A
The effects of pressure on oxygen transfer in a plunge pool result in an in-~
creased saturation concentration C, . This increase in C: can cause super—
saturated oxygen and nitrogen concentrations, compared to the surface satura—
tion concentration. By recognizing these processes and their impacts on
oxygen transfer, flow conditions observed in a physical model or full-scale
project can, at a very minimum, be qualitatively evaluated. If one objective
in the operation of a hydraulic structure is to provide for oxygen transfer,

this evaluation can identify means of meeting that objective,

16



PART ITII: MEASUREMENT TECHNIQUES

21. The efficiency, along with the variables in the exponents of Equa-—
tions 8 and 9, defines the gas transfer characteristics of a structure. To
calculate efficiency or estimate those variables, upstream and downstream
dissolved gas concentrations are required. Essentially, two methods are
available for collection of these data: (a) direct in situ measurements and
(b) discrete sample collection with a subsequent analysis for gas concentra-
tions. These two methods are discussed in the following paragraphs and an
uncertainty analysis is presented that defines the minimum values required for
an accurate assessment. Additionally, conditions for testing a hydraulic
structure are discussed that will result in a complete picture of the oxygen

transfer character of the structure.

In Situ Measurements

22. 1In situ measurements are usually made for DO with a portable
electronic meter that uses a polarographic probe (Yellow Springs Instrument
Company 1975; American Public Health Assoclation 1975). . The probe consists of
two metal electrodes in contact with an electrolyte separated from the test
water by a membrane that is permeable to oxygen. A polarizing voltage applied
across the electrodes causes oxygen that has permeated the membrane to react
at the cathode, resulting in an electrical current flow. Oxygen passes
through the membrane at a rate proportional to its concentration in the water.
1f the concentration is high, more oxygen passes through the membrane, result-
ing in an increased current flow. The current flow is calibrated to corre—
spond to a specific DO concentration.

23. These probes are usually very reliable, simple to operate and main-
tain, and relatively easy to calibrate, Failure to provide adequate measure-—
ments has occurred only under physical or biological fouling of the probe or
extremely cold weather conditions. They are accurate to 1 percent of full
scale or 0.1 mg/f. They may be calibrated with an air contact or chemical
titrametric method. Typically, these instruments incorporate a thermistor for
temperature measurements and a stirrer for moving water past the permeable

membrane.

17



Discrete Sampling and Apnalysis Technigues

24, Discrete sample collection with subsequent analysis is usually im—
plemented when gases such as H,S or €O, are of interest, although DO can also
be determined with a discrete sampling ﬁethod. A discrete sampling technique
may also be used when oxygen concentrations are at saturation and a tracer gas
must be used to determine the transfer characteristics. There are several
methods for collection and analysis of discrete samples. The method used
depends upon the dissolved gas of interest. A chemical titrametric technique
can be used for accurate DO measurements, Gas chromatography can be used for
Do, nitrogén, hydrogen sulfide, carbon dioxide, methane, and any other vola—
tile gas of sufficient concentration. Chemical titrametric and colorimetrie
methods can also be used for some of these gases, with variable measurement
accuracy.

Sampling techniques

25. The sampling instrument usually depends upon the gas of interest
and the analysis technique. For example, samples for titrametric analysis for
DO are usually collected in 300-ml biochemical oxygen demand (BOD).bottles in
a sampler specifically designed for this purpose. Thene and Gulliver (1989)
designed a similar sampler for use with 40-ml bottles in propane and methane

tracer gas analyses. For any sampling technique, the eritical issue is to

collect and analvze a sample that is "undisturbed.," relative to in situ mea—

surements. Thus, care must be exercised in the collection and handling of
samples to ensure that mno loss or gain of gas occurs as a result of the
sampling process. This may dictate that a special sampler be designed and
constructed to meet the needs of the particular study.

Sample analvsis techniques

26. As previously mentioned, a chemical titrametric technique is avail-
able for determining the DO concentration. For the azide modification of the
Winkler titration technique, divalent manganese sulfate and alkaline iodide—
azide are added to the 300-ml BOD bottles. They chemically react, producing a
divalent manganous hydroxide precipitate. The oxygen in the water sample
rapidly oxidizes an equivalent amount of the manganous hydroxide to hydroxides
of higher valency states. Adding sulfuric acid to this solution causes the
reversion of the oxidized manganese to the divalent state, while liberating

iodine equal to the original DO content. The DO is determined by titrating

18



the iodine in the solution to its end point with standard solutions of sodium
thiosulfate. More detail is given in the handbook Standard Methods for the
Examination of Water and Wastewater (American Public Health Associlation 1975},

27. This technique is relatively simple, but is more time—consuming
than the polarographic probe technique. Care must be exercised in sample
handling to prevent gas transfer, but in general, this technique results in
measurements that are reliable and accurate.

28. Gas chromatography is an analysis method useful for DO, nitrogen,
hydrogen sulfide, carbon dioxide, propane, or methane. The technique is based
on “sievingﬂ<component gases in a sample with a "molecular sieve" or absorbent
polymer. The gas sample passes through a long tube (column) packed with a
porous solid. The solid acts like a sieve, slowing the movement of larger
diameter gas molecules or absorbing particular gases. This results in separa-
tion of the sample component gases of interest by the time the sample exits
the column at the détector. Output from the detector is calibrated to corre—
spond to a certain amount of gas. The type of detector used in the gas
chromatograph (GC) depends upon the gasrof interest. For DO and nitrogen, a
thermal conductivity detector can be used in the GC. For propane and methane,
a flame ionization detector is used in the GC. For sulfur hexafluoride, an
electron capture device is used in the GC. These are examples of the sampled
gases and tracer gases of interest for hydraulic structures.

29. In using the GC to determine the mass of a volatile compound, a
headspace sample preparation technique has proven successful (Thene 1988). - A
headspace of inert gas is created in the sample bottle, By agitating the
sample bottle, nearly all the gas in the water. is stripped into the headspace,
Samples from this headspace volume are extracted and injected into the GC for
determination of compound mass. The actual gas concentration in the water
sample is calculated based on the mass of the compound in the headspace, the
relative volumes of the headspace and water sample, and the Henry’s law
constant of the particular gas.

30. Use of the headspace analysis technique with a GC is much more com~
plex fhan the titrametric or colorimetric techniques. Experienced laboratory
personnel are required to operate the GC and prepare the samples. However,

for hydrocarbon tracer gases, this technique proves to be one of the best.
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Uncertainty Analysis

31. Any adequate analysis requires that the accuracy and precision of
the data be assessed. Uncertainty analysis techniques provide the tools and
methodology to perform this evaluation. This technique can be used to evalu—
ate existing data, or from a planning perspective, it can provide guidance on
data requirements to assure that high—quality data are collected, which will
provide a proper foundation for drawing conclusions. For in situ or discrete
sampling methodologies, the uncertainty in the collected data must be evalu—
ated for confidence to exist in any subsequent conclusions. Details of the
analysis technique are presented in Appendix A for a typical data collection
program.

32, 1If a first—order, second-moment uncertainty analysis (Rindels and
Gulliver 1989) is performed upon the measurements that go into determining the

transfer efficiency, the uncertainty in the efficiency can be expressed as:

{We, + W, (L-E)P + (B, B + (B, B}

Ug = (10)
CS - Ci
or
2 2 z - |12
U _ | (Mee/ET) + [, (L -E)/EP + B2+ B (11)
T C, - C;
where
Ug = total uncertainty in E
W%,ch==precision uncertainties in C; and G , respectively
B. = bias uncertainty in the measurement of C; and C;

B, = bilas uncertainty in C,
Equation 10 shows that the uncertainty in E 1is inversely related to the ini-
tial (upstream) deficit. The typical precision uncertainty for well-
calibrated DO meters is 0.1 mg/f; thus, it can be assumed that Wci and ch
are 0.1 mg/& at the 95 percent confidence interval (P = 0.95). The variation
in time of DO concentration at a given location can result in a ch or Wci

value that is somewhat larger. The last two terms of Equation 10 represent
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the bias uncertainties that need to be considered. These uncertainties repre—
gsent potential error that would be identical in every measurement at that
structure, or that day, in terms of DO meter calibration and the uncertainty
in the value of saturation concentration. A typical blas uncertainty for DO
probe calibration would be 0,1 (P = 0.95). 1In experiments on river water
sampled during midwinter in Minnesota, Rindels (1990) found that the DO satu-—
ration concentration was 98 percent of that for distilled water, with an un—
certainty of #2 percent. Thus, Rindels found that BcE = 0.02C; . During
summer, because of the decreased water quality, Bcé may be higher, say Bc5’=
0.03C, . This is the primary source of uncertainty in many measurements of
transfer efficiency.

33. As mentioned at the beginning of this section, uncertainty analysis
can be used in several types of measurements. Consider the following ques-
tion, which would be posed prior to a field study: How much DO deficit must
exist to accurately assess the oxygen transfer characteristics of a hydraulic
structure? Uncertainty analysis provides the framework for establishing those
minimum criteria for in situ measurements of DO. For example, 1f the oxygen
saturation value €, 1is 8.0 mg/B? the expected efficiency is 50 percent (D¢
= 0.5D;) , a 3 percent bias uncertainty in C; exists, and it is decided that
the uncertainty in E must be less than 10 percent (Ug < 0.30E) to use in
this analysis, then the results of applying Equation 10 are that D; must be
greater than 3.4 mg/f. If these conditions exist for this study, e.g., G, =
8.0 mg/2 , measured E = 0.50 , D; = 3.4 mg/f , then the measured efficiency
would be 0.50 (50 percent) *0.05 (or 10 percent of E) for a confidence inter—
val of 95 percent. If the upstream deficit is less than 2.5 mg/%, then the
assessment of the gas transfer characteristics of the structure should not bé
based on the measurement of oxygen concentrations. An alternative method
using a tracer gas should be considered.

34. After a field study, the uncertainty surrounding the observed data
should be evaluated, as detailed in Appendix A, so that some measure of con—
fidence can be defined about the study. For an upstream oxXygen concentration
of 3 mg/#, a downstream concentration of 5.5 mg/#, and saturation of 8 mg/Z,
the efficiency determined with these data from Equation 10 is given as E = 0.5
+ 0.034 (P = 0.95). The uncertainty here is approximately 7 percent of the
measured efficiency. Obviously, the uncertainty in E becomes smaller if the

upstream deficit is larger. Hence, it is easy to conclude that there will be
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less uncertainty if measurements are made when the magnitude of the upstream
deficit is maximum,

35. The measurement uncertainty technique can be applied to any type of
measurement, 1f the uncertainty of each part can be defined. In situ measure—
ments of DO to determine efficiency were used as an illustration, but all the
measurement techniques discussed may be analyzed in this fashion, using
Equations Al, A2, and A3.
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PART IV: HYDRAULICS AT VARIOUS STRUCTURES

36. Low-head structures range widely in purpose, size, and configura-
tion. Consequently, the hydraulics that are encountered at the variety of
structures are extremely varied. However, the processes identified in Part II
are still the major influences on gas transfer. An examination of the hydrau-
lic conditions at "generic" structures can reveal the impact of these proc~
esses and permit qualitative conclusions to be drawn regarding the relative
gas transfer characteristics of these structures.

37. A committee evaluation of gas transfer at hydraulic structures
(American Society of Civil Engineers (ASCE) 1991) categorized open—chanmnel
structures into four groups: (a) free—surface flows, such as flow in a chan—
nel or on a spillway or ogee crest without a tailwater plunge pool (Figure 3);
(b) sub—merged flows, such as discharge under a submerged gate (Figure 4);

(e¢) free jets, such as flow over a sharp—crested weir (Figure 5); and

(d) transitional flows, where free—surface flows or jets interact with a pool
of water resulting in plunging flow or a hydraulic jump (Figures 6 and 7).
The hydraulics of each group differ greatly resulting in significantly
different gas transfer characteristics. An understanding of the hydraulics
and reaeration character of these groups of structures can permit
extrapolation to more complex flow situations.

38. Free-surface flows, such as shown in Figure 3, generate a boundary
layer along the spillway surface. If the length of flow is sufficient, then
the turbulence of this boundary layer will intersect the free surface. Under
these conditions, air is captured by the highly turbulent surface and sheared
down to small bubbles, giving the flow a white appearance. As the entrained
air is carried along the spillway, the bubbles are transported downward
through the water column by turbulence. As a consequence of this entrained
air, the surface area available for gas transfer greatly increases compared to
spillway flows that do not experience free-surface aeration. Gulliver, Thene,
and Rindels (1990) estimated that the surface area of the bubbles in a 1-ft—
deep spillway flow can provide 500 times the area of air/water interface pro-—
vided by the free surface. At overflow crests where air entrainment occurred
in the free-surface flow, Rindels and Gulliver (1989) observed oxygen transfer
efficiencies as high as 30 percent, which represents approximately half of the

oxygen absorption occurring at the project.
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Figure 7. Transitional flows through a gated conduit

39. Submerged discharges (Figure 4) usually reaerate flow through oxy-
gen absorption at the water surface of the turbulent "boil" in the stilling
basin of the structure. Generally, there is little air entrainment as long as
the discharge remalns submerged. As a consequence, the reaeration that occurs
in these hydraulic conditions is relatively small with oxygen absorption effi-
ciencies usually below 10 percent (Wilhelms 1988; Thene, Daniil, and Stefan
1989). However, for many structures like the one shown in Figure 4, with
higher discharges there is sufficient momentum in the jet issuing from under
the gate to push the tailwater downstream and expose the jet to the atmo—
sphere, This situation significantly alters the hydraulic characteristics of
the structure. The flow conditions may morelclosely resemble those shown in

Figure 6, where a high-velocity jet interacts with a pool of water causing a
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hydraulic jump. When this occurs, large volumes of air are usually entrained
at the velocity discontinuity between the jet and the static pool. With the
entrained air bubbles and possibly hydrostatic pressure on those bubbles,
oxygen absorption significantly increases to efficiencies as high as

40 percent (Wilhelms 1988; Thene, Daﬁiil, and Stefan 1989).

40. Free jets, such as shown in Figure 5, appear to be similar to the
free—surface flow on a spillway. These flows, however, do not demonstrate the
free-surface air entrainment that results from the full development of the
boundary layer at the spillway surface. Typically, reaeration is accomplished
at this type of structure during the breakup of the jet when it collides with
*he bottom downstream. If the free jet plunges into a receiving pool, air
entrainment and turbulent mixing contribute to increasing gas transfer.
Further, the depth of the plunge pool can enhance the absorption because of
the increased hydrostatic pressure on the entrained air bubbles. Avery and
Novak’'s (1978) experiments indicate that the transfer efficiency increases
with a tailwater depth up to 0.6 times the drop height. Oxygen absorption
efficiencies ﬁary widely, but for low-head overflow weirs, efficiencies of up
to 70 percent have been measured,

41. The most complex situations occur in open channel transitional
flows, which are typical of many hydraulic structures with stilling basins.
Much of the time, these situations are combinations of several of the hydrau-
lic conditions described in the preceding paragraphs. For example, this may
include air-entrained flow over a crest that plunges into a tailwater; the
hydraulic conditions when discharges from a gated sill sweep the tailwater
downstream and expose the flow to the atmosphere, resulting in air entrain-
ment; or the variety of flow conditions encountered in a gated conduit outlet.
Obviously, the hydraulic action of these flow conditions is complex and
extremely varied. Consequently, the reaeration characteristics of these flows
are extremely varied with oxygen transfer efficiencies ranging up to nearly

100 percent.
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PART V: FIELD DATA AND PREDIGCTION OF REAERATION

42. Qualitative comparisons can be made of the reaeration that occurs
under various flow conditions by consideriﬁg the significance of the major
processes that affect gas transfer, Air entrainment usually results in
greater gas transfer, as does plunging aerated flow. Generally,; structures
with greater differences between pool and tailwater elevations demonstrate
greater gas transfer, i.e., there is more energy available to cause gas trans—
fer. Through observations of oxygen absorption or tracer gas transfer at
these structures, the reaeration characteristics of the structure may some—
times be parametrically described. This type of analysis results in mathemat—
ical relationships between gas transfer and the measurable parameters that are
descriptive of the significant processes at work. The following sections
review most of the efforts in this area, including data presentation, uncer-
tainty analysis, and an evaluation of predictive capability of various

mathematical desecriptions,
Field Data

43. Parameter measurement and subsequent caiculations with observed
data constitute crucial initial steps in practically all engineering applica-
tions, and reaeration studies are no exception. While the amount of informa—
tion needed to complete a thorough gas transfer study at a hydraulic structure
is not large, measures of confidence are important and the collection of data
is not trivial (Rindels and Gulliver 1989). Prediction equations also require
special consideration since each uses a unique set of variables and special
measurements:are sometimes necessary. This section describes how data used to
evaluate the predictive equations for gas transfer at hydraulic structures
have been gathered and ahalyzed. _

44, The entire raw data set used in the analyses reported herein is
presented in Appendix B, which was created by reviewing current literature and
includes numerous parameters, all in SI units. The following parameters are
cited-

2. The location and type of the hydraulic structure.

=g

. The date the sampling was made.

¢. The flow per unit width over the structure.
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The difference in elevation upstream and downstream of the

4 structure (the head loss)

2. The depth of the tailwater.

f£. The gate openings 1f applicable.

&. The concentration of dissolved oxygen both upstream and
downstream of the structure,

h. The temperature of the water,

The saturation concentration of oxygen in the water.

e

1. The barometric pressure at or near the site.

45, When a report failed to include the saturation concentration of

oxygen OC; the value was found using the equation of Hua (1990);

C, = exp {-17.015355 +0.02262974T + [EEE%E] + %.01166 . [6-3‘*4]]%1} 12)

where T 1is temperature in degrees kelvin and GC;, 1s concentration of
chloride ions in grams per litre. Chloride concentration is normally not part
of the data collected at hydraulic structures because for concentrations under
1 g/%, the presence of chloride has little impact on saturation concentra—
tions. However, most matural streams contain some chloride ions, and particu-—
larly near maritime enviromments, atmospheric deposition of chleride can cause
error in estimations of oxygen saturation. For the purposes of this report,
Gey was assumed in all cases to be 1 g/f.

46. The equation of Hua expresses the saturation concentration of oxy-
gen in distilled water at an atmospheric pressure of 760 mm mercury. The
value was adjusted for the following:

a. Water quality by estimating the value of G, to be 0.97 of the
distilled water value (Rindels 1990). ‘

b. The barometric pressure with

P
Cy (Pasr) = Cs (760 mm Hg ) 7?51 (13)

vhere P, 1is the reported pressure in millimetres of mercury. If

"barometric pressure was unavailable, then the saturation concentration was
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adjusted for the elevation of the structure above sea level by employing the

following equation:

.25
Elevation Correction = |t "(0‘0065M{r (14)

where M 1is elevation above mean sea level in metres.

' 47. The processed data for comparison with the predictive equations are
presented in Appendix C. This appendix lists several of the previous param—
eters that are used in predictive equations, in addition to values of transfer
efficiency (Equation 8) and uncertainty (Equation 10). The efficiencies pro—
vided by the literature were commonly calculated at a variety of different
temperatures. For comparison, these efficiencies were indexed to a common

temperature (20 °C) using the equation of Gulliver, Thene, and Rindels (1990):

(15)

-

EZD=1_(1-ET)

where E;; and E; are gas transfer efficiencies at 20 °C and at T °C and fr

is given by the equation:

£, =1.0 + 0.02103(T - 20) + 8.261 * 10-5(T - 20)° (16)

where T 1is temperature in degrees Celsius.

48. The uncertainty listed in Appendix C is the cumulative uncertainty
to the 95 percent confidence interval associated with the gas transfer effi-
ciency. It is calculated by Equation 10 or a similar equation, using the
principles outlined in Appendix A. The bias uncertainty in saturation concen—
tration accounts for the fact that the saturation for DO is not precisely
established in field situations. Rindels (1990) found that during midwinter
this bias was approximately *2 percent. For the general data sets, however,
and accounting for the degraded water quality of the growing season, the bias
in G, was taken to be #3 percent. The calibration bias for DO meters was

taken to be *1 percent.
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49. The maximum acceptable wvalue of uncertainty U was set at 0.25 for
values of transfer efficiency to be included in the final data set for compar-
igon with the predictive equations. Most of the literature did not contain
uncertainty analyses of the field data; therefore, appropriate approximations

were made in calculating U

Predictive Equations

50. As discussed at the beginning of this section, predictive equations
that have been developed by various researchers for gas transfer at hydraulic
structures generally use physical parameters of the structure or flow condi-
tions, i.e., Froude number, depth of tailwater, discharge, etc., to estimate
reaeration efficiency. These equations are all more or less empirical, with
intuition being used to specify the independent variables, and regressions
used to determine the constants in the equation, Each equation yields a
unique oxygen transfer efficiency, and it is difficult to know the correct
efficiency for a different site without performing a comprehensive field mea—
surement investigation. The observed data discussed in the previous section
and presented in Appendix B are used in a comparison with the predictive equa-
tions. Predicted and measured oxygen transfer efficiencies are compared to
determine the performance of the various predictive equations. It should be
recognized that predictive equations are reliable only as first approxima-—
tions, and that they should be used carefully only when more accurate and
detailed studies are not feasible.

51. The equations investigated and the references in which they may be
found are listed in Table 1. A more thorough explanation on the development
of these equations 1s presented in Appendix D.

52. FEach of these equations is derived from a different data set, with
coefficients adjusted to fit the specific data of the researcher. Because the
size of most data sets is relatively small, large deviations between predicted
values of gas transfer efficiency and measured values at different sites are
common. Appendix D shows plots of predicted versus measured oxygen transfer
efficiency, which illustrate this.

53. Each of the equations in Table 1 was used to predict an oxygen
transfer efficiency for all of the acceptable measured data (U < 0.25) found

in Appendix C. This was performed separately for each of the four categories
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Table 1

Predictive Equations of Gas Transfer at Hydraulic Structures

Hydraulic
Structure Predictive Equation Source
Sharp- - N ‘onas AvNery 1:md
Crested 20 [ 1+ 0.66 % 10V F1¥ Rn_m] ova
Weirs (1978)
(Figure 5)
Nakasone
for +1.58;) > 1.2 {m and ¢ 5 235
® e) tm) 4 (1987)
E20 = ] = exp ‘[0.0-851 (h + 1'SHG)D.!.‘.I.GqD.GZ‘BHO.aI.O}
for (1 + 1.,5H;) < 1.2 (m) and g > 235
By =1 -exp-[5.39 (b + 1.5Hy)t 31 0-263 0.320)
for (b + 1.5H,)>1.2 (m) and g > 235
EIO =1 - exp_[s_gz (‘h + 1.SHG)O.BISq-O.JSEHQ.SIO]
for (h +1.5H,)=21.2 {m) and q <235
Ep = 1- exp~[0.0785 (h + 1.5H,y31q0-428y0-319]
Thene
-1
.1 - . 2,69 _ . 1.1 (1988)
Epp =1 - exp {0.156 N¢ Zgh [l (2gh)°-5] }
{Continued)
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Table 1 (Continued)

Hydraulic
Structure Predictive Equation Soutrce
. Thene
E,, = L | (1988)
1 +1.005 x 107 p}-°* RO-62 [1 - 0.6 exp (—3.7 %)]
Ogee Crest Holler
_ __0.21325h
Spillways 2 = G 21325h + 1) (1970)
(Figure 3)

Rindels and

- -0.2625h
E, =1 -exp (—-—1 fo-zzlgh - 0.2034H) Culliver

{1991)

Gated S8ills . _ - Foree

and General Ez = 1 - [0Xp (=0.5245h)] (1976)

Hydraulic

Structures

(Figure 4) Toi 1

b - o ool

(1972)

Preul and

Ep=1- —"l—,;.?g" Holler
66N

(@ + seens ) (1969)
hq Wilhelms

Egp = exp[—0.00857884 a - o.1sa] (1988)
Gated . g Wilhelms
Conduits Fao =1 - &P (~0.1476h) and Smith

(1981)

(Figure 7)

where

Fy; = Froude number of the jet

{Continued)
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Table 1 (Concluded)

Hydraulic
Structure Predictive Equation Source
FJ- - (2g)n.25hu.75
R | Y- A
q
g = acceleration due to gravity, m/sec?
h = head loss, m
q = specific discharge, m®/sec/m
R = Reynolds number
R=_J
2

v = kinematic viscosity
H, = critical water depth on the weir, m
H = tailwater depth, m

Ny = Froude number at the point of impact

0.75
N, - 2en)
eq)

S5 = gate submergence, m

of hydraulic structures (an ogee crest spillway, gated sill, weir, or gated
conduit) regardless of which type of structure the predictive equation was
developed for. The statistical results are given in Table 2. The standard

error compares measured and predicted oxygen transfer efficiencies by the

op o | (n - Ep? eX))
n

where E, and E; are measured and predicted oxygen transfer efficiency,

equation

respectively. The standard error is approximately equal to the uncertainty U
to the 68 percent confidence interval. A 68 percent confidence interval may
be interpreted as meaning that two out of three predicted values will be

within the boundaries of *U. An uncertainty to the 95 percent confidence

33



Table 2
Summary of Statistical Results
Standard Error
_ Gated Gated
Formula Title Ogee Sill Welr Conduit
Avery and Novak (1978) 0.282 0.458 0.166 0.340
Thene'’s Adjustment to Avery and 0.297 0.451 0.170 .
Novak (1988)
Preul and Holler (1969) 0.647 0.141 0.615 0.690
Thene (1988) 0.302 0.324 0.174 0.420
Nakasone (1987) 0.267 0.487 0.172 —
Tsivoglou and Wallace (1972) 0.290 0,406 0.183 0,320
Foree (1976) 0.285 0.612 | 0.271 0.358
Rindels and Gulliver (1991) 0.160 | 0.463 | 0.210 —
'Holler (1970) 0.327 | 0.296 0.205 0.339
Wilhelms (1988) 0.227 0.247 0.360 —
Wilhelms and Smith (1981) 0.322 0.355 0.212 0.312

interval (such as that used for the measurements) may be approximated as

double the uncertainty of the 68 percent confidence interval, or:

U (p.05 = 2VB(p-0.58) (18)

where P 1is the probability of the confidence interval on efficiency.
54, Using the method described herein, the prediction of a transfer

efficiency will result in:
E=E iUE(p=0.63) A (19)

where

E = true value of transfer efficiency that the given equation is
designed to predict
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E = the best estimate of the true value of transfer efficiency
that is predicted by the equation

Uk(pe0.68) = an uncertainty to the 68 percent confidence interval
(p = 0.68) for the prediction

55. While specific equations may provide the best approximation for
reaeration efficiencies at individual sites, the equatioﬁ thaf minimizes
predicted uncertainty provides the best estimate for gas transfer at a generic
hydraulie structure, The results show that the equation of Avery and Novak
(1978) best estimates the transfer efficiency for weirs. Rindels and
Gulliver’s (1989) equation is most accurate for gated and ungated ogee spill-
ways. The equation of Preul and Holler (1969) predicts reaeration at gated
sills most accurately. The equation of Wilhelms and Smith (1981) best
describes the reaerétion of gated conduits, although ﬁone of the equations
predicted the process accurately. This is probably because of the tran—
sitional characteristics of the flow in the conduit (high—%élacity open chan-
nel flow to plunging flow or hydraulic jump open channel versus closed conduit

flow), and the lack of consistency between structures, -
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PART VI: SUMMARY AND CONCLUSIONS

56. GGas transfer or reaeration is considered a first-order reaction

process and can be conveniently described by

_ (Cs ~ G;) _ - De _ - 2. A 8 bi
E = =y " 1 D 1 -exp (-k v t) ( s)

The important physical processes that impact gas transfer are included in this
formulation in the following manner: The effect of turbulent mixing is re-
flected by the liquid film coefficient k; . The impact of surface area
available for gas transfer, which must include the surface area of entrained
air bubbles, is represented by the specific area term A/V . Enhanced gas
absorption due to the effects of hydrostatic pressure on plunging aerated flow
is included as a pressure modification of the saturation concentration C; .
The time of contact over which gas transfer can occur is t .

57. The unknowns in this equation often dictate that reaeration mea—
surements be conducted to determine the gas transfer efficiency. The transfer
efficiency can then be related to the physical processes through empirical
relationships and regression analyses. Several alternatives are available for
measurement of gas transfer. Direct in situ measurement of dissolved oxygen
with polarographic probes is usually the most convenient. However, based on
uncertainty analysis, a DO deficit of at least 2.5 mg/f (when saturation is
8.0 mg/f) is required for accurate analysis. Often, the DO is not sufficient-
ly low to permit an accurate analysis. When this is the situation, alterna-
tive gas transfer tracers must be used in measurements for gas transfer. In
situ methane gas shows the highest potential for general application in
reaeration field studies.

58. Generally, low-head structures can be categorized into four groups:
(a) free-surface flows, such as flow in a channel or on a spillway or ogee
crest without a tailwater plunge pool; (b) submerged flows, such as discharge
under a submerged gate; (c) free jets, such as flow over a sharp-crested weir;
and (d) transitional flows, where free—surface flows or jets interact with a
pool of water resulting in plunging flow or a hydraulic jump. The hydraulics
of each group differ dramatically and, consequently, the gas transfer charac-

teristics are significantly different., However, an understanding of the
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hydraulics and the resulting gas transfer characteristics of each type of

structure can permit limited extrapolation to other hydraulic structures.

observations reported herein show that gated and ungated ogee crests demon-

strate gas transfer efficiencies up to nearly 100 percent.

without air entrainment can result in efficiencies up to 40 percent.

Submerged flows

Sharp-

crested overflow weirs or jets demonstrate efficiencies up to 70 percent.

Transitional flow conditions, which include several or all of the other types

of flow conditions, have shown reaeration efficiencies of up to nearly

100 percent.

59.

Several sources of observed data were assembled and, after screen—

ing through an uncertainty analysis, are included in the appendices of this

report. Predictions from eleven equations that describe gas transfer effi-

ciency at various types of structures were compared to this comprehensive

database.

prediction of gas transfer, the equations listed in Table 3 were the most suc-—

cessful for given types of structures.

Although there are inadequacies in the models currently used for

Table 3

Suggested Predictive Equations

Structure : Standard
Type Predictive Equation Error Source
yP q
Ogee _ 0.16 Rindels
Crests By = 1 - exp (ielan - 0.2034H) and
Gulliver
(1991)
Gated 1 0.14 Pruel and
Sills Ep * 1 = s Hollerx
1 + 666N
4+ seene™) (1969)
Sharp—é N . 11208 0.17 Av;ry ind
c]’.'este 20 © = ( . 1.787 ) ova
. 140 -4 F RU.SE!:
Weirs 1ro.edx : (1978)
Gated 0.31 Wilhelms
Conduit Eao = 1 = XP (~0.1476D) and Smith
Qutlets (1981)
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60. Standard error estimations for the equations of Preul and Holler
(1969) and Rindels and Gulliver (1991) may be too low. Much of the sill and
ogee splllway database included in this report was used in the regression of
the tw6 équations, and the paucity of accurate alternative data sources close—
ly tailors these equations to this evaluation. While the compilation of accu-
rate data is not simple, further field investigations are needed to define the
performanée:of predictive equations.

- 6l. In their efforts to predict the impact of hydraulic structures on
levels of dissolved gases in river systems, many researchers sought to create
equations that provide accurate estimates of transfer efficiency. Unfortu-
nately, the development of each equation was limited by the size of the data-
base that a researcher had available and the difficﬁlty encountered in deriv—
ing a theory from first principles. As a result, many equations are useful
only for specific types of structures under particular conditions, i.e., the
domain of accuracy for the parameters used in the equation is relatively
small, The.relafively large deviations between the measured transfei effi-.
clencies and the values computed from the‘predictive equations are understand-
able because of the size and diversity of the observed data. Consequently, a
large unceftainty”is associated with the prediétion of an oxygen transfer
efficiency from these equations, Field measurements are still the most con-

sistent means of determining oxygen transfer characteristics.
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APPENDIX A: TYPICAL MEASUREMENT UNCERTAINTY ANALYSIS FOLLOWING
THE EVALUATION TECHNIQUE OF RINDELS AND GULLIVER (1989)
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1. Measurement uncertainty inadvertently occurs due to the inaccuracy
of the instruments or of the measurement or because of operator exror. In any
measurement procedure, all significant uncertainties should be quantified, to
provide a means of evaluating the quality of the procedure and resulting data.
During the course of the measurements, sources of uncertainty should be iden—
tified. For example, in the chemical titrametric technique for determining
dissolved oxygen (DO) concentration, the purity of the chemical titrant in the
Winkler technique and the minimum gradations on the titration buret will
contribute to the uncertainty of the measured DO concentrations and to the
uncertainty in transfer efficiency. In the use of polarographic probes for
measuring DO concentration, uncertainty occurs because of the accuracy and
calibration of the instrument.

2. From Equations 8 and 9 in the main text, transfer efficiency E¥

was defined as

e I e (A1)
Cs_ci CS-Ci
where C; , G; , and C; are the saturation and upstream (initial), and

downstream (final) DO concentrations, respectively. The total uncertainty in
the transfer efficiency Uy is inherent in each measurement. By definition,
the total uncertainty of any measurement is a combination of precision (ran-
dom) uncertainty introduced when measurements are repeated, and bias (syste—
matic) uncertainty, or possible error that would affect each measurement in
the same manner (Abernethy, Benedict, and Dowdell 1985).%*% The most common
technique of analyzing measurement uncertainties is a first order-—second
moment analysis (Kline 1985). With this uncertainty technique, the total
uncertainty of transfer efficiency Ur can be expressed as

* TFor convenience, symbols and unusual abbreviations used in this appendix
are listed and defined in the Notation (Appendix E}.

*% References cited in this appendix can be found in the References at the
end of the main text of the report.
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where
Wg = precision uncertainty in the transfer efficiency

By = bias uncertainty in the transfer efficiency

3. The precision uncertainty Wz is a combination of the sampling un-
certainties that result from determining C; and C; and is mathematically

‘described by the following formula:

2
2 _ [8E S ) z [ Weg -8, (A3)
e [ww] ' {W“] ErE) [ =G

where Wbi and be are the uncertainties associated with the upstream and
downstream DO measurements, respectively. According to Abernethy, Benedict,

and Dowdell (1985), Wbi and be can be calculated as follows:

W, = (A4)
¥icy
t* .
Ve, = —lt (A5)
Viee
where _ _
t¥# = Student's t-~value corresponding to ng, - 1 or ng, - 1 degrees
' of freedom and a 95 percent confidence interval, as given in

Table Al

o, o¢, = standard deviation of the upstream and downstream measurements,
¢, %, P
respectively

ng ,Ng, = number of upstream and downstream measurements, respectively

For the given example of analysis with the titrametric method, Wbi or be
should be assigned a minimum value of 0.05 mg/f, which is the uncertainty
associated with reading the buret used for titratioms. If. Wbi or be , as
calculated with Equation A3, is greater than 0.05 mg/#, then their respective
calculated values would be used in determining the precision uncertainty Wg

from Equation A3. For measurements with a DO meter, Wbi or be should

Ah



Table Al
Student’'s t-Values at a 95 Percent Confidence Interval
for Various Degrees of Freedom (n, -.1)
Degree of - Student's
Freedom t-Value
1 : 12.7
2 4.30
3 3.18
& 2.78
5 2.57
6 2.45
7 2.37
8 2.31
9 2.26
10 2.28
15 2.13
20 2.09
30 2.04

have, as minimum values, the stated accuracy of the DO meter, which is assumed
to be the uncertainty at the 95 percent confidence interval. For most probes,
this is usually 1 percent of full scale or 0.1 mg/#, whichever is larger.

4. Two bias uncertainties should also be included in the uncertainty:
(a) either the purity of the chemical titrant in the Winkler technique or the
uncertainty in the calibration of the DO meter and (b) the uncertainty in the
value.of saturation concentration. The supplier of the sodium thiosulfate
titraﬁﬁ guarantees the purity to within *1 percent. This value could be
assumed to be the uncertainty at the 95 percent confidence interval. Proper
air calibration of a DO probe, considering air pressure and relative humidity,
usually has a typical bias uncertainty'of +0.1 (P = 0.95). The saturation
concentration of the water at a given hydraulic structure was estimated using
the locallj measured atmospheric pressure, before and after sampling, and the
water temperature measured at the hydraulic structure. At several hydraulic
structures, Rindels (1990) found the saturation concentrations to-be less than

the published values for a distilled water at a given temperature. He
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estimated the actual saturation value to be 98 percent of the distilled water
value with an uncertainty of *2 percent for river water collected during
winter. Summertime values of the same water have been assumed to be
97 percent of the distilled water value with an uncertainty of 13 percent. In
situ saturation measurement techniques, currently being developed, should
reduce this uncertainty considerably.

5. These two bias uncertainties are added to give the total bias uncer—

tainty in E as follows:

2 2
2_(8E, Y2, [6E .Y _| Be. B B, E (A6)
B = [gt:-sBcs] * [% BC] ) [cs =l B [cs =7,

where Bg , the bias uncertainty in C; , ranges from 0.02 C, to 0.03 C, ;
s
and B; 1s the bias uncertainty in DO concentration due to the titrant or DO

probe calibration

Be = a G, (A7)

where o equals 0.02 for the titrant and 0.0l for the probe.

6. Substituting the expressions for precision uncertainties (Equa-~
tions A4 and A5) into Equation A3 gives a mathematical description of the
total precision uncertainty in E . Substituting the expressions for bias
uncertainty due to saturation concentration and titrant impurity or probe
calibration into Equation A6 gives a mathematical description of the total
bias uncertainty in E . Combining these in Equation A2, the uncertainty in

the determination of transfer efficiency is described by

+ [CS—E-]Z + (8%, +82) (a8)

or
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/2

2 2
U 1 [ch] N Wci(l - E) . Bzcs . Bzc (A9)

7. An examination of Equations A8 and A9 clearly shows that the
accuracy of the transfer efficiency is strongly dependent on the difference
between saturation and the measured upstream DO concentration (the upstream
oxygen deficit). Hence, the recommendation was made in paragraph 33 for
minimum upstream deficits for acceptable uncertainty in transfer efficiency
with measurements of DO, In fact, larger oxygen deficits result in a reduced

measurement uncertainty,
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APPENDIX B: OBSERVED DATA TAKEN FROM LITERATURE
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1. For some references all the information that was needed to calculate
important data was not included in the publications. In these cases allow—
ances had te be made to extrapolate the information from different sources.
For instance, if the barometric pressure was not included, then (on data taken
within the United States) the nearest National Weather Service (NWS) recording
station was found and barometric pressure was taken from NWS publications.

The pressure was then converted to the elevation of the structure, because NWS
pressure readings have all been converted to mean sea level before being
publiched,

2. Barometric pressure was not reported for these structures and was
gathered from NWS records.

Dresden Island Dam, Joliet, L

Brandon Rock Dam, Joliet, IL

Starved Rock Dam, Peoria, IL

Arkabutla Dam, Arkabutla, MS

Crocked Creek Dam, Ford City, PA

East Branch Dam, Johnsonberg, PA

East Lynn Dam, Wayne, IN

Enid Dam, Enid, MS

Grayson Dam, Grayson, KY

Grenada Dam, Grenada, MS

Mississinewa Dam, Peru, IN

Salamonie Dam, Largo, IN

Sardis Dam, Sardis, MS

Dams listed in Butts and Evans (1983)%

3. Although pressure was not reported for some structures, the satura—
tion concentration given in the references was assumed to be the best avail-
able estimate for the following structures:

Borgharen Weir, Netherlands

Lith Weir, Netherlands

Cascade, Netherlands

All the other structures in Nakascone (1979)

* References cited in this appendix can be found in the References at the end
of the main text of the report.
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All of the structures listed by Foree (1976)

4. An "equivalent" specific discharge for all of the gated condults was
calculated from hydraulic radius considerations by using Fig. 6-5 of Chow
(1959) for a fully developed velocity profile in a partially full circular

conduit. Then:

a=2 (B1)

where
q = specific discharge through the structure

Q
Ry = the hydraulic radius of the flow in the conduit.

I

total discharge through a structure

For the Japanese dams listed by Nakasone (1979}, a mean elevation of 550 ft
was assumed, and a typical air pressure at mean sea level was determined by
inspecting NWS records. The measurement uncertainty associated with all of
the structures was greater then U = 0.25, so none were included in the

comparison with predicted equations.
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APPENDIX C: PROCESSED DATA FOR COMPARISON WITH PREDICTIVE EQUATIONS
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appendix € (Continued)

Saturation

Conecen-

tration

Tailwater
Depth, m

Head

Loss

D}scharge
sec/m
1,19
0.70
0,86

Date
13

of Sample

Ype

T

Location

0.04
0.14
0.08

0.71
1.19
1.02

0.04
0.13
0.07

0.72
1,18
1.02

8.24
7.95
7.97

1.22
1.22
1.22

10,33

Brandon Road Dam,

10.34
10.38

9/24/86

L
(Continued)

Joliet,

0.06
0.06
0.10
0.08
0.05
0.05
0.06
0.07
0.07
0.06
0.05
0.04
0.08

0.73
0.51
0.57
0.78
0.31
0.73
0.70
0.65
0.71
0.77
0.79

0.06
0.06
0,09
0,08
0.05
0.05
0.06
0.07
0.07
0.086
0.05
0.04
0.07
0.05
0.04
0.09
0.07
0.03
0.06

0.71
0.72
0.40
0.56
0.76
0.31
0.69
0._64
0.65
0.71
0.77
0.70
0.04
0.74

0,

8.79
9.15
12.26

0.67
0.85
1.01
1.51
0.30
0.96
1.07
0.79
1.54
0.90
0.20
0.00
1.03
0.45
0.26
1.7%1
1.06
0.89
0.71
0.48
0.34
D.45
0.60
0.67
0.92
0.32
0.68
0.95
1.11

0.

5.03
5.00
489
444
5.71

1.04

Weir

Borgharen Weir,

Muese River,
Netherlands

1.32
2.33
0.16
1.89
1.01
0.70
0.93
0.81
0.13
0.07
1.67
0.25
0.23
2,81
1.32
3.00
1.09
G.39
0.33
0.52
0.56
0.67
1.04
0.19%
0.68
1.17
1.48
0.83

9.34
9.54
9.15
9.95
10.64

4.66
4,90
4.90
4.78
5.78
5.39
4,80
.5

8.96
8.96
8.96
11.40

05
0,80
0.78
0.42
0.63
0.61
0.66
0.68
0.67
0.76
0.60
0.67

2
10.64
10.64
10.64

8.96
9.15
9.24
10.89

c5

0.04
0,10
0.07
.05
0.06
0.05
0.06
0.05
0.06
0.05

5.63
4.09
4 84
4,69
5.21
5.38

0.37
0.63
0.61
0.65
0.60

0.06
0.06
0.05
0.06
0.05

0.75
0.59
0.64
0.74
0.61
0.65
0,59
0.35
0.70

8.70
9.15
9.24
9.85
8.79
8,37
10.89
10.89

5.41
5.35
5.27
4.97
5.62

0.06
0.06
0.07
0.05

0.72

0.06

4.78
4,66
4,96

0,66
0.64
0.72

0.06
0.06
0.06

11.40

9.54

75

(Continued)

{Sheet 3 of 8)
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APPENDIX D: DESCRIPTION OF PREDICTIVE EQUATIONS AND PLCTS OF
PREDICTED VERSUS MEASURED OXYGEN TRANSFER EFFICIENCIES
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Avery and Novak Equation

1. The Reynolds number and the Froude number of a flow are used by
Avery and Novak (1978)% to predict the deficit ratio specifically for weirs

as follows:
r15 - 1 = 0.64 x 1074 Frj-7% RO.533 (D1)

the deficit ratio at 15 °C#%

N

where I'5

Frj = the Froude number of the jet, given by the following
equation:

(zg)‘n.zsho.vs
———

Fr, =
J q®-

g = the acceleration due to gravity
h = the head across the structure
q = the discharge over the structure
R = the Reynolds number of the jet:
R=_9
2v
v = the kinematic viscosity

The deficit ratio r can then be related to the efficiency E of the

structure by:

E=1-21 (D2)
r

* References cited in this appendix can be found in the References at the
end of the main text of the report.
#% For convenience, symbols and unusual abbreviations used in this appendix
"are listed and deflned in the Notation (Appendix E).
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Also, using the relation of Gulliver, Thene, and Rindels (1990);:

1 (D3)
'Ezo = 1 - (1 - ET)/E
where Ep = gas transfer efficiency at a given temperature T
fy = indexing coefficient given by:
fr = 1.0 + 0.02103 (T - 20) + 8.261 % 1077 (T - 20)2
which yields an efficiency indexed to 20 °C of:’
1.1148 (D4)

Bp =1 - - L 1787
: {1 +0.64x 107 Fry’® RO-333

The results of the Avery and Novak equation for the field data are presented
in Figures D1-Dé&. o

Adjustment of Thene to the Avery and Novak FEquation

2. Thene (1988) felt that the accuracy of the Avery and Novak equation
could be improved by considering the tailwater depth of the flow. Absorption
is expected to increase as the depth and contact time of entrained bubbles
increase. Thene created a function that varied with respect to the depth of
the tailwater pool H , and the head across the structure h . The adjustment

of Thene to Avery and Novak takes the following form:

(D5)
rys -1 =1.005 x 1073 Fr;-%® RO.63 [L ~ 0.6 exp [—3.7 %H

which can then be converted to an efficiency at 20 °C by Equations D2 and D3

to yield:

1,1148
Eyo - | i L (06)
. 11 +1.005 x 1075 Fr-%® RO.63 tl - 0.6 exp [—3.7 E]
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Thene reasoned that as the depth of the tailwater pocl H increases, less
flow reaches the bottom and the importance of H for gas transfer diminishes,
Because of this, the fall height of the structure h becomes more crucial in
estimating the amount of absorption that will occur. The coefficients of the
roots in the original Avery and Novak equation were altered to improve the
statistical accuracy of the adjusted formula. Figures D5-D7 show Thene's

adjustment to the Avery and Novak equation.

Thene Equation

3. Thene (1988) extended the work of Elsawy and McKeogh (1977) into a
predictive gas transfer equation for weirs. For a rectangular jet, Ervine and

Elsawy (1975) found the air entrainment rate to predicted hy:

0.446 D7
Qag.96 D F] P-QE] (07)
Q. P |t v
1.0 z :
0.8 F--enrenn a ..... ®....... ............. ......... ; .. ........... \ .............. ...............
L _J Y ': ‘. -
- R o
-D 0.6 st i, ? ..... ,. ------- :: ............ E -------------- ‘ .... ----------- .:\ .............. ? ..............
2 : P it e T :
o : : : T . : :
o : : MIRAE ; :
-E} 0.4 —-oenen .............. .......... ,' ............. .............. ESTPRPPRRS ..............
o : f : I : :
: > Looe :
0.2 e, A L...berfect Agreement:  : .
0.0 i l - e . i, i i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Meaosured E

Figure D5. Thene's adjustment to the Avery and Novak equation
for ogee spillways. Predicted values of gas transfer versus
measured values
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where

Qa and Q, = air and water discharges, respectively

b, p, t, and v = width, perimeter, thickness, and velocity of the jet,
respectively

h = fall height

Vo = minimum velocity required to entrain air (1.1 m/sec).

Elsawy and McKeogh (1977) found for eircular jets:

Fr (D8)

3.7
= J 3 1.66
Vem1.2 [U_S_Frl_+5"2] & Fry

where

Va

volume of entrained air
Fry = Froude number of the jet
Fr; = Froude number of the jet as it exits the nozzle

d = diameter of the jet
4. Several slight modifications were made to the Elsway equations to

make them applicable to weirs. Combining Equations D7 and D8, an equation for

the deficit ratio r can be written as:

r = exp[K,a..2

where kja is the liquid film coefficient. From this Thene developed a rela—

tion for the deficit ratio of:

2 -1 D10)
Inr =0.156 Frf-“é_ [l-%’] ¢

W

which can be transformed into an equation for transfer efficiency at 20 °C of:

W

-1
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where Fr; is the Froude number of the flow at impact into the tailwater.

Figures D8-D11 describe the performance of the equation of Thene (1988).

Nakasone Equations

5. Nakasone (1987) attempted to combine the variables of fall height,
discharge, and tailwater depth to characterize the transfer efficiency at
welrs. By quantifying the effects of each of these parameters on aeration
efficiency, Nakasone identified zoneé where reaeration could be predicted, and

derived the set of four equations.

a. For (D+1.5H)=<1.2m and q=<235n®/h/m

In ry; = 0.0785 (D + 1.5H,)!31q0- 4280310 (D12)

where

D = drop height, m

H, = critical water depth on the weir, m
q = discharge per unit width of weir, m3/h/m
¥ryy = deficit ratio at 20 °C
H = tailwater depth, m
or
Ey = 1 - exp ——[0.0785 D + 1.5Hc)1.31q0.&28Hﬂ.310] | (D13)

b. For (D +1.5)>1.2m and q=2350%/h/m
1n rp, = 0.0861 (D + 1.5H,)°%-818q0-4280.310 (D14)
or
Eyp = 1 - exp -[0.0861 (D + 1.5H,)°-5-18q0-4280.310] (D15)
or
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€. For D+1.5H)}=<1.2m and q > 235m*/h/m
In ryy = 5.39 (D + 1,5H,)!3q-0.3630.310 (D16)
Epo = 1 - exp -[5.39 (D + 1.5Hc)1'31q'°-353H°'31°] (D17)
d. For D+1.5)>1.2m and q> 235m%/h/m
In ry = 5.92 (D + 1.5H,)%-816¢0.36350.310 (D18)
or
EZO =1 - exp _[5'92 (D + 1'SHC)O.BIEq-O.SGSHOJID] (Dlg)

6. The results of these equations are described in Figures D12-D14,

Holler Equation

7. Holler (1970) used a form of Equation 7, main text, and proposed
that the area of the air/water interface is a function of momentum change
occurring in a hydraulic jump or in a Jjet impinging on a water surface. Using
a series expansion for the exponential term in Equation 6 and reducing the

variables, Holler approximated the deficit ratio by
r=1+g(av)2 (D20)

Av is then related to the head by energy equilibrium, and for weirs and over—

falls Holler presented the equation in the following form:

r=5H+1 (D21)
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where S was equal to 0.065 ft™'. This can be transformed into an equation

for transfer efficiency at 20 °C:

0.21325H

E =
(0.21325H + 1)

(D22)

where the head is described in metres. The results of the equation of Holler

for the field data are presented in Figures D15-D18,

Tsivoglou and Wallace Equation

8. Tsivoglou and Wallace (1972) proposed a simple mathematical model
that predicts gas transfer as a function of total energy dissipation. For

streams the model takes the following general form:

K, = cAE (D23)
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where

K; = reaeration coefficient

¢ = escape coefficient per foot of energy loss
AE = energy difference between upstream and downstream points
ty; = time of flow between the two points.

Combining this equation with the first-order reaeration equation of Streeter
and Phelps (1925), Tsivoglou and Neal (1976) presented the equation in the

following form:

Ezp =1 - exp (-ﬂh) (D24)
where 8 equals 0.054 ft™ and h is the head in feet, or:

(D25)
Eyo =1 - exp {(~0.17721)

where h 1is described in metres. The results of the Tsivoglou and Wallace

equation are presented in Figures D19-D22.

Foree Equation

9. The equation of Foree (1976) is intended to characterize the aera-
tion that occurs over small falls and dams found in creeks. Foree took
Tsivoglou and Neal's relationship and changed the coefficient g to fit his

data from hydraulic structures. The efficiency at 20 °C can be written as:

0.9032 ‘
Eyg =]-'[exp(-0.5249hﬂ (D26}

with head measured in metres. The applicability of the Foree equation to low-

head structures on rivers is described by Figures D23-D26.

Preul and Holler Equation

10. The reaeration prediction equation developed by Preul and Holler

(1969) was intended to be a generic gas transfer equation for low run of the

D18



Predicted E

1.0

0.8 e Aemesis o 4
Ll .. ' . " e »
o) O.s e i iriiiiaan . .............. . .............. ...’. ..... -... .........................................
: . . vl
- T ™4 S Y
.9 MR A
o ' : : &s
8 0.4 i, ?“:“im?uﬁfnnm? ............................................
o .
09 Lo T Pertsct Agrsement.
L

0.0

Figure D19.

1.0

0.6 0.8 1.0 1.2 1.4

Measured E

Tsivoglou and Wallace equation for ogee spillways.
Predicted values of gas transfer versus measured values

t TR LR DA
: : : »
[ ] . hd [}
0.8 oo e TOT TP SO o D O SRV SURRUON DURTRURIN
0.6 bbb ]
0.4 b e e
0.2 kol iPerfect Agréement: G i
0.0 i i i i i i i

0.0

Figure D20.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Measured E

1.6

Tsivoglou and Wallace equation for gated conduits.
Predicted values of gas transfer versus measured values

D19



1.0

0.8 Lo A - Lo

0.6 Lo, .............. S W o "’ ..............

Predicted E

0.4 | .............. \ .............. ..............

F’erféct Agréement

0.2 _..' ......... . .............. S ..............

00 I N R
0.0 0.2 0.4 0.6 0.8 1.0
Measured E

Figure D21. Tsivoglou and Wallace equation for
weirs. Predicted values of gas transfer versus
measured values

1.0

0_8 — e nnnnnanan - .......... “... ......... ;u‘ ...... ..............

0.6 koo .............. .............. .............. ..............

Predicted E

0.4 froovrni YA S

0.2 frovntl e s S

S VA N N
0.0 0.2 0.4 0.6 0.8 1.0

Measured E

Figure D22. Tsivoglou and Wallace equation for
gated sills. Predicted values of gas transfer
versus measured values

D20



Predicted E

Predicted E

1.0

0.8

0.6

0.4

0.2

G.0

1.0

08 Lok T ....... e ‘-' ‘ : .........................................
ol
R T 2 PO .
09 Lo .......... ............. ............................................
OO | ! | ) ’0 [ l

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Measured E

Figure D23. Foree equation for ogee spillways.
Predicted values of gas transfer wversus measured values

0.0

0.2 0.4 0.6 G.8 1.0 1.2 1.4

Measured E

Figure D24. Foree equation for gated conduits.
Predicted values of gas transfer versus measured values

D21

1.6



1.0

0.8

0.6

0.4

Predicted E

0.2

0.0

F’eriéect Agr;eementé

0.0 0.2 04 06 0.8 1.0

Measured E

Figure D25. Foree equation for weirs.
Predicted values of gas transfer

1.0

0.8

0.6

0.4

Predicted E

0.2

0.0

versus measured values

hd g (] :‘or T e e
Peé’fect Ag::reemenét
I I i ]

0.0 02 0.4 06 0.8 1.0

Measured E

Figure D26, Foree equation for gated sills,
Predicted values of gas transfer versus

measured values

D22



river dams. Among the many parameters that they identified, Preul and Holler
narrowed the scope of interest to just five terms, which in turn could be
related to just one term. By using the Froude number of the flow before the

hydraulic jump, a relation for the deficit ratio is presented as:
T,y = 1 + 666 Np°-° (D27)

where N; 1s the Froude number at Impact. This is rewritten in terms of

efficiency at 20 °C as:

1
(1 + 666 N;>%)

(D28)

Figures D27-D30 present the comparison of the predicted values to actual

measured values of transfer efficiency.

Rindels and Gulliver Equation

11. Rindels and Gulliver (1991) presented an equation of the form:

Ep =1 - exp [W_+O'98hq - 0.06221,] (D29)

where the values are all in non-SI units, or:

Ey =1 - exp [1'_3'0@2%_5;3‘?1 - 0.20342p] (D30)

where Z, is equal to the tailwater depth, h is the head across the

1
structure, and q is the discharge per unit width (all values in SI units).
The intention was to further refine the Tsivoglou and Wallace (1972) equation
by incorporating the effects of tailwater pool depth on aeration with the

effects of spillway height. The authors reasoned that transfer efficiency
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would be proportional to the depth of tailwater and height of spillway and
would be indirectly proportional to the unit discharge.

12. The results of the equation of Rindels and Gulliver are presented
in Figures D31-D33.

Wilhelmg (1988)

13. Wilhelms examined the hydraulic conditions at gated sill structures
and, using an exponential form of equation, empirically related the oxygen
transfer to the discharge, head loss across the structure, and submergence of
the gate 1lip. The exponent in the gas transfer equation was directly related

to the discharge and head loss and inversely related to submergence:

E, =1 - exp [-0.000797 h_sq - 0.188] (D31

where

=
i

head across the structure, ft

unit discharge, ft¥/sec

submergence of gate lip, ft

Cautlon was advised in using the equation because of prediction errors for
very small submergences or for large discharges that change the hydraulic
action in the structure stilling basin. Figures D34-D36 show the results for

the Wilhelms equation.

Wilhelms and Smith Adjustment to Tsivoglou Equation

14. Wilhelws and Smith (1981) modified the coefficient in the equation
of Tsivoglou and Wallace (1972) for a data set that consists mostly of gated
conduits. For their data set the following relation best predicted the

transfer efficiency:

E =1 -exp(-0.1476h) - (D32)

where h 1is the head across the structure. Figures D37-D40 present the

results of the Wilhelms and Smith equation for several types of structures.
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APPENDIX E: NOTATION

El



dc/dt
dp/dt

2]

Main Text

Specific surface area, A/V

Surface area associated with the volume V , over which transfer
occurs

Bias uncertainty in the measurement of C; and GC; ; bias
uncertainty in DO concentration due to the titrant

Bias uncertainty in G

Bias uncertainty in the transfer efficiency
Ambient concentration in water

Concentration of chloride ions, g/{

Final oxygen concentration

Initial oxygen concentration

Saturation concentration

Saturation concentration of gas 1 , g/m’
Change in concentration across the interface thickness
Rate of change of concentration

Rate of change of the saturation deficit
Interface thickness

Saturation deficit

Final and initial oxygen deficits, respectively
Molecular diffusion coefficient

Transfer efficiency

Best estimate of the true value of transfer efficiency that is
predicted by the equation

Measured and predicted oxygen transfer efficiency, respectively
Gas transfer efficiencies at 20 °C and at T °C

Froude number of the jet
Acceleration due to gravity, m/sec?

Head loss, m

Tailwater depth, m

Critical water depth on the weir, m

Henry's law constant for gas i , g/m® - atm

Mass flux per unit area across an interface or a plane
Liquid film coefficient for oxygen transfer

Reaeration or oxygen transfer coefficient

Elevation above mean sea level, m

E3



Number of upstream and downstream measurements, respectively
Froude number at the point of impact

Probability of the confidence interval on efficiency
Reported pressure, mm of mercury .

Partial pressure of gas 1 in the atmosphere, atm

Specific discharge, volume/time/length; discharge over the
structure

Total discharge through a structure
Deficit ratio

Reynolds number

Hydraulic radius of the flow in the conduit
Gate submergence, m

Elapsed time from initial to final deficits

Student's t-value corresponding to n; - 1 or nc, - 1 degrees of
freedom and a 95 percent confidence ihterval

Temperature

Uncertainty

Total uncertainty in the transfer efficiency
Volume of the water body over which A 1is measured
Precision uncertainties in ¢€; and C; , respectively

Precision uncertainty in the transfer efficiency

. Kinematic viscosity .

Standard deviation of the upstream and downstream measurements,
respectively

Appendix D

Width, peri@pter, thickness, and velocity of the jet,
respectively

Escape coefficient per foot of energy loss

Diameter of the jet

Drop height, m

Efficiency

Gas transfer efficiency at a given temperature T
Indexing coefficient

Froude number of the flow at impact into the tailwater

Froude number of the jet

E4



Frl

Froude number of the jet as it exits the nozzle
Acceleration due to gravity

Head across the structure; fall height

Depth of the tailwater pool

Critical water depth on the weir

Liquid film coefficient

Reaeration coefficient

Froude number at impact

Discharge over the structure; discharge per unit width of weir,
m®/h/m

Air discharge

Water discharge

Deficit ratio

Deficit ratio at 15 °C

Deficit ratio at 20 °C

Reynolds number of the jet

Submergence of gate lip, ft

Time of flow between the two points

Minimum velocity required to entrain air (1.1 m/sec)
Volume of entrained air

Tailwater depth

Energy difference between upstream and downstream points

Kinematic wviscosity
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