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CONVERSION FACTORS, NON-SI to SI (METRIC)
UNITS OF MEASUREMENT

Non~SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
cubic feet per second 0.02831685 cubic metres per minute
Fahrenheit degrees 5/9 Celsius degrees*
feet 0.3048 metres
feet per second 0.3048 metres per second
gallons (US liquid) 3.785412 cubic decimetres
miles (US statute) 1.609347 kilometres
pounds (mass) 0.4535924 kilograms
square feet per second 0.09290304 square metres per second

* To obtain Celsius (C) temperature readings from Fahrenheit (F) read-
ings, use the following formula: C = (5/9) (F - 32). To obtain Kel-
vin (K) readings, use K = (5/9)(F - 32) + 273.15.



MIXING IN RIVERS

CHAPTER 1. INTRODUCTION

US Army Corps of Engineer (CE) activities, such as reservoirs or
dredged material disposal sites, can potentially affect water quality in
rivers. Chamnelization projects and impoundments may alter the hy-~
draulic transport properties of a river.

Many factors influence water quality in rivers, including the
amount and type of pollutant input, bilological and chemical processes,
geometric and hydraulic characteristics of the river, methods and loca-
tion for discharges, physical and chemical properties of the pollutant,
and hydraulic transport processes. This report deals only with the dis-
charge and transport of solutes, i.e. substances that are dissolved in
the water. No direct consideration is given to many other important
aspects of water quality in rivers, including pollutant-sediment inter-
actions, insoluble pollutants, and specifics of biological and chemical
processes,

There are also many types of rivers; in fact, there are so many
types that it is difficult to find meaningful names for the various
categories. This problem is compounded by the fact that the categoriza-
tions which have been developed are for purposes other than identifying
the various characteristics which influence the hydraulic transport
processes. Some of the widely used descriptions of rivers are braided
streams, pool-and-riffle streams, and run-of-the-river reservoirs. It
is even difficult to state a clear definition of the distinction between
rivers and reservoirs; for this report, the distinction is based on riv—
ers having an absence of significant natural stratification and of sig-
nificant, long-term wind effects. In this report, additional stream
categories are free-flowing streams and streams with irregular cross
sections. A free-~flowing stream is defined as one with an unobstructed
cross section which varies in size and shape in some systematic fashion
along the stream length and with an identifiable thalweg. Irregular

cross sections are ones in which the variations in the bottom profile



are randomly distributed and have heights which are on the same order of
magnitude as the flow depths.

Calculation of transport in rivers can require different meth-
ods depending on the type of river, distance from input site, and type
of injection. This report provides criteria for selection of computa-
tional techniques. Analytical solutions and "desk-top" type calcula-
tions are given where possible and appropriate. No specific numerical
golution techniques are discussed, but guidelines for choosing the
necessary complexity of a numerical model are implicit through much of
the discussion.

This report is organized in three major sections. The first sec-
tion (Chapters 2 and 3) presents a discussion of initial mixing asso-
ciated with the momentum and buoyancy of the effluent discharge; the
second section (Chapters 4 - 7) discusses ambient transport after the
end of whatever initial mixing may be present; the third section (Chap-
ter 8) gives some example applications for both initial mixing and
ambient transport. In the first two sections, the discussion begins
with various considerations related to the theory of the problem at hand
and to the important physical mechanisms. Particularly in the second
section (Chapters 4 - 6), there is a detailed treatment of the basics of
ambient transport, beginning with the fundamental equations and going
through various calculated concentration distributions. In the first
two sections, emphasis 1s placed on the theoretical, fundamental, and
physical concepts because of the firm belief of the authors that an
understanding of these concepts is essential for the appropriate inter-—
pretation of experimental results and the appropriate use of these re-
sults for predictive purposes. Thus, it must be emphasized that the
reader cannot skip or skim over the portions on basic concepts and then
be able to make intelligent and proper use of the principles illustrated

in the latter portions devoted to applied aspects.



CHAPTER 2., FUNDAMENTAL ASPECTS OF JETS AND PLUMES

2,1 INTRODUCTION

2.1.1 Definition and Importance

Any natural river or man-made watercourse has its associated
mean advective field and turbulent characteristics. The understanding
of these tramsport processes and their mathematical formulation is a
key ingredient for a successful prediction of any pollutant introduced
into such a watercourse,

The actual method of introduction or discharge of the pollutant
also can influence the subsequent transport pattern. This is to be
expected, as in practice a pollutant discharge is a finite amount of
inflow (in case of a continuous discharge) or a finite amount of mass
(in case of an "instantaneous" or slug discharge) that is released into
the river. Thus, the release initially will more or less disturb the
ambient (or natural) transport pattern and will generate its own mean
advective and turbulence fields. This active, discharge—induced trans-
port process is generally called the ipitial mixing phase.

The mixing in this initial phase is governed by the dynamic char-
acteristics and by the geometry of the discharge relative to the ambient
conditions. The discharge dynamics are controlled mainly by the momen-
tum and the buoyancy of the inflow. For example, high~velocity (i.e.
high-momentum) injections are associated with rapid mixing close to the
discharge. On the other hand, highly buoyant inflows, due to the den-
sity differences relative to the ambient water, can be associated with
strongly divergent mixing patterns; they may increase mixing if coupled
with vertically rising or falling trajectories, or they may inhibit
mixing if the trajectory is blocked, forming, for instance, a warm
water layer at the river surface.

The discharge geometry may range from surface channels that enter
a river laterally, to submerged single pipes located on the river bot-

tom, to multiport diffusers in which a feeder pipe spans the river width



(or a portion thereof) and has a multitude of smaller nozzles or parts.

The initial mixing phase has paramount engineering importance
for managing the actual environmental impact of a discharge. It is in
this phase that the engineer can actually control the amount of mixing
and, if desired, can achieve a very high degree of dilution that may
rapidly reduce pollutant concentrations to acceptable levels. In con-
trast, the intensity of ambient transport and mixing processes is fre-
quently much lower and cannot be further affected by engineering design.

The information on initial mixing is organized as follows. The
fundamental aspects of jet diffusion under the influence of initial
momentum and buoyancy, respectively, are presented in Chapter 2. This
discussion includes the underlying physical phenomena and their mathe-
matical treatment, with particular emphasis on the simple, yet powerful,
integral analysis technique. Some idealized conditions, namely a stag-
nant and infinitely large receiving water, are assumed in the initial
stages of that discussion. Yet it will be evident later that the inte-
gral analysis can be readily extended to more realistic conditions as
they prevail in riverine discharges. Chapter 3 then deals with the
application of that technique to the three major classes of riverine
discharges: Submerged single-port discharges (Section 3.1), submerged
multiport discharges (Section 3.2}, and surface discharges (Sec-
tion 3.3). In each of these cases, the significant features of the
underlying predictive model are explained and major results, which are
useful for design or anmalysis purposes, are presented.

Throughout Chapters 2 and 3, maximum emphasis is placed on the
initial mixing phases produced by continuous, steady-state discharges
into rivefs. The initial mixing produced by instantaneous releases
(e.g. accidental dumps or field experimental tracer slug releases) is
of lesser importance in routine environmental assessment and is ana-

lyzed briefly in Section 3.5. Examples are presented in Chapter 8.



2.1.,2 Physical Processes

Consider a large ambient body of water that is stagnant and of
uniform density. If an aqueous discharge is introduced locally into
this water body by means of a port or nozzle, the velocity discontinu-
ity between the discharged fluid and the ambient fluid causes an
intense shearing action. In the general case of engineering applica-

tions where the discharge Reynolds number is large enough, i.e. where

U D

in which U0 = digcharge velocity, D = discharge diameter, and v =
kinematic viscosity, the flow breaks rapidly down into a turbulent mo-
tion. The width of the zone of high turbulent intensity increases in
the direction of the flow by incorporating {("entraining”) more of the
outside, nonturbulent fluid into this zone. In this manner, any in-
ternal concentrations (e.g. of fluid momentum or of pollutants) become
diluted by the entrainment of ambient water. Inversely, one can speak
of the fact that both fluid momentum and pollutants (solutes) become
gradually diffused into the ambient field,

The initial velocity discontinuity may arise in different fash-
ions. 1In a "pure jet" (also called "momentum jet" or "nonbuoyant jet"),
the initial momentum flux in the form of a high-velocity injection
causes the turbulent diffusion. In a "pure plume,"” the initial buoy-
ancy flux leads to local vertical accelerations which then lead to tur-
bulent diffusion. In the general case of a "buoyant jet" (also called
a "forced plume"), a combination of initial momentum flux and buoyancy
flux is responsible.

From a mathematical viewpoint, it is possible in all of these
cases to employ simplified equations of the fluid motion. These equa-
tions take account of the narrow, elongated shape of the turbulent zone
and, hence, are of boundary-layer type. The equations may be further

simplified by integrating across the local jet cross section, thereby



yielding a one-dimensional equation set. This is the approach of "jet

integral analysis™ and will be demonstrated in the following paragraphs.

2.2 SIMPLE ROUND JETS

2.2.1 Physical Description

The actual instantaneous physical appearance of a simple round
jet, i.e. one which is discharged with no buoyancy into a large, stag-
nant receiving water body of uniform density, is sketched in Figure la.
Following the release from the nozzle, the jet flow becomes unstable at
its boundary and breaks down into the turbulent motion. Typically, the
size of the turbulent eddies increases with increasing distance along
the trajectory. Thus, the jet goes from an initial fine-scale turbulent
structure to an increasingly coarser one.

From an engineering viewpoint the actual instantaneous velocity
and concentration distributions are often of secondary importance. The
primary interest lies mostly in the mean (time-averaged over the time
scale of the turbulent fluctuations) behavior as indicated in Figure 1b,
The jet then exhibits a straight trajectory {in the absence of buoy-
ancy), and all jet properties are distributed in a bell-shaped profile
around that trajectory. In fact, one may define a "nominal width,"

b , at which a jet property (e.g. the velocity) attains a certain per-
centage of its maximum centerline value. One major characteristic of
jets is their slender appearance, i.e. the local width b 1is much less
than the local distance along the trajectory (b/s << 1). By continuity
this implies further that the forward velocities u in the jet are
considerably larger than the transverse velocities Vv in the radial
direction r (v/u << 1). Even further, the pressure within the jet is
approximately equal to the outside (hydrostatic) pressure in the ambient

fluid as the transverse accelerations are negligible.

2.2.2 Governing Equations and Boundary Conditions

With these statements-—all corresponding to the "boundary layer
nature" of the flow--the time-averaged equations for the turbulent jet

motion are

io



Continuity: %% + % %EX = 0 (2.2.1)

r
3 ] 3 —_—

Forward momentum: u 3§ + v 3% = - % 35 {(r u'v') (2.2.2)
] a 3 —_—

Scalar conservation: u 5& + v 5% = - % 3T {(r c'v") (2.2.3)

d. Instantaneous appearance

VELOCITY s
PROFILE <OR /)"
ENTRAINMENT gC L INE
R L

VELOCITY

CONCENTRATION
PROFILE
Us, po=pa, cq . ¢

Cc

AMBIENT DENSITY o,

FLOW ESTABLISHMENT
b. Time-averaged conditions

Figure 1. Simple round jet in uniform stagnant ambient
water body
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The transverse momentum equation is negligible. In these equations the
mean velocities u and v correspond to the local axisymmetric coordi-

nates s and r , respectively; c is the mean pollutant concentration.

The correlation terms u'v' and c'v' represent the net lateral turbu-
lent diffusion of momentum and pollutant mass due to the fluctuating jet
properties (Reynolds terms) in which the primed quantities u' , v',
and c¢' denote the temporal deviations from the temporal mean quanti-
tles u, v , and e¢. All turbulent diffusion terms in the

s—direction have been neglected relative to the lateral terms, as have
been molecular diffusion terms. Assuming uniform conditions at the
beginning of the jet, the initial conditions for this equation system

are

u=0 , c=c¢ at s =0, r £D/f2 (2.2.4)

at r + ® (2.2.5)

av' -0, cv' >0
with symmetry about the centerline (r = 0).

There are different_techniques——similarity solutions, eddy vis-
cosity approaches, integral analysis, and direct numerical integration--
for the solution of this equation set, all of which require one or more
empirical (experimentally determined) coefficients for final closure of
the equation system. A simple, sufficiently accurate and highly versa-
tile approach is jet integral analysis.

The integral analysis proceeds by a priori selecting similarity
functions to represent the relative transverse distribution of jet
properties, such as velocities and concentratioms. Thus, one does not,
in fact, solve for these distributions (as a complete solution would
require), but initially assumes profiles that approximate the actual

observed bell-shaped profiles, for example,
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9.;. = f (%), .2.: = F (%) (2.2.6)

=

in which u, and ¢, are the local centerline values and b the
local width. A frequently used profile assumption is a Gaussian (nor-

mal) distribution

(2.2.7)

Thus, in Eq. 2.2.7 the nominal width (b) of the velocity profile has
been defined as the position where the local velocity is 1/e = 37 per-
cent of the centerline velocity. The dispersion factor A in the
concentration profile is introduced to account for the fact that the
profiles of scalar quantities (e.g. concentration, temperature, etc.)
are found experimentally to be somewhat wider (A > 1) than the velocity
profile. Other profile assumptions for f and F may be found in the
literature, e.g. cosine functions, polynomials, or even rectangular
("top-hat") distributions. Two points must be noted in this respect:
(a) the final functional relationships are unaffected by the choice of
the profiles; (b) the empirical constants (e.g. entrainment coeffi-
cients or spreading constants), however, depend on the profile specifi-
cation, and care must be exercised when quoting such values,

Also, when making such profile specifications, one must obvi-
cusly exclude the initial zone of flow establishment (Figure 1) that
exists just after the discharge and in which an adjustment between the
efflux profile (approximately uniform) and the final established pro-
file takes place. However, no major error is introduced in practical
applications since the length of flow establishment is short (~6D).
Alternatively, an adjustment via a virtual origin can be made (Fig-
ure 1) or an analysis of the zome of flow establishment can be

performed.

13



Having made these profile specifications (Eq. 2.2.6), the local

bulk flux quantities can be defined by integration across the jet cross

section.
Volume flux: Q =27 _furdr
o
)
Momentum flux (kinematic): M= 2T J.u rdr (2.2.8)
o

Scalar (pollutant) mass flux: QC 2w j.ucrdr
)

Using Eq. 2.2.6 these can be expressed as:

2
Q 2ﬂllucb

=
]

2“12u2b2 (2.2.9)
Q = 2tluc b2
c 3 ¢ce

in which the "integral constants' are:

I, = E)ff(n)ndn » I, = !fz(n)ndn » Iy = {f(n)F(n)ndn (2.2.10)

and N = ¢/b . Using the Gaussian functioms (Eq. 2.2,7), these become
2
1 1 1 A
I, =%, I, =+, I, =% (2.2.11)
1 2 2 4 3 2 1+ AZ

In just the same manner, it is possible to integrate, 27 j.[ ] rdr ,
0
the three governing equations (Eqs. 2.2.1 to 2.2.3). Using the boundary

conditions (Eq. 2.2.5) and the bulk quantities (Eq. 2.2.8), one obtains:

14



. 49 =
Volume flux conservation: s + 21r(rv)|r+°° 0 (2,2.12)

Momentum flux conservation: %% =0 (2.2.13)
dQc
Scalar flux conservation: el 0 (2.2.14)

The term 2m(rv)| _, = in Eq. 2.2.12, where = means "sufficiently out-
side the jet" as in boundary layer terminology, is a non—zero quantity;
this term from Eq. 2.2.12 represents the net flow toward the jet that
1s induced in the outside fluid by the "turbulent pumping action"
within the jet. Using the jet width b as the characteristic length,

this term is usually expressed as

2w(rv)5r+m = -2rbv, (2.2.15)

in which v, 1s called the "entrainment velocity." With this conven-

tion Eq. 2.2,12 becomes
4Q _
a‘g = ZTTbVe (2-2-16)

expressing the increasing volume flux along the trajectory.

2,2,3 Closure of the Equation Set

Note that it was not necessary to specify the turbulent correla-
tion terms u'v' and V'c' in the governing equations (Eqs., 2.2.2 and
2.2.3). The transverse integration with the similarity functions and
the boundary conditions (Eq. 2.2.5) eliminated the correlation terms.
However, the usual closure problem, i.e. some way of relating the
turbulence effects to the mean flow quantities, is not avoided alto-
gether, since the integral equations contain the unknown parameters v,
and A . The two dynamically important equations at this point are

Eqs. 2.2.13 and 2.2.16. Their solution would describe the dependence

i5



of s of the two variables uc(s) and b{s) . The system is not
closed, however, as the entrainment velocity ve(s) is not specified
at this stage. Some additional physical arguments on jet behavior must
be given to proceed any further. Either of two closure statements can
be given.

a. Closure statement I. It is readily observed experimentally

(as sketched in Figure lb) and can also be deducted by physical reason-
ing (using dimensional similarity arguments first given by Prandtl, see
Schlichting 1968), that the jet width grows linearly with distance,
i.e. b ~s . Using this statement, one can completely bypass

Eq. 2.2.16 and simply use the following equation set

db
ds h

d 2.2\ _
'a'g (szlzucb ) =0

in which kj = jet spreading coefficient . The parameter A {or Ab )

(2.2.17)

can be obtained by comparison of the rates of spreading of scalar (e.g.
concentration) and velocity distributions.

b. Closure statement II. Alternatively, using the same physi-

cal reasoning, Morton, Taylor, and Turner {1956) first demonstrated
that the entrainment velocity must be proportional to the centerline

velocity vy ~u, . This leads to the equation set
d 2TI.u b2 = 2T ,u b
ds 17¢ jc

d 2 2\
s (Zﬂlzucb ) =0

in which aj = jet entrainment coefficient defined by the expression

(2.2.18)

v = o.u .,
e jc
The advantage of the spreading approach is that kj is a

readily determined constant from experimental data. The advantage of

16



the entrainment approach, however, is that it can be more easily ex-
tended to describe more complicated buoyant jet motions (other than
simple jets or plumes). For the two approaches to be consistent, a

comparison of the two equation sets shows
o, = Ik, (2.2.19)

Thus, once kj is determined from experimental data, the corresponding
aj is readily computed. It is stressed again that the numerical

values of both coefficients depend on the similarity function selected.
2,2.4 Solutions

The final solutions of the now~closed equation system are sum—
marized in Table 1, which lists the functional dependence of both bulk
variables and local variables on the distance s . In deriving these

solutions it is convenient to consider the following bulk flux initdial

conditions
~
M = U2a
o 0 C
Q, = Ua, > at s =0 (2.2.20)
‘Qco = Uocoaoaj

where the discharge area a, =3 D2 s 1s used instead of the diameter,
as was done in specifying the original initial conditiomns in Eq. 2.2.4.
Furthermore, the solutions listed in Table 1 apply only sufficiently
far away from the source (where the effects of the zone of flow estab-
lishment are no longer important), or about s 2 6D . The related
dilution parameters, either in bulk (flux) form or as the minimum
centerline value, are also given.

Finally, the empirical constants that must be evaluated from
experimental data are summarized in Table 2, which is restricted to the

Gaussian profiles specified in Eq. 2.2.9. The values given are
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Table 1

Solutions for the Axisymmetric Jet and Plume®

Round Jet Round Plume
Initial Discharge
Parameters:
2 2
a - *k
ao-4D Mo Uao no
Qo " ano Qo
qco = Uocoao Qco

Bulk Variables:
Momentum flux

¥ = 21 utb?
27

Discharge

2
Q= 2“11ucb

Scalar flux

2

Qc - 2‘I”:3|'lc-.‘:u-:b

Buoyancy flux
2

= ]
J Zﬂlsucgcb

Local Varilables:

Width

Centerline velocity

Centerline concen-~
tration
(buoyancy)

Dilutions:

Bulk dilution:

sal
qD
Centerline
{minimum)
dilution:
[ ]
s Sl
€ % &

[

I 1] 2/3
L 1/3 % 4/3
M =3 (7l,) 1% 5 (3
13
2 1/3 473
17 (fn) 5/3
Qaly1J (3s)
T,LI, "o 5
QG " QCO
Jed
[+]
a
= =3P
b k s z 11 -]
i3
u, = 1 14 J 2 I 23 g 13
(4 2 3ﬂ1213 o ap i
J
'mo 2
gc c
co
1/3 2/3
= Eg Ei iﬂ 43 (35)'5/3
I4 13 ] up
2 M3, a3
1 5T @ 5/3
S =g\t % -+ (38
172'3
1
3
Sc bl ]

1

* Solutions are accurate outside the region of flow establishment s > 6D .

il Mo is constrained to
3/2
I2 Iﬁ

I

&=

M =
o

2/5
1

13T o
P

2
JoQo

in order to have simple plume conditions.



Table 2
Empirical Constants for the Axisymmetric Jet and Plume

with Gaussian Profile Specification (Eq. 2.2.7)%

Round Jet¥*#* Round Plume
Spreading coefficient kj = 0,110 kp = 0,100
% 1 % _ s
- == L2 -2
Ratio o/k = =3 X 3
J P
Entrainment coefficient Gj = 0,055 ap = 0,083
Scalar dispersion coefficient kJ =1.20 Ap = 1,20
Equilibrium Froude number Fo. =" F, = 4.66
J P

* The above constants are based on the data surveys of Jirka,
Abraham, and Harleman (1975); Chen and Rodi (1980); and List (1982).
#% Round jet integral coefficients for Gaussian profiles are:
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representative averages of the earlier data summaries of Jirka,
Abraham, and Harleman (1975); Chen and Rodi (1980); and List (1982).

2.3 SIMPLE ROUND PLUMES

2.3.1 Physical Description

An instantaneous view of a plume motion is shown in Figure 2a,
Here the motion is generated by releasing, at a ccnstant rate, water
that is lighter (density I ) than the ambient water (density Py ),
i.e. Po <Py -+ The resulting motion 1s then driven by buoyvant forces
and occurs along a vertical trajectory. A local fluld element within
the plume with density p will experience a buoyant acceleration g'

relative to the outside fluid

g' = 2 g (2.3.1)

that is directed opposite to the direction of the total gravitational
acceleration g (for a plume with positive buoyancy, as being considered
here). The motion of a turbulent plume, in comparison to the simple
jet (Figure 2a), often shows coarse large-scale meandering features, a
difference due to the buoyant accelerations.

The time-averaged conditions are indicated in Figure 2b and
again display bell-shaped distributions. The plume exhibits a similar
narrow boundary-layer nature as the simple jet, so that the same

assumptions hold.

2.3.2 Governing Equations and Boundary Conditions

Compared to the simple jet equations (Eqs. 2.2.1-2.2.3), two

changes are expected: a buoyant acceleration term in the momentum
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a. Instantaneous appearance
AMBIENT
T s=z DENSITY g,

i

CONCENTRATION AND
BUOYANCY PROFILE
c g
& e

ENTRAINMENT
VELOCITY

...Ve

b. Time-averaged conditions

Figure 2. Simple round plume in uniform stagnant ambient water body
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equation and an additional buoyancy conservation equation. Thus, the

following equations apply:

u , du _ 1 %; (ru'v') + g' (2.3.2)

Vertical momentum: u — v
28 ar r

Buoyancy conservation: u 28 4 v 9% _ . (r(g")'v") (2.3.3)

13,
CE] ar r It
in addition to Egs. 2.2.1 and 2.2.3. The quantity (g')"' denotes the

turbulent fluctuation of buoyancy from its mean value, and the

correlation TETTT;T is the transverse turbulent diffusive flux of

buoyancy. In writing Eq. 2.3.2, the Boussinesq approximation has been

made by assuming that the density is constant in all terms except the

gravity term g' . This is acceptable in practical problems since the

density deviations from the ambient density are usually small (e.g.,

< 3 percent in case of fresh water plumes in the ocean or estuaries).
The initial conditions on the system of plume equations

(Eqs. 2.2.1, 2.2.3, 2.3.2, and 2.3.3) are

~
F = of
g 8o
I5/4
U = 2 /2 - <D
w=U, = Fy T (s:p) Fat s=0, rs3  (2.3.4)
173
c=c,
S
and lateral boundary conditions are
g' >0, (g)'v' >0 at r + (2.3.5)

in addition to Eq. 2.2.5. The particular constraint on U0 » in which
sz is a plume Froude number which is defined in Table 2, is explained
below.

An integral analysis of the plume can proceed in the same spirit

as for the jet case. Since the local buoyancy is a scalar quantity, it
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will be distributed similarly to the concentration profile (Eq. 2.2.6)

so that

s‘_=s.,=F(

1
c
gc c

) (2.3.6)

>In

in which g'c is the maximum (centerline) value. An additional bulk
- flow quantity is

oo
2
- = t = '
Buoyaney flux: J = 2% J~ug rdr 2w13ucgcb (2.3.7)

in addition to those defined in Eqs., 2.2.8 and 2.2.9. Cross-sectional
integration of Egs. 2.3.2 and 2.3.3 yields

dM 2

Momentum flux conservation: s - 2ﬂI4géb (2.3.8)
dJ
Buoyancy flux conservation: e 0 (2.3.9)

which apply together with Egqs., 2.2.16 and 2.2.17. The new term on the
right-hand side of Eq. 2.3.8 represents the bulk acceleration effect of

plume buoyancy in which the integration constant is
I, = f F(nindn (2.3.10)
o
which becomes for a Gausslan profile
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2.3.3 Closure of the Equation Set

It is important to realize that the only dynamically important
parameter within the pure plume is its buoyancy flux. The local momen-
tum flux, in turn, is controlled by the buoyancy flux and increases
with position s . Thus, the plume can be seen as a perfect equili-
brium motion in which the buoyancy forces control the inertial (momen-—
tum) forces. A ratio of gravity and inertial forces can be expressed

in the usual manner by a local densimetric Froude number:

2

2
u 171, ..5/2
TR, - S . S (2.3.12)
£ g'b 572 _ 2
c 12 JQ

In an equilibrium motion, the force ratio and hence the Froude number

must be constant along the plume path so that

F, = const. = sz (2.3.13)
Differentiating Eq. 2.3.12 with respect to 5 and setting dFi/ds =0
yield the equilibrium condition

_________ =0 (2.3.14)

that governs the plume equation system (Eqs. 2.2.16, 2.3.8, and 2.3.9).
Since the simple plume is a self-similar motion just as the simple jet
(although with different dynamics since one is driven by buoyancy flux
and the other by momentum flux), the same general closure principles

can be used.

Closure statement I

b .y (2.3.15)

Plume spreading: I p
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Closure statement II

Plume entrainment: gg =218 u b (2.3.16)
s pC

The numerical values for the plume spreading coefficient kp and plume
entrainment coefficient ap will, in general, be different from the
jet case due to their differences in turbulent structure.

The consistency condition between Egs. 2.3.15 and 2.3.16, namely

@ =§ Ik (2.3.17)

is obtained from substitution into the governing equations, and the

value of the plume Froude number is

I.1 1/2
57174 1
F, = |+ —— (2.3.18)
fp 4 I?. otp

2.3.4 Solutions

The solutions for the axisymmetric plume are included in Table 2
for comparison to the jet. These solutions were obtained using the

following initial conditions for the bulk variables:

J = ! h

o “oBo%o

Qo = ano

2/5
3/2 -

v - 5 12 I4 1 Qz ? at s =0 (2.3.19)

o] 4 I3 S, ©O0©

P
Qco - Uocoao -J

The condition on the momentum flux is necessary to ensure that the ini-

tial efflux meets the plume equilibrium condition (Eq. 2.3,18). This
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requirement is also reflected in the earlier statement on initial con-
ditions (Eq. 2.3.4). If the actual momentum flux differs materially
from that specified in Eq. 2.3.19, the motion will not be that of a
pure plume (at least in the initial stages), since FZ 2 sz . In par-
ticular, if the actual momentum flux is larger than MO » the case of
the general buoyant jet results (section 2.6). Cases in which the
actual initial momentum flux is less than M0 {starved or retarded
plumes) are probably not of much practical relevance for riverine dis-
charges but may occur in other situations such as effluxes from natu-
ral-draft cooling towers.

Empirical constants for the round plume are juxtaposed to the
jet values in Table 2.

Finally, it should be noted that all the comments and equations
in this paragraph apply also in the same manner to a negatively buoyant
plume, for which the discharge density o is larger than the ambient
density Py In that case, the definition diagram in Figure 2b must
be reversed with z pointing downward and g' would still represent a

local buoyant acceleration in the direction =z .

2.4 PLANE JETS AND PLUMES

The other fundamental geometry, in addition to the axisymmetric
round case, is the two-~dimensional plane jet or plume. No specific
i1llustrations or definition diagrams are given here, as the instan-
taneous appearances and timeQaveraged conditions closely resemble those
depicted in Figure 1 (jet) or Figure 2 (plume), respectively. The only
difference lies in the fact that the two-dimensional motion originates
from a slot (extending two-dimensionally into and out from the paper)
whose total width is denoted by B (instead of the port diameter D ),
and the transverse coordinate is denoted by the normal distance n
(instead of the radial distance r ). The same boundary layer type
approximations that have been introduced earlier lead to the following
equation sets and solutions. Since the developments parallel those in
the previous sections, the equations in this section are presented

without much discussion.
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2.4.1 Plane Jets

Governing equations:

Continuity: gg + %% =0 (2.4.1)
Forward momentum: u u + v Su _ _ 38 u'v' (2.4.2)
: Js an an T
Scalar conservation: u 3¢ + v e __ 2 c'v! (2.4.3)
s on on

Initial conditions:

B B
u= Uo » e =c at s =0, ~ 7 <£n < 3 (2.4.4)
Boundary conditions:
u-~+0 LA 0 ¢+ 0
3 an ]
at n > o (2.4.5)
u'vf >0, c'v' + 0
with symmetry conditions at the centerline n = 0 .
General profile definitions:
u__ n £ - n
- (b) , - (b) (2.4.6)
c c

Gaussian profiles (specific case):

=exp|l-5), —=exp|- o (2.4.7)
c bz Cc lzbz

Bulk flux quantities (per unit length in the direction of the slot):

l-'-‘IC-'

Volume flux: q-= -_!; udn = ilucb (2.4.,8)
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o0
. _ 2, _ . 2

Momentum flux: m -.i[ u dn izucb (2.4.9)
[ -]

Scalar mass flux: qc= _4. ucdn = i3ucccb (2.4.10)

with the integral constants
i = _! £(n)dn ,
r 2
i, = 0_0[ £2(nyan , (2.4.11)

[+4]

f £myFyan

=00

(=N
W
H

and n = n/b .

For the Gaussian profiles

= AV and) (2.4.12)

i) = T, i, =Y1]2

3 2 ] 13

The integrated conservation equations are:

N dq =
Volume flux conservation: s + ZV’n+i°° =0 (2.4.13)
. dm
Momentum flux conservation: o 0 (2.4.14)
dq
Scalar flux conservation: EEE =0 (2.4.15)
The term V|n++w = ¢ Ve is again denoted as the entrainment velocity

of the ambient flow introduced as the jet periphery.

From similarity arguments, two closure statements are possible:
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Closure statement I

Jet spreading: = =k, (2.4.186)

instead of the volume flux conservation, Eq. 2.4,13.

Closure statement II

Jet entrainment: %ﬂ = 20,u (2.4.17)
s jc

in which kj and aj are the jet spreading and jet entrainment

coefficients for the two-dimensional jet with the consistency condition

i

3 =Zlkj (2.4.18)

Because of the geometry difference, their numerical values (as obtained
from experimental data) bear no relation to those for the round jet.

Final solutions are summarized in Table 3 based upon the bulk
initial conditions

~
m = UZB

0 o

q, = UoB > at s = 0 (2.4.19)
Qoo UocoB

and are restricted to the established flow region s > 5B . The empi-

rical coefficients are given in Table 4.

2.4.2 Plane Plumes

Governing equations (together with Eqs. 2.4.1 and 2.4.3):

d 9 3
Forward momentum: U mo v ogo = =m0V + g' (2.4.20)
ds an n
B ion: aj_‘.i. EE.:.— a('lf 2421
uoyancy conservation: u 52 Ve = g (8D (2.4,21)
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Table 3
Solutions for the Two-Dimensional Jet and Plume*

Plane Jet Plane Plume
. - p2 *k
Discherge Parameters: ", UoB n,
9% UoB 9
90 UocoB Te0
= 1
jO UDgOB
Bulk Variables:
Momentum flux
2 1/3
2.1
2 274 1/3 .2/3
m = izucb m=m, o " 12 up jn 8
1°3
Discharge
1/2 3173
q=1iub q = {4a El m 8 q= (Eilii 32/3 _j]‘/3 5
l¢ h] i2 o 1213 p o
Scalar flux
Q@ = i3ucccb 9 = dop 9 * %o
Buoyancy flux
= T —— =
3 i3ucgcb 3 jo
Local Varisbles:
i 4 - -
Width b kjs 11 st b kps 11 Gpa
1/2 1/3 1/3
Centerline . = 1 il Eg § = 1114 12 = conat
velocity [ 4&1 12 ) ¢ 21213 up
Centerline 9%, i1, 172 . i
coticentration ¢ T \imns g":==cc—
{buoyancy) 3 1o co
2 1/3 2/3
A2} () 1
2 1] 8
41314 b3
Dilutions:
Bulk dilution
1/2 1/3
i 43 .1
5 =1 svilio, Los g = L[14) 273 4143
9 9 3 i2 % i213 P °
Centerline
(minimum)
dilution
c e’ i i
s, =23 § =235 s =S
€ e & e 1 ¢ 1

* Solutions are accurate outside the region of flow establishment, s > 5B .
*k L is constrained to

i/3

in order to have pure plume conditions.



Table &4

Empirical Constants for the Two-Dimensional Plane Jet and

Plume with Gaussian Profile Specification (Eq. 2.4.7)%

Spreading coefficient

Ratio a/k

Entrainment coefficient
Scalar dispersion coefficient

Equilibrium Froude number T

Plane Jet*#*

k, = 0,135
J

GJ--_—._/-E

4

J

a, = 0.060
J

A, = 1,35
J
Fog = °

Plane Plume

k= 0.147
P
2.0

2
P
o = 0.130
p
A = 1.30
P
Py, = 3.54

* The above constants are based on the data surveys of Jirka,
Abraham, and Harleman (1975); Chen and Rodi (1980); and List (1982).
** Plane jet integral coefficients for Gaussian profiles are:

i, =71, i, = /n/Z , iy =
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Initial conditions:

.3
i
Voo oo 2 .)1/2
g gy » U Uo sz 3 (goB s C = co
111,
(2.4.22)
B B
at s =0, - 5 <n = 3
Boundary conditions {(together with Eq. 2,4.5):
g' >0, (g")'v'»0 at n >t ® (2.4.23)
Bulk flow quantities (together with Eqs. 2.4.8 - 2,4,10):
. PR ] = 3 '
Buoyancy flux: ] ;lnug dn 13ucgcb (2.4.24)
with the asgumption that g' is distributed similarly to c
8 . _ g2
b - ¢ F(b) (2.4.25)
c c
Integral equations (together with Egs. 2.4.13 and 2.4.15):
Momentum flux conservation: dm | i, g'b (2.4.26)
ds 4%¢
. .4l _
Buoyancy flux conservation: a5 - 0 (2.4.27)

[+ ]

with 14 = J” F(m)dn or for the Gaussian profile 14 = M1,
- O
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Closure statement I:

. 4db
Plume spreading: e kP (2.4.28)
Closure statement II:
Plume entrainment: dq _ 2¢ u (2.4.29)
ds pec

in which kp and aP are plume spreading and plume entrainment coef-

ficients, respectively, with the consistency condition

4
T (2.4.30)

and the value of plane plume Froude number is

1/2

i.1
174 1
F = | —— = (2.4.31D)
ip (212 ap)
The initial conditions
~
= 1
jo UogoB
q, = UB
121 1/3 > at s =20 (2.4.32)
_ 274 1 1/3
mo - 2, o qojo
2111 ]
Qo = UocoB ‘J

yield the final plume solutions given in Table 3 in which the buoyancy
flux jo is the only dynamically significant variable. The empirical

constants for the plane plume are listed in Table 4.
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2.5 EXTENSIONS OF THE INTEGRAL ANALYSIS

The results that have been derived in the preceding sections are
all rigorous and exact based on the existence of a similarity function
and based on the assumed closure scheme. Thus, the previous results
are limited to these simple conditions for which the assumption of
self-similarity holds, namely sources of momentum flux or of buoyancy
flux, respectively, issuing into unlimited, stagnant, and homogeneous
recelving water. Actual environmental conditions in rivers, channels,
lakes, reservolrs, or estuaries are always more complex, involving com~
bined momentum/buoyancy sources, crossflow, ambient stratification,
finite boundaries, etc. Due to the number of parameters involved,
these motions cannot be expected to be self-similar. WNevertheless, as
is shown in sections 2.6-2.9, the integral analysis technique is ex-
tremely flexible and powerful and can be extended to include many of
these practical complexities. A host of such extensions, loosely

' exists in the literature. It must be realized

called "jet models,'
that any of these models contain some ad hoc assumptions and approxi-
mations., As a minimum requirement, any such model should be demon-
strated to reduce reasonably well to the exact limiting conditions of
the jet and plume. It is for that reason that the detalled solutions
for these cases, together with the approximate physical constants, have

been listed in Tables 1-4.

2.6 BUOQYANT JETS: COMBINED MOMENTUM/BUOYANCY SOURCES

The general buoyant jet in a uniform, stagnant, and infinite
recelving water, discharged at an angle 80 with the horizontal, will
have a curved trajectory as shown in Figure 3. Using the same defini-
tions of the bulk variables that have been given in the preceding sec-
tions (and in Tables 1 and 3), it is straightforward to write the
governing integral equations without going through a formal integration

process.*

* Actually, the assumption of a small trajectory curvature is inherent
in the following, and acceptable in most practical cases. See
Schatzmann (1978) for a more detailed development.

34



r (ROUND JET]
n {SLOT JET}

VELOCITY -L
e

AMBIENT DENSITY p, = CONST

c
CONCENTRAT! ON-c—
[+

r

suommcv%—

¢

D (ROUND JET)

B (PLANE JET)

Uy, Py <Py 6,
Xo- Z5. Uy

o X

Figure 3. Round buoyant jet in uniform stagnant infinite
receiving water

2.6.1 Round Buoyant Jets

Volume flux conservation: %% = 2ﬂaucb (2.6.1)
Alternatively, one can use another closure assumption:
Jet spreading: — =k (2.6.2)

Note that both o and k are written in general form, without any

subscript.
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Axial momentum flux conservation:

i.e., only the sin 6

the axial direction.

ds (2.6.3)

2
= t i
2“I4gcb sin 8

component of buoyancy produces acceleration in

Horizontal momentum flux conservation:

i.e., no acceleration in the horizontal direction.

Scalar flux conservation:

Buoyancy flux conservation:

d -
= (M cos 8) =0 (2.6.4)
dqQ
c—
et 0 (2.6.5)
J
= - 0 (2.6.6)

In addition, it is necessary to relate the local coordinate system

(s,8) to the fixed global one (x,z)

dx

9s cos B
dz _ .
Fri sin ©

(2.6.7)

(2.6.8)

This system of seven ordinary differential equations is fully specified

by seven initial conditions at s

fluxes Mo s J Qo

o and Qco

- _ s . D h t
8, g(pa po)/pa <, and D) and the geometry X, s 2,

=0,

(alternatively, given by U0 .

These are the initial bulk

s, and 90 .

In fact, as discussed earlier, initial conditions should really be

specified at the end of the zone of flow establishment (several
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diameters away from the actual discharge). Often, however, this dif-
ference is negligible, If necessary, more detailed (though approx-
imate) treatments of this zone may be consulted (Hirst 1972 or Jirka
and Fong 1981).

At this point, before the equation system can be solved, the
first closure dilemma in buoyant jet analysis arises: Which of the two
equations, Eq. 2.6.1 or 2,6.2, should be used and how should the coef-
ficients o or k be chosen? This is a eritical question as a buoy-
ant jet initially has a more jet-like (momentum~dominated) behavior,
but in the final stage approaches a plume-like (buoyancy-dominated)
behavior, However, as can be seen from Table 2, the coefficients for
these two limiting stages do not agree. The following possibilities
exist then:

2. Use Eq. 2.6.2 and assume k = const. = kp (since the final
stage always behaves like a simple plume). This is the basis of the
model of Abraham (1963) and, clearly, a good proposition since the
variability in k is minor (10 percent, Table 2). The main disadvan-—
tage of the jet spreading approach, however, is that it cannot be
easily extended to other cases, such as crossflows, etc.

b. Use Eq., 2.6.1 and assume o = const. = @y - This was as~
sumed originally by Fan (1967) and is incorporated into the predictive
nomograms of Fan and Brooks (1967) and Shirazi and Davis (1972). 1In
view of the strong variability of o (Table 2), it is probably the most
imprecise method of buoyant jet analysis, though the errors may be tol-
erable in practice.

c. Use Eq. 2.6.1, but specify a variable entrainment coeffi-
cient that depends on the local jet properties, as described by the
local Froude number, Eq. 2.3.12, and the local angle & . One such
possibility that is directly derived from the above equation set with
the assumption db/ds = const. = kp is

1.1
a= Ik +;—I“ 3112‘ 0 (2.6.9)
P 2 F,
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Another approach (Fox 1970, Hirst 1972) uses the mean energy equation
for the buoyant jet to give

2
n? o
o =a, + A2 L. S;“ il (2.6.10)
1+ 2 F
P £

Other transitions, sometimes based only on fitting transitions between
the two limiting stages, can be found in the literature (e.g.
Schatzmann 1978, List 1982). The difference between these model pre-
dictions is often minor. Actual predictions are presented in

Section 3.1.2.

2.6.2 Plane (Slot) Buoyant Jets

The development is entirely parallel to the round case with the

following governing equations:

dj = :’

e zaucb (2.6.11)
db _

P k (2.6.12)
dn _ 1 g' sin 6 (2.6.13)
ds 45¢ U
4 (m cos 9) =0 (2.6.14)
1 | .6,
dqc

'a'g'— =0 (2.6.15)
4

I 0 (2,6,16)
dx _

Tz ~ cos 8 (2.6.17)
dz _

rriie sin © (2.6.18)
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Initial conditions are given by the flux variables per unit
width m, s j0 B and 9, (or U0 » g; s €y s and B) and by

the geometry X, » 2 and 60 .

o
Also, the closure problem is similar to the round jet case, as

can be seen from Table 4. Again the constant spreading assumption

(Abraham 1963) is preferable over the constant entrainment coefficient

assumption (Fan 1967). Variable entrainment models can be specified as

i i i
@ =k +yrt sind (2.6.19)
P 2 F
%
from the above equation set, or as
@ =+ M|V - et 2 (2.6.20)
1+ A Fy

(Jirka, Abraham, and Harleman 1975) using the jet energy equation.

2.7 EFFECT OF AMBIENT DENSITY STRATIFICATION

If the receiving water is stratified with a stable density
gradient (dpa/dz <0, i.e. the ambient density Da(z) decreases
upward), then the buoyancy flux is not conserved along the jet trajec-
tory but is constantly decreasing. Eventually the buoyant jet will
reach, and may even overshoot, its terminal level z, at which the
local internal jet density is equal to the ambient density Da(zt) .
The jet will then become trapped at this level and spread horizontally
in the form of a gravitational current. The jet mechanics prior to the
terminal level are readily described with the integral technique if two
extensions are made. First, the buoyancy profiles are now defined with

respect to the local reference buoyancy
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pa(Z) -p

g' = pa——(z) g (2.7.1)

instead of Eq. 2.3.1, leading to modification of Eqs. 2.3.6 and 2.4,25,
respectively. Second, from mass balance requirements, the buoyancy
flux is decreasing at the same rate at which it is diluted with ambient

water of lesser density. This leads to

dp
dJ _ a
s - Q_—ds (2.7.2)
for the round jet, instead of Eq. 2.6.6, and to
dp
a4 -4 =2
s 933 (2.7.3)

for the plane jet, instead of Eq. 2.6.16., Inherent in these expres-
sions is the assumption that the average density of the entrained water
is equal to the density at the level of trajectory (centerline). This
excludes cases of very rapid local changes, such as steep pycnoclines

in lakes, reservoirs, or estuaries.

2.8 EFFECTS OF AMBIENT CROSSFLOW

When 2 round buoyant jet is discharged into an ambient crossflow
of velocity u_ then it will be deflected in the direction of the
crossflow. This deflection is brought about by two force mechanisms, a
pressure drag force FD and a force Fe due to the entrainment of
. crossflow momentum. Referring to Figure 4, this situation is readily
described in the integral analysis framework provided that several
adjustments are made. First, neglecting the horseshoe or "kidney"
shape (Fischer et al. 1979) which actually exists and assuming that the
jet may be approximated by a circular cross section, the velocity pro-

file in the jet cross section is made up of the ambient velocity
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Figure 4. Round buoyant jet in ambient crossflow (side-—
view for 60 = 90 deg)

component in the direction of the trajectory u_ cos ©® and the bell-
shaped jet portion

r
u ucf(g) + u_ cos 8 (2.8,1)

This, then, affects the definition of all jet bulk flux variables, M ,
J, Q and Qc . The definition of the kinematic drag force normal to
the jet axis and per unit length of the jet axis is '

2
a

F o= % C.u’ sin® 6 (2b) (2.8.2)

D D

in which CD is a drag coefficient (of order of unity), the width of
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the "jet body" is simply taken as 2b , and the entrainment force

(entrainment of momentum) is
F =u 3@ (2.8.3)

The governing momentum equations, Eqs. 2.6.3 and 2.6.4, are amplified
to

a 1,2

T = 2ﬁI4gcb sin 6 + Fe cos © (2.8.4)
4 (Mcos8) =F + F_ sin 6 (2.8.5)
ds e b e

Also, it is observed in bent-over jets that the entrainment mechanism
is considerably more vigorous and the entrainment velocity not simply
proportional to u, as in the previous case. Several analyses have
suggested that jet entrainment in crossflows has a second contribution
once the jet is strongly bent over but still slowly rising. This sec-
ond contribution is similar to that of a horizontal line element of
fluid that is rising due to an initial vertical impulse of momentum or
due to initial buoyancy in a stagnant ambient fiuid. The rising line
element experiences turbulent growth and entrainment that is propor-
tional to the velocity of rise. Since the strongly bent-over jet is
similar to this line element, this second entrainment mechanism can be
added to the original entrainment mechanism associated with the excess
of forward jet velocity relative to the surrounding fluid. The result
is

] 6
P sin cos b (2,8.68)

49 _ 2mau b + 2T
ds c
where @ 1is of the same form as for a buoyant jet (e.g. Eq. 2.6.9 or
2.6.10) and o
type have been used by Abraham (1970) and Jirka and Fong (1981).

2 is of the order of 0.5. Entrainment models of this
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No integral analysis is possible for the crossflow deflection of
plane buoyant jets. The deflecting mechanism is highly complicated in
this case, with eddying and reentrainment in the wake zone behind the
jet.

Finally, the effect of ambient turbulence becomes invariably
important at larger distances from the origin when the jet turbulent
intensity decreases to the same order as the ambient intensity. 1In a
way, this provides a transition to the passive diffusion in the far-~
field, as discussed in Chapters 4-7.

2.9 EFFECTS OF FINITE BOUNDARIES

The jet analyses that have been discussed so far apply only to
the cése in which the jet dimension is small with respect to the dimen-
sions of the receiving water. In this case, the pressure field can be
assumed as unperturbed (hydrostatic) throughout. The effects of finite

boundaries encompass the following four distinct problem areas,

2,9.1 Jets Discharging Parallel to Boundaries

The dynamic pressure deviation near the jet due to the jet en-
trainment velocity i1s of the order of Ap vi . This is, in general,
a negligible quantity since Ve S au . However, 1f a boundary (either
a solld boundary or a free surface) is located in the vicinity of the
entraining jet boundary, then the velocity of the approaching entrain-
ment flow will become larger tham v, due to the geometric restric-
tions. Hence, larger pressure deviations will occur unevenly at the
jet boundary, exerting a force on the jet. Consequently, the jet may
attach to the boundary due to the low pressure zone (a form of the

Coanda effect).

2.9.2 Interference of Round Jets

This is a problem somewhat analogous to the previous case and
occurs in multiport diffuser discharges. The individual round jets

merge into a two-dimensional plume. This is discussed in Section 3.2.
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2.9.3 Jet Impingement on Boundaries

In this case the jet flow approaches normal to, or nearly normal
to, a solid boundary or a free surface. Upon impingement the jet will
spread in both directioms. The thickness of the resulting spreading
layer determines the length of the actual jet zone and the amount of
dilution that can be achieved up to the impingement level (Sections 3.1
and 3.2).

2.9.4 Buoyant Jets at the Free Surface

In this case the vertical buoyant force, in combination with the
free surface which inhibits any upward motion, influences the jet flow
in two ways. An overall effect is that the lateral jet spreading is in
excess of the usual jet-like spreading. Also, the local turbulent
entrainment at the jet bottom interface is inhibited. This is the

topic of Section 3.3.

2,10 NONDIMENSIONAL PARAMETERS AND BUOYANT JET SCALES

As in all physical or engineering problems, the dynamics of
initial jet mixing are governed by certain parameters that describe a
given situation. Such parameters can be derived using the requirements
of dimensional consistency. In the following, two representatioms of
parameters or scales are introduced. Each of these representations has
its own particular advantage for characterizing jet/plume behavior and
for displaying results. The two types of representations are inti-

mately related, however, as will be demonstrated.

2.10.1 Nondimensional Parameters Based on Detailed Efflux Conditions

Using the actual dimensions and discharge conditions, the set of
parameters in Table 5 describes a buoyant jet mixing problem. In case
of stratification, g; and Apo refer to conditions at the level of
the discharge, and a linear density gradient is assumed in the defini-

tion of T .
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Table 5

Nondimensional Parameters for Buovant Jet Problems

Type of Buoyant Jet Round Plane (Slot)
U Uo

Discharge densimetric F0 =2 FS =

Froude number VgéD VgéB
Initial angle 8 6

o o
bo 8o

Stratification parameter T =~ D—@a—/*a“;" T= = ﬁ;/_d.z_
Crossflow parameter R=u /U R=u /U

The meaning of the densimetric Froude number is of particular
interest. Its magnitude characterizes the initial ratio of inertial to
buoyant forces within the discharge and determines whether the dis-—
charge behaves more nearly like a jet (large F oor Fs) in its initial
phases or more nearly like a plume (small F0 or FS) from the very

beginning.

2.10.2 Scales Based on Bulk Efflux Quantities

a. Momentum length scales., It has been noted earlier that the

two fundamental bulk (integral) quantities that affect buoyant jet
behavior in quiescent homogeneous ambient water are the initial momen-
tum flux and the initial buoyancy flux. Considering then the dimen-
sions of these quantities (first two rows of Table 6), it is possible
by dimensional reasoning to define length scales as given in the third
row of Table 6.

The resulting length scales are appropriately called "momentum
length scales" since they are a measure for the distance from the ori-
fice for which the momentum effects are important. For the initial

trajectory of a buoyant jet over a length less than the momentum length
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scale, the discharge should behave like a jet, while for the final
trajectory it will behave like a plume. Thus, from a practical point
of view, the length-scale computation gives direct insight into the
expected size and extent of a buoyant jet problem. The momentum length
scale is also the obvious length variable for the scaling of buoyant
jet properties and allows a simplified representation of results from
any buoyant jet computation or exponent. By substitution, it may be
verified that the momentum length scales are linked to the initial
orifice scale (D or B) via the densimetric Froude numbers, as shown in

the last row of Table 6.

Table 6
Length Scales for Buoyant Jet Problems

Round Buoyant Jet Slot Buoyant Jet

4,2 3,.2
Momentum flux [dimensions] Mo [L /T ] m [L /T ]
4,3 . 3,.3
Buoyancy flux [dimensions] Jo [L /T ] 3, [L /T ]
M3/4 m_
2« = =
Momentum length scales M J1/2 £m j2/3
o o
Relationship to Froude number L2 = (1)1/4 DF L = BF'!’/3
M 4 o m s

h.. Crossflow length scales. In the presence of a crossflow

with velocity u [L/T] , the buoyant jet behavior can be represented
by additional length scales. To form these, one must consider the
effects of momentum flux and of buoyancy flux separately. For a momen-

tum source only (round jet) one obtains:

™
Jet-crossflow length scale: %, = = (Z) D % (2.10.1)

Mu u
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This would be a measure of the distance over which a jet could pene-~
trate into a crossflow before it becomes strongly deflected, For a

buoyancy source only (round plume):

J
Plume-crossflow length scale: %, = — = 2o . (2,10.2)
Ju 3 4 R3F2
a )

with a similar physical meaning,

In the general case of a round buoyant jet, both scales are
present in addition to ﬂm (defined in Table 6). It is then the
relative magnitude of these three scales that determines the composite
geometry (trajectory) and mixing (dilution) of the resulting motion
(Wright 1977).

¢. Stratification length scales. Additional scales can be

obtained through consideration of the ambient density gradient,

dp

- é— EZE [L_l] . These scales are not further pursued here due to
a - .

their limited significance in riverine mixing problems. (For further

information, see Wright 1977 or Fischer et al. 1979.)
2.10,3 Comments

In the following sections, both length scales and nondimensional
parameters are used to characterize the dynamics of initial mixing pro-
cesses. It is important to understand the complementary role of these
representations. In simple problems with few physical variables, the
use of the dynamic length scales is especially powerful and attractive.
(See, for example, Section 3.1, Figures 6 and 7.) When more variables
enter the problem, however, it then becomes necessary to include the
ratios of individual length scales with each other and with the source
dimensions (D or B). Such ratios are then, in fact, equal to or pro-
portional to the nondimensional parameters. For example, the ratio
Rm/D corresponds to a Froude number {Table 6) which, for small values
(F0 < 5), has a distinctly separate influence on round buoyant jet be-

havior (Figure 7).
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A study of the following sections and of the examples in Chap-
ter 8 should show that the key for a successful analysis of an initial
mixing problem is to separate the important quantities from the unim-
portant ones. Often, dominant ones depend on the region of interest,
and some iterations and inspections may be necessary in the process of
finding them. The different techniques of dimensional analysis dis-

cussed above are useful aids in that process.
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CHAPTER 3. INITIAL MIXING ANALYSIS FOR VARTIOUS
TYPES OF DISCHARGES

The three most important geometries for continuous discharges in
riverine applications (as well as in run-of-the-river reservoirs, estu~
aries, and coastal waterways) are the single~port submerged discharge,
the multiport submerged diffuser, and the surface discharge from free
surface flow in a canal. Important physical characteristics and pre-
dictive methods for these three cases are summarized in Sections 3.1-
3.3 of this chapter. Section 3.4 summarizes discharge~induced strati-
fication effects in rivers; these effects can arise when the discharge
flow rate i1s a substantial fraction of the river flow and when buoyancy
is present. The most important applications in this respect are cool-
ing water flows from thermal power statioms. Finally, in Section 3.5,
a brief review is given of the initial mixing effects for instantaneous
discharges since they may be of interest in connection with accidental

spills or in tracer tests.

3.1 SUBMERGED SINGLE PORT DISCHARGES

3.1.1 Introduction

This section is organized as follows: First, basic solutions
for buoyant jets in stagnant infinite receiving water are presented.
The stagnant water case is usually a lower bound on the initial mixing
capacity of any outfall and, in fact, is a good approximation to mixing
in low-velocity conditions such as run—of-the-river reservoirs. Sec-
ond, solutions for buoyant jets in ecrossflows with unlimited depth are
given. 1In the third portion, the effects of boundaries and of shallow
water depth are considered. Solutions for ambient stratification ef-
fects are not given here since those are of limited practical impor-
tance in riverine mixing. For details on this éspect, the reader is
referred to Jirka, Abraham, and Harleman {1975); Wright (1977); and
Fischer et al. (1979).

The basic geometry is that of a single round outfall pipe of
diameter D discharging the effluent. It should be noted that the
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results are directly transferable to other pipe geometries of arbitrary
cross—sectional area a, - An equivalent round pipe diameter can

always be calculated by D = (4a0/w)1/2

and beyond a sufficiently
large distance the jet behavior 1s identical. Assuming a rectangular
opening a_ = %4, with length 2, and width &, (where 2> %, }s

an estimate of that distance is

/o |- ' (3.1.1)

in which k 1s the spreading coefficient (Table 2).

In the following, emphasis is put on simple, commonly occurring
jet situations (mostly vertical and horizontal discharge angles). For
more complex situations, these simple cases may serve as a first ap-
proximation or more detailed models must be used (e.g. Hirst 1972,

Shirazi and Davis 1972, Schatzmann 1978, Jirka and Fong 1981).

3.1.2 Solutions for Stagnant Water

a., Vertical round buoyant jet. This jet will have a straight

vertical trajectory. The solution for the bulk dilution can be ob-
tained directly from the buoyant jet equation system, Egs. 2.6.1-2.6.8,
with 6

It

60 = 90 deg and closure assumption Eq, 2.6.2,

1/2 1/3
J k= o (3.1.2)

2ﬂ12 1/2

Q _ 1 /2,3
Qo IZ Mi * 4 I

o

as given by Abraham (1963). Using the.appropriate Gaussian profile
coefficients (Table 2), the corresponding centerline dilution in

normalized form is

Sc 2 3 . 511/3
o= 0.178 (ﬁfg) + 0.203 (ﬁf_) (3.1.3)

Q

Q
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and is plotted as the solid line in Figure 5. The solution consists of
a transition from a pure jet regime (first part of Eq. 3.1.3) to a pure
plume regime (second part).

b. Horizontal round buovant jet. The trajectories of round

buoyant jets with different Froude numbers Fb are displayed in Fig-
ure 6, using experimental data and different model predictions. This
figure shows the usual degree of agreement, typical for buoyant jet
problems., The governing dynamics are immediately apparent from Fig—~
ure 6. Buoyant jets with large momentum flux for a given buoyancy flux
(high Fo) penetrate much further along the horizontal axis, while buoy-
ancy dominated jets (low Fo) are quickly deflected in the vertical
direction.

The benefit of the length scale representation (Table 6) can be
seen from Figure 7; all the data for high Fo (> 5) collapse into a
single curve due to the limited number of governing physieal variables
(only Mo and Jo). For small F0 » @& minor, yet persistent, deviation
exists. This is due to the fact that the source diameter D (or
alternatively, the initial discharge Qo) is an additional nonnegligible
physical variable in this Froude number range. The curve in Figure 7
(and also in Figure 5) is based on Abraham's (1963) model that has been
found to be in good agreement with data (Roberts 1977), Values of the
jet width are also marked. The centerline dilution for horizontal
~jets is shown in Figure 5 in comparison to the vertical case. From a
practical viewpoint, Figure 5 demonstrates that for low submergences
(z/DFo < 10) higher mixing can be attained with a horizontal jet. For
larger submergences, however, the jet approaches the pure vertical
plume behavior so that the initial momentum and the angle of discharge
behavior are not important.

€. Vertical round negatively-buoyant jet. If a dense effluent

is issued vertically upward or a light effluent vertically downward,
then the action of buoyancy is against the direction of the initial
flow. Thus, the buoyant jet will penetrate to a maximum level zm
from the outlet before falling back, somewhat similar to the action of

a vertical water fountain in air. Two measures of the jet action in
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this case are the vertical penetration level zm ,

%) mn_c (3.1.4)

where the constant C 1is approximately 1.9 and the dilution Sm at
that level,

e
|

= 0.23 (3.1.5)

o]
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Both estimates are based on Abraham's work (1967). Note that in these
cases the absolute value of gé is used in the definition of F0

(Table 5) since g; is a negative quantity.

3.1.3 Solutions for Flowing Ambient

a. Vertical round buoyant jet (crossflow). The buoyant jet

intrudes vertically into the crossflow but becomes gradually deflected
into the direction of the crossflow. The vertical intrusion comes
about by the action of the initial momentum and/or of the initial buoy-
ancy. Using the scales of influence defined earlier, it is therefore
illustrative to describe the trajectory and mixing relationships for

two regimes:

(1) Jet with negligible buoyancy in crossflow, EM/EMu >> 1 .
Here, the momentum length scale RM » Which represents the relative
influence of momentum compared to buoyaney, is so large that the jet
becomes well deflected before buoyancy plays any role. Trajectories
(normalized by zMu ) and center-line dilutions are plotted in Figure 8
based on several data sources compiled by Wright (1977). The jet con-
ditions are described by different power laws (slopes in double log-
arithmic plots) for the initial phase (small influence of buoyancy) and
the final phase (greater influence of buoyancy) (Fischer et al. 1979).
The breakpoint between these phases is described by x =~ RMu as
expected.

(2) Plume with negligible initial momentum in crossflow,

EM/QJU << 1 . In this case the momentum length is so short that the

deflection mechanism is immediately controlled by the interaction of

buoyaney and crossflow. Trajectories and dilutions are summarized in
Figure 9.

(3) General case. Of course, In the general case of a buoyant

jet (significant momentum and buoyancy) in a crossflow, the overall  jet
trajectory will be described by several of the phases included in Fig-
ures 8 and 9. In that case, it is necessary to carefully delineate the

different regimes by calculating the appropriate length scales and then
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selecting the appropriate relationships.
(See also Fischer et al. 1979.)

Horizontal round buoyant jet (co-flow).

in example 1 of Chapter 8.

b.

(1)

PLUME IN CROSSFLOW

<< 1

1072

X
2,

H3F2 =

4
-= .

10

109

103

DIMENSIONLESS HORIZONTAL DISTANGE

104
103
=
o
I_
3
102 o
L
2
-
1
i8]
=
w
10 w
[a]
11}
-
<
8]
[72]
]
1 L
o
[V
iyl
o
o
wy
+ | E
-1
10 "
St s
(3] u_’
w ©
3
102
103

9. Trajectory and centerline dilution for round plumes
in a crossflow

This proéess is illustrated

Jet with negligible buoyancy in co-flow.

In

the case of a

co-flowing jet that issues parallel to the direction of the ambient

flow, the jet travels along with the ambient flow and the excess veloc-

ities become dissipated by turbulent diffusion while the total excess

momentum flux AMO is preserved.
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scale all jet relationships with a modified jet-crossflow length scale

(compare to Eq. 3.1.2)

1/2
AM 1/2 1/2
* _ _o__|(x (a-R "
Sy = ™ -(4) D = (3.1.6)

where AMO = (Uo -‘ua) UODZN/4. With this scaling, the jet properties,

such as width and dilution, can be plotted uniquely as shown in Fig-

ure 10. The jet trajectory is straight in the direction of the flow.
(2) Jet with negligible initial momentum in co-flow. It is to

be expected that in the final stage the jet behavior will be identical

to that for the final stage of the pure plume in crossflow (Figure 9)
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Figure 10. Dilution and jet width for nombuoyant
co-flowing jets (after Rodi 1975)
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since the momentum generated by the buoyancy 1s dominant in both cases.
Thus, the appropriate scale for the final stage is £Ju . However, in
the initial stage (x < EJu)’ the jet will be behaving similar to the
initial trajectory of the buoyant jet in stagnant flow (z ~ x3, Abraham
1963, and Figure 7 for x < 34 ), but with horizontal advection by the
ambient flow, leading to a quadrltic (z ~ z ) trajectory. The length

of the initial region is further 1nfluenced by the modified scale £ ’
or in parametric fashion by R /2 x The complete dilution and trajec-
tory relationships are dlsplayed in Figure 11 and are based on data from
McQuivey, Keefer, and Shirazi (1971) neglecting, however, the effect of

ambient turbulence that is considered in a passive diffusion process.

3.1.4 Interaction with Surface

In the two preceding sections, the ambient water depth was
assumed to be unlimited. However, the actual water depth H can have
a profound effect on jet dynamics and mixing. Figure 12 illustrates
the two major possibilities that can occur when a buoyant jet exists in
stagnant water with a finite depth (or more generally, in water with a
small crossflow as indicated by EMu/H >> 1),

In the following, a criterion for discharge stability (absence
of recirculation) is provided. 1In applications, this criterion must
first be consulted to decide whether the rising portion of a single-
port discharge behaves as a simple buoyant jet or as an unstable
recirculating one. Next, dilution predictions for the unstable jet are
given. Finally, the impingement process for stable jets is discussed.

a. Criterion for discharge stability (deep-water conditions).

In the stable discharge configuration (also called deep-~water condi~
tion) the buoyant jet simply rises to the free surface (Zone 1 in Fig-
ure 12a) and then impinges (Zone 2). The flow after impingement may
increase suddenly in thickness (internal hydraulic jump, Zone 3) until
a stratified counterflow regime (Zone 4) is encountered.

Analysis of the four hydrodynamic zones indicated in Figure 12a
indicates a limiting dynamic condition at which the situation becomes

unstable as H/DF0 decreases. This condition for a vertical discharge
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Figure 12, Two major discharge configuratioms for buoyant jets in
finite water depth and small crossflow
is indicated as the stability criterion (Lee and Jirka 1981, Jirka
1982a) in the parameter domain of F0 and H/D in Figure 13. For
H/D > 10 , the criterion is simply a straight line given by

oF - 0.22 (3.1.7)
0
or
£
M
= 4.3 (3.1.8)
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Figure 13 was developed for a vertical jet (90 = 90 deg); how-
ever, data analysis (Jirka 1982a) indicates that at least the stability
criterion is approximately applicable to nonvertical (90 < 90 deg) con-~

ditions as well.
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1 i 1 -
1 10 100 1000

F, = INITIAL DENSIMETRIC FROUDE NUMBER

Figure 13. Stability criterion and bulk dilution for vertical round
buoyant jets in finite water depth

b. Bulk dilution for unstable discharge (shallow-water) condi~

tions., The unstable discharge configuration (or shallow-water condi-
tion) is radically different, Here, the jet does not have enough
buoyant stability after the impingement process to have a gradual
transition to the stratified counterflow nor to allow the ambient
inflow required to supply the entrainment for Zone 1. Rather, unstable
recirculating eddies develop around the jet leading to repeated reen-
trainment of discharged water.

Experimental data for the bulk dilution S that occurs at the
edge of the recirculating ("boil") region (Figure 12b) of an unstable
jet are shown in Figure 13, together with theoretical predictionms.
This dilution factor S is a measure of the mixing that the discharge

has experienced once it leaves the recirculating zone and flows 1into
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the stratified far-field zone (indicated by the dashed line section in
Figure 12b). For unstable conditions, the dilution equation is

5/3
5 - o9 (b%) (3.1.9)
0 o]
or,
0,75/ L \S/3
g —/i " 1.3 (E_) (3.1.10)
MO M

Comparison of Eqs. 3.1.9 and 3.1,10 with the simple plume solution

(Eq. 3.1.3) indicates the same functional relationships but with a con-
siderably higher coefficient in the unstable case due to the additional
entrainment that occurs in the recirculating process.

c. Surface impingement for stable discharge conditions.

(1) Stagnant or weak crossflow ¥£MU/H >> 1). Tt 1is necessary
to know the thickness hi of the surface impingement layer (Fig. 12a)
because active jet entrainment takes place only up to the level
z, = H—hi - Lee and Jirka's (1981) analysis for vertical jets gives

i
hi ~ 0.2H 1f H/D > 4 , while for small H/D < 4 s h, dis better

presented as hi ~ 0.4 D (i.e. scaled by the diameteri. For nonver-
tical jets, Abraham (1963) gives a more general result, namely,
hi = 0,10 Lp -where Lp is the length of the curved jet path. The
bulk dilution in the surface boil region above an impinging jet is
therefore calculated as the mean dilution S of the buoyant jet at the
level z, above the discharge port. The valpes thus calculated are
actually drawn as iso-lines in the stable domain pertion of Figure 13.
(2) Crossflow (EMu/H & 1). When a bent-over buoyant jet in a
crossflow approaches the free surface, there exists the possibility of
jet bifurcation, i.e., the jet can actually split into two branches that
travel downstream while separating further. This mechanism is related
to the internal double vortex structure that exists in bent-over jets

but has been neglected so far in the discussion as it is of limited
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importance for trajectory or dilution prediction in deep water. Dis-
cussions and models of the bifurcation mechanism have been given, for
example, by Jirka and Fong (1981), who also gave further references,
The conditions under which bifurcation occurs have not been well
defined. However, as a general guideline, it 1s expected that the
impingement process dominates for RMU/H »>> 1 , while for EMu/H << 1,
the crossflow deflection may be so strong that any bifurcation may not
be evident. Perhaps EMu/H = 1 (possibly 1/3 to 3) is most conducive
to significant bifurcation. However, it must be emphasized that these
values are primarily conjecture at this time. When bifurcation does
oceur, the simplest approximation, following Abdelwahed and Chu (1978),
is that the angle of each spreading branch relative to the crossflow
direction is equal to the trajectory angle at the point of surface
impingement (= tanfl dz/dx) and that the dilution in the two branches
after bifurcation is equal to that of the simple momentum jet (using

the dilution diagram of Figure 8).

3.2 SUBMERGED MULTIPORT DISCHARGES (DIFFUSERS)

The submerged multiport diffuser is probably the most effective
mixing device for natural water bodies. It causes a rapid dilution of
the effluent. This is achieved by discharging the effluent through a
series of individual small ports or nozzles that are spaced along a
main feeder pipe. Thus, the effluent is distributed over a large dis-
tance. A multiport diffuser is made up of many round jets. However,
in usual designs, these jets rapidly merge, thereby forming a two-
dimensional plane jet. Thus, all the fundamental results derived in
Section 2.4 are of interest here. The aspects of this initial jet-
merging are discussed in the following section. Next, the discharge
stability of multiport discharges in finite water depths is examined.
Then results for deep-water diffusers are presented, followed by those
for shallow~water diffusers. The latter category is of special impor-

tance for cooling water discharges from thermoelectric power plants.
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3.2.1 Jet Interference (Equivalent Slot Jet)

Two types of jet interference are illustrated in Figure 14. In
a unidirectional diffuser (when all nozzles point in one direction),
the round jets merge laterally into a plane buoyant jet (Figure l4a).
Using the spreading coefficients k listed in Table 2 and considering

that the actual jet or plume width is larger by about a factor of 2

ROUND PLANE
I JETS | JET

SIDE VIEW TOP VIEW'

a. Jets merging in unidirectional diffuser

f

PLANE
PLUME

o
-

FEEDER FIPE
SIDE VIEW TOP VIEW A-A

b. Jets merging in alternating diffuser

Figure 14. Interference of multiport diffuser discharges forming
two-dimensional (slot) jets or plumes
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(since the k coefficlents describe the 1/e width), the distance

Syp to the beginning of the merging region is
s
—13:2” 9 (3.2.1)

in which L is the nozzle spacing. A more complicated merging process
takes place for alternating diffusers (alternate nozzles pointing in
opposite directions) as shown in Figure 14b. Here the buoyant jets
from both sides are bent toward each other (due to the low-pressure
region formed by the jet entrainment) and ultimately form a vertically
rising plane plume. An expression for the vertical merging distance

z is (Jirka and Harleman, 1973)

3D

_— s ] (3.2.2)

In either case, the dynamics of the plane buoyant jet beyond the

distance of merging, s > s , can be described by the two-dimensional

relationships given in Sectign 2.4, The only requirement is that the
correct total flux quantities are prescribed. If Mb s J0 s Qo » and
Qco are the fluxes through each nozzle, then the correct two-
dimensional flux quantities that must be specified at the origin

(s = 0) are

Q
= co
E] qCO - L (3-2-3)

where L is the mozzle spacing. Alternatively, the correct width B

and Froude number of an "equivalent slot jet" are

4L 1/2

=27, F = F (sL) (3.2.4)
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For practical designs, the fictitious width B is a small dimension
(of the order of centimeters). The equivalent slot diffuser is a con-
venient and accurate representation of multiport diffuser dynamics as
demonstrated by Cederwall (1971) and Jirka and Harleman (1973). The
use of an equivalent slot implies that the initial three-dimensional
effects are of no importance for larger distances (s > S3D) and that
the direct two-dimensional results are sufficiently precise and, of
course, much simpler, If more detail is desired in the region before
merging (s < S3D)’ then appropriate calculations for the individual
round jets must be made as discussed in the previous sections, and then

matched to the two-dimensional results at s = S3D .

3.2.2 Criterion for Discharge Stability for Multiport Diffusers

a. Stagnant water. Reference is again made to Figure 12, which

also applies for two-dimensional conditions. The stability criterion
is plotted in Figure 15 for the slot jet parameter domain of F and
H/B and shows a significant dependence on the discharge angle 90 .
Note that the alternating diffuser (Figure 14b) is represented by

90 = 90 deg , i.e. a vertical buoyant jet. For the region H/B > 200 ,

the criterion is given by

H 2 . \2

—7 = 1.84 (1 + cos eo) (3.2.5)
BF

s

or
T 0.54 3.2.6)
B 253y (1 + cosZ 8 )2
e) Q

This criterion (Jirka 1982b) divides the stable discharge domain (deep~
water conditions) in which buoyant jet theories (Section 3.2.3) are
directly applicable from the unstable domain (shallow-water condition)
in which flow recirculation and breakdown occur so that alternative

predictive theories (Section 3.2.4) must be used.
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Figure 15. Stability diagram for multiport diffusers
and slot jets (after Jirka 1982)

b. Flowing ambient. If a diffuser pipe is perpendicular to an

ambient flow, then the total ambient momentum m = uiH will be a
further destabilizing mechanism on the diffuser flow field. Jirka
(1982b) has shown that the stagnant water criterion {Eq. 3.2.5 or

3.2.6) can be expanded in this case to

n{l +cos 6 ) +m
o o

273
JO

8 - 0.54 (3.2.7)

H
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Thus, when the combined normalized momentum flux on the left-hand side
of the above equation exceeds 0.54, the flow will break down into a
fully mixed region. In case of strong crossflow, the entire water
depth downstream from the diffuser line will then be occupied by the
mixed effluent. However, this does not preclude the possibility of
eventual restratification due to particular boundary conditions in the
far-field. Such possibilities are discussed in Section 3.4,

3.2,3 Deep Water Diffusers

a. Stagnant water.

(1) Vertical slot jet. The governing plane buoyant jet equa-

tion system (Eqs. 2.6.11-2.6,18) can be integrated with o = 00 =
90 deg , s = z , and the constant spreading assumption (Eq. 2.6.12) to
give a bulk dilution

L1/2

1/3
i i i 1/2 1/2
s=9 -1 |32, 72 "4,,1/23/2 k 2z 3.2.9)
q 1/2\ 7o i 0 q
0 i, 3 0

(Abraham 1963, Jirka and Harleman 1979). With all coefficients speci-

fied (from Table 4) the normalized centerline dilution is

Sc 2 3/2 2 311/3
= 0.481 | { ——F= + 0.837 ——= (3.2.9)
o (BFQ”’) (BFi’ 3)

F

The solution is plotted in Figure 16 and shows the characteristic tran-
sition between the initial jet regime and the final plume regime.
(Compare also to Figure 5 for the round jet.) Figure 16 is applicable
only in the region where the individual jets have merged (Eqs. 3.2.1
and 3.2.2).

(2) Horizontal slot jet. The nondimensional trajectory and jet

widths are shown in Figure 17 based on Abraham's (1963) model. The
centerline dilution predictions are given in Figure 16 for comparison

with the vertical jet, again showing a higher dilution for the
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Figure 16. Centerline dilution for vertical and horizontal slot buoy-
ant jets (multiport diffusers) in deep, stagnant, unstratified water
horizontal jet up to z/lLm =~ 10 when the asymptotic plume regime is
attained.

(3) Negatively buoyant vertical slot jet. This situation is

frequently encountered with the disposal of heavy fluids (e.g. concen-
trated industrial or cooling water blowdown). The maximum vertical

penetration level is of the order of

~1.0 (3.2.10)

and the associated dilution at that level is
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71

(3.2.11)



b. Surface impingement. For positively buoyant discharges, the

thickness of the surface impingement layer that defines the upper end

of active jet entrainment is approximately
hi
T - 0.16 (3.2.12)

based on Jirka and Harleman's (1973) theory and experiments.

c¢. Weak Ambient Crossflow. The strong destabilizing effect of

ambient crossflow has been discussed in connection with Eq. 3.2.7,
However, when the ambient crossflow is too weak to cause complete ver-
tical mixing, it may have an inhibiting effect on dilution as the
entrainment on the downstream (lee) side of the diffuser plume becomes
blocked. Studies by Roberts (1977) indicate for weak crossflow that a

dilution at the water surface SS is

Ss H H
= 0,27 ——= = 0.27 +— {(3.2.13)
F§/3 BF:/B Rm

Comparison to the plume solution (second expression in bracket of

Eq. 3.2.9, which yields Sc/F§/3

is considerably less than would occur under stagnant conditions even if

= 0.45 z/ﬁm } shows that this dilution

account is taken of the impingement layer.

3.2.4 Shallow-Water Diffusers

a. Coflowing unidirectional diffuser. This is a beneficial

diffuser arrangement for effluent disposal in riverine situations.
Referring to Figure 18, the diffuser discharges in the direction of the
river flow. The discharge 1s strongly unstable due to the combined
action of diffuser and ambient momentum. The result is a vertically
fully mixed plume (Figure 18). The mixing mechanism in this case con-
gists of back entraimment as ambient river water is accelerated from
upstream and carried over the diffuser and of more gradual side

- entrainment,
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Figure 18. Co-~flowing unidirectional diffuser in a river

From the viewpoint of rapid mixing, the back entrainment contri-
bution is more important in the diffuser dynamics. An analysis by
Adams (1982) (alsc Jirka 1982b) gives the bulk dilution downstream from

the diffuser due to back entrainment (i.e. neglecting side

entrainment) :
L1 )
S=EV+-§ v +"-"—2—- (3.2.14)
%
in which V = uaH/qo is the volume flux ratio between ambient and dis-

charge flow. For the stagnant case (V = 0), this result reduces to
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(3.2.15)

i.e., it 1s only the diffuser momentum flux per unit width m that is
responsible for mixing. Once the diffuser operates in the shallow-
water domain (which is ascertained by consulting the stability cri-
terion, Section 3.2.2)}, the buoyancy flux is dynamically unimportant
for mixing and hence does not appear in Eq. 3.2.14 or 3.2.15. The
above results are based on an assumption of a constant river depth H
and constant discharge characteristics m and 9, - If the depth
varies along the diffuser length and if it is desired to achieve a
constant dilution S along the diffuser, then Eq. 3.2.15 indicates
that m and 9, should ge varied along the length in such a manner
as to keep the quantity qO/m0 (which is equal to B ) a constant
fraction of H . For a "weak" diffuser whose momentum is negligible
compared to the ambient momentum, the dilution is given by S =1V ,
i.e. mixing is simply achieved as ambient flow sweeps over the diffuser
line.

A further feature of the unidirectional diffuser dynamics is the

contraction that takes place downstream. The plume width is restricted

to Cch , which is less than the actual diffuser length Ld . Tor
shallow water, the contraction coefficient is given by
1,1 2m, 2
Cc=§+'§ ].+-"E (3.2.16)

in which m = uiH is the ambient kinematic momentum flux. Again, in
the limiting case of a stagnant ambient, the most severe contraction
(Cc = 1/2) is obtained.

Of course, the bulk dilution equation (Eq. 3.2.14) is valid only
if the actual river flow (QR = uaHW in which W = river width)} is

larger than the required entrainment flow (S-l)Qd » in which Qd is
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the total diffuser flow (Qd = qoLd)' In that case, the remaining

river flow [QR - (8=-1) Qd] passes through the river cross section that
1s not occupied by the diffuser. However, if the river flow is small
[QR < (8 ~ l)Qd}, then recirculation must take place, i.e., mixed water
from the downstream region will return to the back-entrainment region.
The new average dilution is then controlled by the river so that

SR = QR/Qd+1 . This river-controlled condition always applies if the
diffuser extends fully across the river.

A complete analysis of the full diffuser plume, including the
shape of the slipstream and the gradual side entrainment, has been
given by Lee and Jirka (1980).

b. Other diffuser types. There are several other diffuser

types, namely the unidirectional crossflowing diffuser, the staged
diffuser, and the alternating diffuser. All of these operate in the
unstable shallow-water regime, the latter also relying on buoyancy flux
as a dynamic variable that contributes to mixing. These types have
emerged predominantly in the direct heat disposal of once-through cool-
ing water from thermoelectric power plants, especially in coastal
regions. Those types are of limited importance in river applications.

For a complete discussion, the reader is referred to Jirka (1982b).

3.3 SURFACE DISCHARGES

The oldest and least costly approach to effluent disposal into
rivers, lakes, and reservoirs is the use of a surface canal that enters
at the shoreline. Three possibilities exist regarding the buoyancy of
the effluent:

a. If the effluent is nonbuoyant (g; = 0) and if the water
depth is great enough not to provide any inhibition to the inflow re-—
quired for entrainment, the jet will behave exactly like the nonbuoyant
jets considered in Section 3.1 except that the water surface will act
as a symmetry plane. If the water is stagnant, then the jet trajectory
will be straight; if there is crossflow, the jet will be deflected ac-
cording to the trajectory laws displayed in Figure 8.
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b. If the effluent is heavier than the receiving water, it will
sink away from the water surface, thereby forming a submerged buovyant
jet. Again, this is exactly the situation considered in Section 3.1.3.
If the ambient 1s stagnant, the predictive diagrams of Figures 5 and 7
(with Bo = 0 deg and =z pointing vertically downward) are appli-
cable. Often, however, the vertical fall will soon be limited by shal-
low ambient depth. A complicated three-dimensiomal trajectory arises
for crossflows since the jet issues laterally into the flow but is then
deflected sideways. Detailed models (such as Hirst 1972) must be con-
sulted in those cases.

c. If the effluent is lighter than the ambient water, there is

a buoyant surface jet. The rest of this section is devoted to this

type of jet.

3.3.1 Buoyant Surface Jet in Deep Stagnant Water

a. Basic features. Figure 19 is a definition diagram for a

buoyant surface jet. The jet issues from a canal of depth hO and
width 2b0 . Very close to the discharge point, the jet behaves
essentially as a nonbuoyant jet with linear spreading. However, at
larger distances buoyancy exerts an increasing effect on two levels of
jet behavior. On a small scale, it dampens the turbulent vertical
entrainment at the jet bottom and, on a larger scale, it causes contin-
uous lateral spreading of the jet. Thus, the buoyant jet becomes grad-
ually thinner while spreading strongly laterally. During this process

1/2) is constantly

the local densimetric Froude number (FL = uc/(géh)
decreasing from its initial large value. This Froude number ultimately
reaches a value of unity at a distance called the transition distance
(xt). At this distance the lateral spreading motion becomes of the
same order as the forward motion. Thus, the jet has completely col-
lapsed into a far—field "pool" of buoyant fluid. This far-field motion
has completely different dynamics, is inherently unsteady in large
receiving water bodies, and may begin with an abrupt transition

internal hydraulic jump from the buoyént—jet near~field to the far-
field (Figure 19), These aspects are discussed by Jirka, Adams, and
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Figure 19. Definition diagram for buoyant surface discharge in deep,
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Stolzenbach (1981). Only the near-field region (x < xt) is a true jet

regime.

b. Nondimensional parameters and scales. Since the exact geom—

etry of the buoyant surface jet chamnel is frequently quite important
(in contrast to the submerged applications), a somewhat different
parameterization is introduced here. The rectangular chammel (Fig-

ure 19) has a length scale

L =+YhbD (3.3.1)

(o] 0o 0
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i.e., the square root of half the channel cross sectlon, and an aspect

ratio
ho
A = T (3.3.2)
o
A surface jet Froude number is then
Uo
F; = — (3.3.3)
L.
0o

These discharge channel parameters are related to the momentum length

scale (LM , in which the total fluxes appear, Table 6) by

_1/4
RM = 2

]
LoFo (3.3.4)
As usual, the momentum length scale (zM) is a measure of the relative
influence of momentum flux and buoyancy flux on jet behavior.

c¢. Nondimensional splutions. The nondimensional geometry and

the centerline dilution are plotted in Figure 20. The half-width and
half-depth lines relate to the positions where the scalar concentration
and buoyancy are one-half the centerline values (corresponding to

83 percent of the usual Gaussian width definitions). The full width
and depth lines are somewhat wider and describe the edge of the jet
where the scalar quantities are essentially zero (or negligible). It
is evident from Figure 20 that the buoyant surface jet flattens out
considerably as the axial distance increases.

Some important parameters for the surface jet are the maximum

depth
hmax
.._.m_a¥ = 0,42 or = 0,35 (3.3.5)
LF
00 M
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occurring at a distance

L“‘;’f = 5.5 or %‘-‘3‘- = 4.6 (3.3.6)
o o M

X
-~ 15 or IE ~ 13 (3.3.7)
M

Initially the dilution increases linearly with distance (as for a non-
buoyant jet Fé + » , Table 1) but it gradually destabilizes and reaches
a plateau value (indicative of the damping of vertical entrainment) at
the transition. This plateau value is called the stable centerline
dilution

- = 1.0 (3.3.8)

Thus, the buoyant surface jet has a definite limit on its mixing capac-
ity (unlike the submerged buoyant jet in deep receiving water).
Finally, it should be emphasized that the basic solutions in
Figure 20 have been plotted for the asymptotic range Fé >> 1 . The
effect of finite Froude numbers (as usual, an indication of additional
dynamic effects of a large source size) can be considered in two steps.
First, as long as Fé is reasonably large, Fé > 3 in practice, the
asymptotic solution is valid in the later phases of jet spreading
(large distance x ), but a finite source effect is present in the out-
let viecinity. This is indicated qualitatively by the dot-dashed lines
in Figure 20; the length of the affected zone is inversely related to
F; . Second, for even smaller Froude numbers, 1 < Fg < 3 , the dynamic
effect of the finite source is felt throughout the jet evolution up to

its final transition. All buoyant surface jet properties, including
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Figure 20. Nondimensional geometry and center-
line dilution for buoyant surface jets in deep,
stagnant receiving water (after Jirka et al.
1981)
geometry and dilution, are then dependent on F; and on A and cannot
any longer be scaled uniquely as was done in Figure 20, As an example,

the normalized stable centerline dilution (Eq. 3.3.8) becomes
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7]
lo
[17]
—

2|l +—— (3.3.9)

y
o=

as a more general expression that is approximately valid down to Fé =1
for a wide range of aspect ratios, 0.l < A < 2 (Jirka, Adams, and Stol-
zenbach 1981). In general, the complete situation of low Froude number
surface jets (Fé < 3) with arbitrary aspect ratios may be examined with
appropriate mathematical models (e.g., Stolzenbach and Harleman 1971;
Shirazi and Davis 1974), but with the additional caution that the fluid
mechanical aspects in this range of strong buoyancy effects are, in

faect, poorly understood and, hence, inadequately modeled.

3.3.2 Effects of Shallow Receiving Water

If the depth of the receiving water is small enough to interfere
significantly with the inflow required for entrainment or if the depth
is less than the maximum jet penetration depth (hmax)’ the jet mixing
capacity is adversely affected. Examination of data (Jirka, Adams, and
Stolzenbach 1981) has shown that the effect of limited depth is felt if

max

> 0.75 (3.3.10)

which provides a definition of shallow-water conditions. Note that

with Eq. 3.3.5 this condition can be expressed alternatively as

Lt < 0.56 or B <o.47 (3.3.11)

o 0 JZ'M

In the absence of a crossflow, the most noticeable consequence of shal-
low-water conditions is a reduction of the centerline dilution by a

factor of approximately
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0.75 \0+73 b ax
- (h_“"ﬁ) for -2 > 0.75 (3.3.12)
max

S

Thus, if the centerline dilution under shallow-water conditions is
required, one can simply multiply the deep-water dilution Sc plotted
in Figure 20 or its stable value Scs (Eq. 3.3.8) by the reduction

factor r_ .
s

3.3.3 Buoyant Surface Jet in Ambient Crossfiow

a. Basiec Features. The behavior of surface jets in crossflows

is again strongly dependent upon the depth of the receiving water. If
deep-water conditions prevail, the crossflow causes a bent-~over trajec-
tory by virtue of the usual deflecting mechanisms, the drag force, and
the force that arises from the entrainment of ambient momentum. Typi-
cally, buoyant surface jets in crossflows do not have a transition with
a stable limiting dilution.

In shallow receiving water, where the buoyant jet occupies a
portion or all of the available depth, the crossflow has even stronger
effects. The ambient flow is blocked by the jet, leading to much
stronger deflection and to limitation of the entrainment on the down-
stream side. Eventually, the jet becomes partially attached to the
shoreline, and recirculation results with a buildup of effluent concen-
trations and reduced dilutions. This difference between free and
shoreline-attached jets is shown in Figure 21.

A criterion for shoreline attachment has been presented in Jirka,

Adams, and Stolzenbach (1981):

3/2
R ( Eax) > 0.05 (3.3.13)
where hmax is given by Eq. 3.3.5. Thus, cases with strong crossflow

(large R = ua/Uo) and shallow water (large hmax/H ) are highly prone

to attach to the shoreline.
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Figure 21. Two modes of behavior of buoyant surface jets in
ambient crossflows

b. Nonattached (free) jets. The trajectories of buoyant sur-

face jets become highly complicated as they are affected by a multitude
of parameters (Fé, R, hmax/H) or, alternatively, a multitude of length
scales. Jirka, Adams, and Stolzenbach (1981) argued that the trajec—
tory laws should, in first order, be similar to those for a pure momen-
tum jet in a crossflow (Figure 8) since it is the initial momentum that
pushes the jet offshore. There is some support for this argument if

" buoyant jet data are plotted according to these laws, as is dome in
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Figure 22. (Note the change in the notation for the axes; see also
Figure 21.) However, there is also a clear dependence upon the param-—
eter FéR which is equal to the length scale ratio 21/42M/2Mu » wWhere
EMu is defined as V2 LO/R for the surface jet case. Jets with
strong buoyancy (small F;R ) are seen to penetrate further into the
crossflow. This effect is presumably due to the decrease of both drag
and entrainment forces as the buoyvant jet flattens out rapidly.
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Figure 22. Nondimensional trajectories of buoyant surface jets in
crossflows
The situation is less clear as regards the mixing characteris-
tics (centerline dilutions) for buoyant jets in crossflow. It appears
that a single unique dilution plot can no longer be valid because of
the several parameter combinations. It is at this point that actual

surface buoyant jet models or resulting design nomograms have to be
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consulted (e.g., Stolzenbach and Harleman 1971, Shirazi and Davis
1974).

c. Shoreline-attached jets. Near-field mixing is even more

complex for shoreline-attached jets. Detailed studies (Adams, Stolzen-
bach, and Harleman 1975) indicate that the near-field mixing is consid-
erably lower than for free jets. Depending upon the degree of block-~
ing, the degree of reentrainment of already mixed effluent water may be
up to 100 percent so that the surface jet entrains ambient undiluted
water from only one side. Thus, for conservative purposes, the dilu-
tion of attached jets can be estimated as 50 percent of that of nonat-

tached jets. Also, the width L, of the recirculating zone (Fig-

R
ure 21b) may be approximated from the jet-crossflow length scale

L, =1 (3.3.14)

with the definition of lMu discussed in the preceding paragraph.

3.4 DISCHARGE~INDUCED STRATIFIED FLOW

3.4.1 Introduction

The near-field mixing induced by the three basic continuous dis-
charge geometries (the submerged single-port discharge, the submerged
nultiport diffuser, and the surface discharge) is analyzed in the pre-
ceding sections. These analyses show that the near-field mixing is
strong if there are large initial momentum fluxes (i.e. large densi-
metric Froude numbers). On the other hand, due to the stabilizing
effect of the buoyancy flux or due to a limited receiving water
geometry, there is always a definite limit on the achievable mixing,

If the amount of near-field mixing is denoted by an overall
dilution ratio S , as estimated by the preceding analyses for each
specific situation, the water that leaves the initial mixing zone may

have a residual density difference Ap :
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Apo
bp =py ~0 =g (3.4.1)

where Ap, is the initial discharge density difference. The density
difference at the end of the initial mixing zone has an associated

buoyant acceleration

g' =40 ¢ (3.4.2)
Pa

Thus, there is the possibility that, outside of the near-field mixing
zone, this acceleration will produce additional motion (or stratified
flow) relative to the undisturbed ambient flow. Obviously, the
character of the motion induced by g' depends heavily on the ambient
geometry and flow field. In the following, only a few special (yet
common) situations are discussed., There are numerous other situations
that may arise and may require special analysis and consultation of the
relevant literature. It must be stressed that the stratified flow does
not contribute any significant amount of additional effective mixing,
but rather causes a redistribution of the effiuent in the receiving
water.

The importance of the motion induced by g' is in direct rela-
tion to the amount of the discharge flow. The motion is most important
for large effluents, such as cooling water from thermal power plants,
for which the stratified flow may effect a redistribution of the mixed

effluent over large distances.

3.4.2 Arrested Wedges

Figure 23 presents a schematic illustration of one situation in
which stratified flow is induced by the interaction of the ambient flow
and the mixed discharge. The near~field is indicated by the cross-
hatched region whose dimensions may be estimated from the relationships
given in the earlier sections. As indicated in the plan view in the

figure, the near-field may extend across the whole river width or may
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Figure 23, Schematic diagram for wedge intrusions formed by a buoyant
discharge in riverine situations

occupy only a certain portion (e.g. given by the diffuser length in
Figure 18).

Two examples of stratified flow are shown in Figure 23 namely, a
surface wedge (or underflow) and a bottom wedge (or overflow), in an
ambient flow which is characterized by a discharge per unit width of
q (= uaH). The surface wedge results from the buoyant acceleration

a

g

against the ambient flow. The upstream motion is opposed by pressure

causing an intrusion of part of the mixed discharge upstream

forces from the ambient flow passing under the wedge and by frictional

forces, represented by an interfacial shear stress (Figure 23)
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f

R N
T, =P, g (Au) (3.4.3)

where Au is the local velocity difference across the interface be-
tween the two layers and fi is a Darcy-Weilsbach interfacial friction
factor. For steady-state conditions, there is intermal circulation but
no net flow in the arrested wedge.

In an analogous fashion, a bottom wedge may form downstream as
the mixed discharge rises and the more dense ambient fluid intrudes
under the wedge. Even though the initial mixing region may be calcu-
lated to extend only partially across the river, the buoyant accelera-
tions would generally be expected to spread the mixed discharge across
the full width of the river surface if they are sufficient to cause
wedges to develop. Also, the bottom wedge can form in rivers only if
the initial mixing region does not extend across the full width of the
river; otherwise, there would be no source of ambient water to intrude
under the mixed discharge.

There are numerous possible variations to the situation depicted
in Figure 23, For example, both wedges may be absent (expelled), or
the downstream wedge may intrude all the way to the near-field mixing
zone (thereby supplying downstream water for the near-field mixing), or
the downstream zone may be made up of co-flowing upper (mixed) and lower
(ambient) layers. The prediction of any particular situation depends
on the ambient geometry and requires the techniques of two-layer stra-—
tified flow theory (e.g. Harleman 1961; Jirka, Abraham, and Harleman
1975), Only a few fundamental results of that theory are given below.

a. Criterion for stratified-flow intrusions. A wedge driven by

the buoyancy g' can intrude against the ambient flow only if the

densimetric Froude number is less than some critical value (C), i.e. if

u q
a_ = a <C (3.4.4)

V|S'|H ) ‘“8'1}13
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The absolute value of g' 1s used since Eq. 3.4.4 applies both to the
surface wedge (g' > 0) and to the bottom wedge (g' < 0). Theoretical
analysis gives C = 1., However, in practice € 1s on the order of 0.6
to 0.7,

Referring to the downstream section of Figure 23, Eq. 3.4.4 may
be used in inverted form to estimate the local depth H(x) which marks

the intrusion point, i.e.,

[g1]c? )/
H(x) = _5_2-—- (3.4.5)
q

where ¢q designates the mixed downstream flow rate.

b. Estimates of intrusion lengths. If Eq. 3.4.4 is satisfied

so that an intrusion takes place, the steady-~state wedge shape and

length L, are governed by a balance of buoyant, inertial, pressure,

and frictional forces., Normalized solutions for intrusion lengths in a
channel with a horizontal bottom (constant H and negligible bottom
slope) are plotted in Figure 24a for surface wedges and Figure 24b for
bottom wedges. The surface wedge length depends both on the interfacial
friction factor (fi) and the channel bottom friction factor (fo). For
field conditions, fi is typically in the range of 0.005 to 0.01 and
the ratio fi/fo in the range 0.5 to 1.0. TFor the bottom wedge, the
solution depends only on fi if there is no net flow in the wedge. In
both cases, a smaller Froude number (a smaller ambient flow rate or
increased buoyancy) gives a longer wedge length.

It is also of interest to note that wedges can originate at
critical flow sections where strong changes in the flow geometry take
place. This may be fhe edge of a near—field mixing section (Figure 23)
or the exit section into a large reservoir or water body, as sketched
in Figure 24, Two-layer stratified flows are dynamically similar to
(one-layer) open-channel flow, and the role and existence of critical
flow sections are also analogous. (For more details, see Jirka, Abra-

ham, and Harleman 1975.)
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Figure 24. Nondimensional solutions for stratified flow
intrusions and counterflows

3.4.3 Stratified Counterflow

Occasionally, a buoyant effluent may be discharged into an arti-
ficial lagoon or natural cove with the purpose of premixing it with the

ambient water before discharging it into a river or reservoir
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{(Figure 25).

If the cove is connected to the main water body by a

channel or constricted flow region, the amount of premixing that can be

achieved may be limited by the stratified flow condition in the chan-

nel.

At steady state, 1if the dilution is reasonably large so that the

ambient inflow is much larger than the initial discharge flow rate

Q0 » equal amounts of ambient inflow and mixed outflow must pass

through the channel.

The dynamics of this stratified counterflow are

again governed by a balance of buoyant, inertial, pressure, and fric-

tional forces, and the flow will be bounded by critical sections at

both ends of the channel.
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A solution diagram for the counterflow densimetric Froude number
q/(g'l-13)l/2 » where q is the flow rate per unit width in each layer,
as a function of nondimensional channel length foLo/H is given in
Figure 24c. Significantly, a maximum Froude number of 1/4 exists for
zero channel length, i.e., a short opening between two reservoirs of
different density water with equal discharges in the two layers. For
any other channel length, there is a definite Froude number (say Fc },
as given in the figure.

The maximum possible near-field dilution Smax in this situa-
tion is computed by using the buoyancy (g' = g;/SmaX) and the flow rate
per unit width (q = Qosmax/wc where Q_ and gé are the initial dis-

charge flow rate and buoyancy and Wc is the channel width). Using

the definition of ¥ , § can be obtained as
c max

1/3
3.2
g'H"W
s =p2f3lo__¢ (3.4.6)
max c- 2
%

Even if the near-field discharge within the lagoon or cove were de-
signed to achieve higher dilutions, the stratified flow control repre-
sented by Eq. 3.4.6 would limit the mixing processes.

Similar types of analyses may be used to estimate the exchange
flow that takes place between two reservoirs where the flow rates in
the two layers are not constrained to be the same (Holley and Waddell
1976) ..

3.4.4 Lateral Buoyant Spread

The residual buovancy of the mixed flow outside the near-field
mixing zone can also induce lateral spreading perpendicular to the
ambient flow. Such a situation is depicted in Figure 26. The lateral
width bo of the initial mixing zone can usually be estimated from the
details of the near-field dynamics, as discussed in the preceding sec-
tions. To analyze the spreading of b(x) for the mixed water as it is

advected in the downstream direction by the velocity u, s it can be
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Figure 26. Lateral buoyant spread of mixed discharge in crossflow

assumed that no entrainment takes place so that the buoyancy and dis-
charge within the upper layer are conserved, i.e. g' = gé/S = constant
and @ = QO/S = uabh = constant (Figure 26). Assuming a simple bal-
ance of lateral buoyant forces and inertial accelerations, the spread-

ing relation is given by

3 2/3
= (5 -+ 1) (3-4.7)
o) 0

wlv
=2 1
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while the thickness diminishes so that h/ho = bo/b . This two-thirds
power law (Eq. 3.4.7), first derived by Larsen and Sorensen (1968),
usually gives a rellable estimation of the buoyant spreading even
though some degree of turbulent entrainment may, in fact, be present in

field situations.

3.5 INSTANTANEOUS RELEASES

If a mass of material is released suddenly into the water column
at the water surface, either accidentally during a spill or purposely
during a mixing experiment, some initial mixing takes place. This mix~
ing is caused by the turbulence that is generated as the mass enters
the water. Two force mechanisms can cause this turbulence: the ini-
tial impulse P_ and/or the initial buoyant weight W of the slug
that has a density Py greater than that of the receiving water S
These forces are quite analogous to the momentum flux and buoyanecy flux
in the continuous release situations.

The slug is characterized by its initial volume Vo » buoyancy

p. - p .
g' = 2 925 <0, vertical velocity w (i.e. the velocity with

o Py

which it enters the water column), and concentration c, An
3 1/3
equivalent initial radius can be calculated as r, = \77 Vo . The

impulse is P = wOVo and the buoyant weight is Wo = ~g;Vo (both in
kinematic units). The following solutions given by Scorer (1978)

apply.

3.5.1 Mixing Caused by Buoyant Weight

Bulk dilution

¢ B 2
S = ol ET ~ 0.016 (;—) for z > 4ro (3.5.1)
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Geometry

1/4t1/2
&)

z = 1,66 W » r=10,2512

(3.5.2)

in which 2z dis the distance from the release level (e.g. water sur-

face),

t the time elapsed after release, and r

which the slug has grown by turbulent entralnment.

3.5.2

Mixing Caused by Initial Impulse

Bulk dilution

3
S ~ 0.016 (EL-) for z > 4r
r o
0
Geometry
z = 2.77 Pi/4t1/4 R r = (0.25z

is the radius to

{3.5.3)

(3.5.4)

Note that the dilution and the slug size as a function of depth

are the same in both cases; the rate of penetration, however, is quite

different,

These equations may be used, for example, to arrive at an

estimate for the initial mixing caused over the total depth of a river,

z=H,
able for initial estimation purposes to compute the dilutions as
function of time with both methods and to adopt the larger value.
many cases, these will be the ones associated with the buoyancy-

enhanced dilution.

In case of a release with both Wo and P0 » 1t may be

Alternatively, the complete set of equations

advis-—
a

In

of

motion for an accelerating turbulent slug may be derived and solved

with the above information on growth rates, in a fashion analogous to

the procedure that was used for buoyant jets.

If the mass is released at the water surface with positive

buoyancy (g; > 0) and it has no impulse, the initial mixing may be
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totally inhibited due to the damping of turbulence by the buoyancy.
The slug will then simply spread along the water surface until it is
affected by ambient diffusion.

Other release geometries {e.g. two-dimensional) are considered
by Scorer (1978) as well. In many cases, however, it may be difficult
to give precise estimates of the iInitial mixing of instantaneous
releases, considering also the fact that the actual release is never
quite instantaneous but may take place over a time period Ato . If
primary interest is in the effluent dilution at large downstream dis-
tances where ambient diffusion has affected the released mass, then
parametric calculations will show in most cases that the exact degree
of initial mixing for instantaneous or short duration slug releases is

of no great consequence.
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CHAPTER 4. DIFFERENTIAL EQUATIONS REPRESENTING
HYDRAULIC TRANSPORT PROCESSES

4.1 INTRODUCTION

4,1.1 Mags Balance Equations

The calculation of concentration distributions, whether done
analytically or numerically, is useful both as a qualitative aid to
visualizing the way in which pollutants are transported in rivers and
as a means of making quantitative predictions of expected concentra-
tions. In performing these calculations, there are various levels of
approximations ranging from three-dimensional numerical solutions,
which can give concentration variations in all three spatial dimensions
as well as in time for unsteady situations, to one-~dimensional solu-
tions. Most present-day calculations proceed from some form of a dif-
ferential equation which represents the mass conservation or mass bal-
ance of the pollutant., The various terms in the differential equation
represent the processes (hydraulic transport, reactions, etc.) which
influence the concentration. A general understanding of the terms in
the differential mass balance equations is essential in order to have
an appreciation for the way in which the hydraulics of a river are
being represented in the calculations. For example, the number of spa-
tial dimensions included in a mathematical representation or model
places a limit on the detail to which the velocity variations can be
included and this limit, in turn, has strong implications on what must
be represented in the diffusion or mixing terms and their associated
coefficients, These aspects of mathematical representations are dis-
cussed in more detail in the following sections in connection with the
various forms of the differential mass balance equations, but some gen-
eral comments are made in Section 4.2.2 about the relationship between
advection and diffusion.

As an alternate to using differential mass-balance equations, a
random-walk approach is sometimes taken, This alternate approach,

which is not widely used in engineering calculations, will be discussed
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briefly in Chapter 6, where some results from the calculations are

presented.

4,1.2 Boundary Conditions

Calculated concentrations depend not only on the form of the
differential mass balance equation, but also on the boundary conditions
which are used to represent the effluent release or loading into the
river. The boundary conditions are uged to represent both the spatial
and the tempofal distributions of the effluent loading. In principle,
it is possible to calculate concentrations (at least numerically) for
almost amy conceivable set of boundary (or release) conditions; fre-
quently-used conditions correspond to the approximations of a continu-
ous (and constant) effluent discharge rate or an instantaneous (or
slug) release.

Most mathematical models for pollutant transport associated with
natural river flow assume that steady flow exists in the river amd that
there are no density variations due either to natural causes or to
effluent releases. (The effects of effluents with a different density

from the river water are considered in Chapters 2 and 3.)

4.1.3 Major References

The mathematical development of the various forms of the differ-
ential mass balance equations in the remainder of this chapter follows
very closely the development presented by Yotsukura (1977). Although
that publication is not copyrighted and thus can be used and quoted ex-
tensively, the authors want to emphasize that much of this chapter is
taken directly from Yotsukura's work. The parts taken verbatim from
Yotsukura's paper are indicated by quotation marks. Equation and fig-
ure numbers have been changed to be consistent with this presentation,
some of the notation has been changed, and "advection" was substituted

' Yotsukura's derivations were done for conservative

for "convection.'
substances, but possible first-order reaction and transfer across the
water surface and streambed have been included in this presentation,

Some parts of the following derivations include rather detailed
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mathematics because it is felt that the mathematics are needed for an
understanding of the approximations and conditions applicable for each
type of mass balance equation. The mathematical developments are pre-
ceded by physical interpretations and explanations of the processes

being represented. Some of the physical interpretations follow a pre-

vious paper by Holley (1969).

4.2 GENERAL MASS BALANCE CONSIDERATIONS

4,2.1 General Approach

Differential mass balance equations, which are used as a bhasis
for calculating concentration distributions, are normally developed for
an infinitesimal or incremental control volume (CV). For this CV, mass
balance states that the time rate of change (increase) of the mass of
the pollutant in the CV must be equal to the net rate of influx of mass
through all sides of the CV minus any decay of the mass inside the CV,
In writing the general equation, rate of change and flux terms are
written as positive quantities, but it is understood that any of them
may be negative in a specific problem so that a negative rate of in~
crease implies a decrease, a negative influx implies an efflux, and a
negative decay implies a production. The hydraulics of the river flow
are represented in the flux terms for the sides of the CV. The two
types of flux which are considered are advective flux, i.e. movement of
the pollutant associated with the water flow velocity, and diffusive or
dispersive flux, i.e. mixing of the pollutant relative to the advective
movement of the water., The actual mechanisms represented in the mixing
terms depend strongly on the degree of resolution used in representing
the actual, physical advective pattern in the advective terms in the
differential equation.

For these developments related to ambient transport, it is as-
sumed that the solute is neutrally buoyant so that it does not rise or
sink due to gravity and so that the transport of the solute can be
described using just the motion of the water.

"The three-, two—, and one-dimensional equations for turbulent-

flow transport will be derived in sequence, starting from the
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three-dimensional equations for instantaneous mass balance of water and
a solute. Time- and space-averagings are performed rigorously uti-
lizing Leibnitz's rule for reversing the order of integration and dif-
ferentiation, Reynolds' averaging rules, and necessary boundary condi-
tions (Leendertse 1970, Holley 1971}. The procedure is devoid of such
assumptions as uniform distribution of solute concentration, stationmary
flow boundaries, and steadiness or uniformity of flow, which are often
required in conventional derivations of transport equations. On the
other hand, each averaging process produces a covariance between the
deviations of concentration and velocity from thelr averaged values.

It is shown that an aggregate expression for the covariance, variously
called mixing, dispersion, and diffusion, is where major assumptions
and approximations are introduced into the advective-diffusion equa-
tion, which is otherwise exact. These covariances are expressed in
gradient-type flux forms following Boussinesq's and Taylor's phenomeno—~
logical models (Hinze 1959, Taylor 1954).

"Various ﬁhases of the derivation have been reported in some of
the above references as well as in other recent papers (Sayre and Yeh
1973, Yotsukura and Sayre 1976). The only new aspect of the present
report is concerned with the one-dimensional equations. The entire
derivation, however, is documented in the present report as it should

prove useful and as it appears nowhere else in the literature."

4,2.2 Relationship Between Advection and Diffusion

Since a solute is dissolved in the water in a river, the solute
moves where the water moves, except for molecular diffusion which nor-
mally provides a negligible part of the total transport for rivers.
Thus, essentially all of the transport is advective flux or advection,
which is defined as the solute flux or transport asscciated with the
flow velocity. However, as will be seen in Sections 4.5-4.8, different
approximations for the advective transport are used in different equa-
tions. The difference between the actual advection and that in a
mathematical representation usually goes into a diffusive-type term,

Thus, the detail used in representing the advection dictates what type
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of diffusive terms must be included in the mass balance equation. When
less detail or resolution is used in the advective term(s), more of the

transport is relegated to diffusive-type terms.

4,3 MATHEMATICAL TOOLS

4,3.1 Taylor Series

In deriving the differential mass balance equations, use is made
of a Taylor series expansion of a function, say ¢(p,q) , which states
that the value of ¢ at P, is related to ¢ at Py if q d1s held

constant, as follows:

2
$(Pyrq) = ¢(p;pq) + 3‘3 dp + -%T —z—p—% (p)°

(4.3.1)
1 BBQ 3
+ = (Ap)~ +...
3! 3P3

where all of the derivatives are evaluated at Py and Ap = P, =Py -
For very small p , all of the higher—order terms become negligible so

that Eq. 4.3.1 reduces to

62y = $(poa) + 52 ap (4.3.2)

which just states that, for small Ap , ¢ at P, is given by ¢ at
Py plus the gradient or slope of a ¢ versus p curve times the
interval length Ap . Eq. 4.3,2 is used later with ¢ being various

mass transport terms.

4,3.2 Leibnitz's Rule

"In carrying out the integration of equations with respect to
time or space' as is required in the derivations to obtain the various
forms of the mass balance equations, "Leibnitz's rule for reversing the

order of integration and differentiation is frequently used. If ¢ is
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a function of independent variables p and q , and o and B are
parameters depending on ¢ , this rule is written (Korn and Korn 1961)

as follows:

8(q) B(q)
f -ga ¢(psq)dp = g—q f $(p,q)dp
adq) a(q)
(4.3.3)
- ¢(B:Q) g_g + ¢(0ﬁsQ) g_z

4.,3.3 Reynolds' Rules

"In handling time or space averages of a quantity and its devia-
tions from the averages, Reynolds' operational rules will be used fre-
quently. For functions ¢ and ¢ , the averages" with respect to time
or vertical and/or transverse distance "are denoted by ¢ and ¢ and
deviations from the averages by ¢' and ¥' so that, e.g.,
¢ = 3 + ¢' . The following operational rules are generally valid for

turbulent-flow analysis (Monin and Yaglom 1973):

' =0 (4.3.4)
t+v =9+ | (4.3.5)
Ti=0v (4.3.6)
=0V + e (4.3.7)
g___i - 3% (4.3.8)
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"In the following development, overbar and prime notations will
be specified independently in each section to indicate whether they
pertain to time-averaged, depth-averaged, or cross-sectlon-averaged
quantities. Since each section involves only one mode of averaging,

notational conflicts are thereby averted.”

4.3.4 Coordinate Transformations

Consider a variable ¢ , which is a function of one set of coor—
dinates, e.g. ¢ = ¢(al,a2,a3) . It is desired to transform ¢ and

its derlvatives to another set of coordinates, e.g., b1 s b2 ’ b3

so that ¢ = ¢(bl,b2,b3) . Since b, , b b3 represent the same

1 2

mathematical domain as a 33 s there is some relation between

1°? 323

the two sets of variables so that

bi = bi(al,az,a3) » 1=1,2,3 (4.3.9)

Then, the first derivatives are related by

b ob 9b
¢ 3¢ 1 , 39 2, 3¢ 3
- + + i=1,2,3 (4.3.10)
a 3 » ] )
3ai bl a, 3b2 3ai 3b3 3ai

Eqs. 4.3.9 and 4.3.10 are both actually three equations with one equa-

tion being generated for each value of 1 .,

4.4 NATURAL COORDINATE SYSTEM

"Use is made of an orthogonal curvilinear (natural) coordinate
system, in which the longitudinal coordinate axis approximately follows
the meandering longitudinal direction of a channel flow (Chang 1971,
Fukuoka and Sayre 1973). This coordinate system is adopted in order to
define quantities such as velocity and discharge in a manner consistent

with the characteristics of a nonuniform flow, but, more importantly,
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in order to utilize the scalar diffusivity concept properly in such a
flow (Hinze 1959, Dagan, ‘1969, Fischer 1973)." The presentation also
refers to simplified forms of the coordinate system as frequently used
in engineering calculations.

"An orthogonal curvilinear coordinate system, hereinafter called
the natural coordinate system, is illustrated in Figure 27 (Chang 1971,
Fukuoka and Sayre 1973). The system is composed of three mutually

-

LEFT BANK ~ S &3’
- R

-

LONGITUDINAL
COORDINATE
SURFACES

TRANSVERSE
COORDINATE
SURFACES
PLAN VIEW

LOI\E:‘ITUD{NA{. COORDINATE SURFACES

HORIZONTAL
COORDINATE
SURFACES

o

g
e—d .
SECTION D-D’

Figure 27. Orthogonal curvilinear (natural) coordinate
system for a river (after Yotsukura 1977)
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orthogonal sets of coordinate surfaces, which may be called longitudi-
nal, transverse, and horizontal coordinate surfaces. The longitudinal
and transverse coordinate surfaces are vertical, typically curved, and
nonparallel. The horizontal coordinate surfaces are all parallel, hor-
izontal planes. For reasons that will become clear later, it is best
to aline the longitudinal coordinate surfaces, at least approximately,
in the direction of depth-averaged total velocity vectors.

"The origin, O , is located at the intersection point of three
specially selected coordinate surfaces, as shown in Figure 27. The
x axis is defined as the intersection of the longitudinal and horizon-
tal coordinate surfaces (positive in the downstream direction), the
y axis as the intersection of the transverse and horizontal surfaces
(positive to the right), and the z axis as the intersection of the
longitudinal and transverse surfaces (positive in the upward direc-
tion). Again for reasons to be explained later, it is best to locate
the x axis in the midstream region of the channel," although in prac-
tice the origin is frequently located on one bank. "The x and y coor-
dinates of a point, C , in Figure 27 are defined respectively as the
horizontal distance, LOA » along the x axis from point 0 to point A
and L, along the y axis" from point O to point B. "Therefore, all
points on a transverse coordinate surface have a common coordinate
value, x , and, similarly, all points on a longitudinal coordinate
surface have a common coordinate value, vy . Coordinate values for =z
are measured vertically upward from the x-y plane.

"Due to curvature in channel alinement and (or) variations in
width along the channel, horizontal distances measured along different
longitudinal (or transverse) coordinate surfaces from one transverse
(or longitudinal) coordinate surface to another are generally not
equal," i.e., in general, the distances from B to C and from A to C are
not equal to L and L0 s L. are the coordinates

OA B A 0B
of point C., "To take care of this, the metric coefficients, m and

even though LO

my are introduced to correct for differences between distances along
curved coordinate surfaces and those measured along the respective

axes. As 1llustrated in Figure 27, the horizontal distance along the
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longitudinal coordinate surface from B to C is given by LBC " which is
the integral from O to A of mxdx and the horizontal distance along
the transverse coordinate surface from A to C is given by LAC which
is the integral from O to B of mydy . In these expressions, x and
therefore dx are measured only along the x axis (from O to A) while

L 1is measured along the coordinate surface. The metric coefficient,
mos gives the ratio of the incremental distance, ALx along the coor-
dinate surface to the incremental distance along A4x along the x axis.
Similarly, my is the metric coefficient in the y direction. "The
values of o and my may vary from point to point and" m and my
"are functions of both x and y , except that m = 1 on the x axis
and 11:.y =1 on the y axis. Because 211 horizontal coordinate surfaces
are parallel, the metric coefficient m, is unity. The present nat-
ural coordinate system is thus based on the assumption that the total
velocity vector everywhere in the channel is predominantly oriented in
the horizontal direction., This is reasonable in most natural channels.
Note also that, if m = my = 1 everywhere, the coordinate system
reduces to a rectangular Cartesian system.

"Differential and integral operations in the natural coordinate
system follow those for a general orthogonal curvilinear coordinate
system (Kaplan 1953). For present purposes, it suffices to remember
that integration or differentiation of a function along a curved coor-
dinate surface is always related to an infinitesimal distance, such as
de = mxdx or dLy = mydy . Notations dLX and dLy s however, will

not be used in the following development."

4.5 TINSTANTANEOUS BALANCE EQUATIONS

The derivation of differential mass balance equations frequently
begins by applying the previously stated mass balance principle (Sec—
tion 4.2) in mathematical terms to an infinitesimal control volume (CV),
which in this case is at any arbitrary location in the natural coordi-

nate system described in Section 4.4 and is shown in Figure 28.
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a. Control volume

T cozhnxdx)hnydy)i-ég (cozhnxdx)hnydy))dz

1 8

mxdx_/)/ T

Wz (mxdx } (mydy)

b. Components of flux of water through upstream and down-
stream faces of the control volume

~Drm 32 (mydx}(mydy) + 2= (D 22 imycmycy)) dz

1

Dm Dy, 29 1 3 Dpd8
o 3y (Mydy)dz —dz ™ - e E(m‘/dwdﬁm_x 3(—-51;*“5;(mydy)dz) m, dx

mxdmﬂJ('T
~ Dm g”gfmde)(mydy)

¢. Components of diffusive flux of solute through upstream and down-
stream faces of the control velume

Figure 28. Infinitesimal control volume and flux terms in natural cur-
vilinear coordinate system
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4.5.1 Instantaneous Continuity of Water

If the water can be considered to be incompressible, the equa-
tion that is normally used is one which gives a balance of the volume
of water rather than the mass. This equation is frequently called the
continuity equation. For the upstream face of the CV, the area is
(mydy)(dz) . If wx,wy,mz are the instantaneous components of the
velocity vector, then the volumetric flux through the upstream face is
wx(mydy)(dz) . Letting ¢ be this volumetric flux, the volumetric
flux through the downstream face is given from Eq. 4.3.2 as the expres—
sion shown in Figure 28b. The same procedure can be used to obtain the
flux terms in the other two directions. TIf the water is incompres-
sible, the volume of water in the CV cannot change with time so that at
each instant, even for unsteady flow, the sum of the influxes must be

zero, i.,e., noting that an efflux is a negative influx,
1 3
wmdydz - jwm dydz + — — (w m dydz)m dx
Xy Xy m Ix \xy X
1 5
+ w m dxdz - | w m_dxdz + =— == (w m dxdz)m.dy (4.5.1)
¥ X vV X mY 9y \ ¥ x v
+ w m_dxm _dy - [m m_dxm dy + L (w m_dxm dy)d%]= 0
zZ X v 2 X y 9z \ z X ¥

Cancelling terms, recognizing that x , y , and z are independent
variables so that dx , dy , and dz may be taken out of the deriv-
atives, and dividing by thei'volume (mxdx)(mydy)(dz) as the volume
approaches zero gives (Kaplan 1953, Chang 1971)

ﬁ;%; [%; (mywx) + %; (mxwy) + %E (mxmywz):l= 0 (4.5.2)
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4.5.2 Molecular Diffusion

The mass balance of the solute being transported can be obtained
in a similar fashion except that for the solute both advective and dif-
fusive fluxes must be considered, whereas for the water in Figure 28
and Eqs. 4.5.1 and 4.5.2,‘on1y advective flux needs to be considered.
The instantaneous solute concentration (0 , mass of solute per unit
volume of solution) can, in general, be variable in both space and
time.

Even though the part of the mass transport associated with
molecular diffusion in rivers is usually small, molecular diffusion is
discussed first since this process is included for completeness in the
developnent of the equations and since the other diffusive-type pro-
cesses and terms have some analogies to molecular diffusion.

For this discussion, and subsequent discussions in Section 4.6,
visualize a specific case of transport as illustrated in Figure 29
which shows a side view of the CV in Figure 28. Flow is from left to
right with a vertical distribution of the velocity w, - A slug of
some solute 1s released at time L . As the solute moves downstream,
it also spreads out, and the maximum concentration in the cloud con-
tinually decreases. Along each vertical section through the tracer

cloud, there is a distribution of concentration as shown at t2 .

i

Wy

P BEZK BN

Figure 29. Transport in two-dimensional flow
(from Holley 1969)
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Consider a case iIn which the spreading of the solute is due to
molecular action. Figure 30 shows the conditions on line AB of Fig-
ure 29 at time t3 . Along line AB there is a concentration distri-
bution such as that shown in Figure 30a. 1In effect, the concentration
may be viewed as representative of the number of molecules of solute in
a given small volume of fluid (for small concentrations). The dashed
line in Figure 30b represents the distribution along AB of the fluid
velocity W, - This is the velocity when the fluid is considered as a
continuum. Actually, at any instant, a large number of molecules is
distributed along the region of the line AB. Some of the molecules
(shown as open circles) are fluid molecules and some (filled circles)
are the solute. As indicated by the arrows, the molecules move off in
all directions with greatly varying velocities, most of which are much
greater than Wy

To write the mass balance equation, it is mnecessary to represent
the amount of solute moving through the faces of the CV. One way to do
this is to try to represent the motion of the molecules. One then
needs to know how many solute molecules pass through the faces and the
direction and displacement of each molecule. As time passes, molecules
such as those shown along the time axis pass through the left side of
the elemental area shown in Figure 30c. This series of molecules also
has velocities varying in magnitude and direction. Approaching the
representation of the molecular motion itself, even in a statistical
manner as in random—walk representations, is often too cumbersome to be
practical, although the approach has been used some, mostly in research
studies as presented in Section 6.2.3. Engineers commonly use the con-
tinuum approach and are satisfied to say that the fluid carries the
solute through the faces of the CV at a rate which depends on the con-
centration 6 and the fluid velocity w , which is the average of the
velocities of the molecules (Bird, Stewart, and Lightfoot 1960). How-
ever, the fluid velocity and the associated advective transport canmot
completely represent the solute movement because the velocity w does
not account for the movement of the molecules which have directions and

speeds different from ® . This difference between the true molecular
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a. Concentration

b. Velocity
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/\%%4

dz

mxdx\

Sequence of molecules passing through upstream face

Figure 30.

Transport due to molecular action
(from Holley 1969)
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motion and the manner chosen to represent the motion (i.e. by w )} is
accounted for by terms referred to as molecular diffusion. Ficks first
law (Bird, Stewart, and Lightfoot 1960) for molecular diffusion states
that molecular diffusion is proportional to the concentration gradient.
If Dm is the molecular diffusion coefficient, then Ficks Law for the
diffusive fluxes of the solute in the x and y directions through the

upstream and bottom faces of the CV in Figure 28b are

D

{ = _m 98

A (n dydz) (4.5.3)
and

;= -D & (n dxm dy) (4.5.4)

i, = m 37 My xmy y e

(See Figure 28c.) The diffusive flux terms have a negative sign since
the flux, which is proportional to the concentration gradient, is in

the direction opposite to the increasing concentration; i.e., regard-
less of the direction of advection, diffusion moves mass from regions

of higher concentration to regions of lower concentratiom.

4.5.3 Instantaneous Mass Balance of Solute

The differential equation for the instantaneous mass balance of
solute may be written from the general statement in Section 4.2. The
advective flux of the solute can be obtained by multiplying by the
velocity components in the various terms in Figure 28 and in Eq. 4.5.1
by 6 since these terms give the rate at which the volume of water is
being advected and © gives the mass of solute in each unit volume of
water. The diffusive flux is given by Egqs. 4.5.3 and 4.5.4 (plus a

similar equation for jy ). See Figure 28c., Then, mass balance gives:
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Time rate of increase of mass of solute in CV:

" 6m_dxm dydz) =

Jt ( X v y )
Net advective flux of solute into CV:

fw m dydz - | 6w m dydz + l_.i_ 8w m dydzim dx

Wy v y Xy y m ax ( Xy y ) X
1 5
+ fw m dxdz - [Bw m_dxdz + — - (ew m dxdz)m dy}
Yy X ¥ X my y ¥y x y

3
+ szmxdxmydy - [szmxdxmydy + 5 (Gwzmxdxmydy)dz]

Net diffusive flux of solute into CV: (4.5.5)
- -
Pa 26 Dn 36 1 5 [ Pnoae
- —aomdydz - |- — == mdydz + — = |- — =— m dydz|m dx
m 90X ¥y m_ox ¥y <om_ 9x \ m 3Ky x
X x X X
D [ D D ]
- EE %g mxdxdz - |- EE %g mxdxdz + %_ g; (; EE %g mxdxd%)mydy
Yy ¥y ¥y ’ y J
30 98 d 30
- Dm,EE mxdxmydy - |- Dm 5 dexmydy + Y (T Dm 3z mxdxmyd%)dz

Rate of decay of solute in CV:

~ kOm dxm dvdz
X ¥

where k 1is a first-order decay rate coefficient. As was done with
Eq. 4.5.1, cancel terms; Fake dx , dy , and dz out of the deriva-
tives and divide by the volume as it approaches zero. The result,
since the metric coefficients are independent of t and since Dm is

assumed to be constant, is
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20 1 [ a 5 5
e + o, [ i (myemx) + 5y (mxewy) + 5% (mxmyﬁwzi]
(4.5.6)
D s Ty ae 3 {®x 26 3 36
= 8. yo8d Lo | X S (mm )| - ke
m I 3x m_ 9X dy \m_ 9y oz \ x y oz
Xy X y

"When m, = my =1, Egqs. 4.5.2 and 4.5.6 reduce to the familiar three-
dimensional continuity and advective-diffusion equations in a rectangu-
1ar Cartesian system. Eq. 4.5.6 is given in the so-called conservative
form but may be simplified to the advection form by" expanding the
derivatives of products and then subtracting 6 times Eq. 4.5.2 from
"ihe left-hand side (Crowley 1968). The following operations, however,
will be performed throughout by use of the conservative form."

Eqs. 4.5.2 and 4.5.6 are the desired, general three-dimensional
equations which are written in terms of the velocity components and
concentration at a point in the flow and which include molecular diffu-

sion terms since the molecular velocities are not represented by the

continuum fluid velocities.

4.6 THREE-DIMENSIONAL TIME-AVERAGED EQUATLONS

Eqs. 4.5.2 and 4.5.6 apply for either laminar or turbulent flows
provided that, for turbulent flows, the velocity components and concen-
trations are considered as instantaneous values including the rela-
tively rapid variatioms (or fluctuations) associated with the turbulent
nature of the flow. It may be noted that if these instantaneous values
are used for turbulent flows, the balance equations do not need to have
turbulent diffusion terms. However, the instantaneous values of the
velocity usually are not known and, in many applications, the instan-
taneous concentrations are not needed. Thus, for turbulent flows, it
is common to convert the equations to omes based on time-averaged quan-
tities. In the process of performing the time averaging, turbulent

diffusion terms are introduced.
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4.6.1 Average Quantities and Temporal Fluctuations

Mathematically, the time average of any quantity ¢ is given by

7= f ¢dt (4.6.1)
t

An instantaneous value ¢ is
d=¢+ ¢' (4.6.2)

where ¢' is the instantaneous deviation of ¢ from ¢ and is fre-
quently called a turbulent fluctuation. (Compare Section 4.3.3.) "The
time interval T (Eq. 4.6.1) should be long enough to damp ocut turbu-
lent fluctuations and realistically should be defined for a specific
problem based on the scales of flow and channel geometry under
investigation."

Assume that the solute movement shown in Figure 29 is taking
place in turbulent flow. In Figure 3la and b, the concentration and
velocity distributions along the line AB at time t are shown. The
dashed lines indicate the time-averaged values of w and 8 (i.e., w
and ¢ , the values with tufbulent fluctuations ' and g°' averaged
out). These time-averaged values would be measured, for example, by
collecting a sample over a sufficiently long time interval T to
determine the concentration and by counting the rotations of a current
meter during T to determine the velocity. By looking in more detail,
it is found that at any instant the turbulent fluctuatioms cause the
concentration and velocity to be distributed as shown by the solid
lines., From instant to instant, these irregular distributions fluc—
tuate relative to the mean values indicated. The distributions to the
left of the CV in Figure 31 indicate the concentration and the x-
component of the velocity which pass through the upstream face as time

elapses. This transport can be represented by using expressions like
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a. Concentration

dz

m, dx

Pt

¢. Sequence of w and 8 passing through upstream face

Figure 31. Transport quantities in turbulent flow
(from Holley 1969)
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Eq. 4.6.2 for each of the terms in the balance equations and then

formally integrating the entire equation over the time interval T .

4.6,2 Time-Averaged Continuity of Water

"The integration of Eq. 4.5.2 over a time interval T is car-
ried out for each term by applying Leibnitz's rule (Eq. 4.3.3). Note.
that m and my are independent of time and thus are treated as
constants in the integration. For an illustration, the first term of

Eq. 4.5.2 is integrated as

t+T t+T
3 3
f = (mywx)dt = = my f tuxdt
t t
= mTa) =T @y v (4.6.3)
5 (o e my a 6.

The order of integration and differentiation can be interchanged in

Eq. 4,6.3 since t and T in the limits of integration are not func-
tions of x , the variable with respect to which the differentiation is
being done. "The other two terms of Eq. 4.5.2 may be integrated in the
manner similar to that of Eq. 4.6,.3."

"Introducing new symbols

X p.4
= 4.6.4
u, wy ( )
u =0
b4 b4
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the three~dimensional continuity...equation averaged over the time
interval T becomes independent of T " after dividing the integrated

equation by T "and is written (Chang 1971) as follows:
1 [ 3 3 ~
—_— [w» (myux) + 5; (mxuy) + =2 (mxmyuz)] =0 (4.6.5)

Eq. 4.6.5 reduces to the familiar form in a Cartesian system when m

and m are made unity."

4,6.3 Time-Averaged Mass Balance of Solute

"Integration of the first term of Eq. 4.5.6 requires the mean

theorem of integration for a continuous function (Kaplan 1953) so that

g—f: dt = 8(t4T) - 6(t) = T < (4.6.6)

"Integration of the advective terms on the left side of
Eq. 4.5.6 requires use of some of Reynolds' rules, in particular,
Eq. 4.3.7. For example, the first advection term may be integrated to

a form

t+T t+T

> o
f = (mwax)dt i my f Bmxdt
t t

= %— Em T(§ W+ G'N')]
x|y x X

where 9 and E; are the time-averaged values of concentration and

longitudinal velocity and 8' and w; are instantaneous deviations

from the averaged values. Even though ' and 6; are zero, the mean

of the product of the deviations or the covariance B'w; is not"
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necessarily zero and represents the net transport in the x direction
associated with the turbulent fluctuations of velocity and concentra—
tion. This "effect is commonly expressed in analogy to molecular
diffusion as

d —
v - _ % 98
8'y' = m_ - (4.6.8)

The symbol dx is the longitudinal turbulent diffusion coefficient
first introduced by Boussinesq (Hinze 1959). Integration of the other
two advection terms of Eq. 4.5.6 produces covariances, ETG; and BTEZ s
which are handled in the manner similar to that of Eq. 4.6.8" by intro-
ducing diffusion coefficients dy and dZ for the y and z directions.

"The newly defined turbulent diffusion terms may be combined
with the molecular diffusion terms on the right-hand side of the inte-
grated form of Eq. 4.5.6. The remaining terms on the left-hand side of
the equation are the time-derivative term (Eq. 4.6.6) and the three
terms containing ] G%, [ 6& , and 9 Ez s which may be called the
time-averaged advection terms."

Introducing the new symbol
s =0 (4.6.9)
using Eq. 4.6.4 for u = w » and dividing by T , the three-dimensional,

time~averaged, mass balance equation for the solute can be written
(Chang 1971) as
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3 ] 3
-—= 4+ ———; [5; (mysux) + §§-(mxsuy) + T (mxmysuz%

3 1%
3y m_y (dy +D ) Ty (4.6.10)

1 ] Tz ds
7 |m, d, + D) 5%

m m ax
Xy

3 05
+ 55 |:mxmy(dz + Dm) 5;] -~ ks

where it has been assumed that k is constant, i.e., Iindependent of
the turbulent fluectuations. Eq. 4.6.10 reduces to the familiar form in
a Cartesian system when m and m_ are made unity and symbols are
defined for the overall mixing coefficients, dx + Dm and dy + Dm s
since "the molecular diffusion coefficient Dm...is normally an order

of magnitude smaller than the turbulent diffusion coefficients" except
near smooth boundaries where the turbulence must go to zero.

There is no approximation, only a time averaging, involved in
obtaining the covariance terms from the advective terms of Eq. 4.5.6.
Nevertheless, assumptions are introduced by expressions such as
Eq. 4.6.8. One asgumption is that the net turbulent transport as
represented by the covariance terms can be represented by a gradient or
Fickian-diffusion-type term as shown in Eq. 4.6.8. This assumption has
"been shown to contain many theoretical deficiencies from the mechanics
of turbulence (Hinze 1959)." On the other hand, it can be substanti-
ated theoretically for some specific cases {Taylor 1921), and the use
of diffusion terms has "been empirically established as a satisfactory
working model in most natural-channel flows (Fischer 1973)." Also, "in

utilizing the three principal (scalar) diffusion coefficients for

approximation of €'w' , however, a justification is that the prineipal

axes of the diffusion tensor can be alined approximately with the three
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coordinate directions when one adopts the natural coordinate system
(Hinze 1959, Dagan 1969). If a stationary rectangular Cartesilan coor-
dinate system were used instead, it would be very difficult to satisfy
the above alinement requirement in a generally meandering nonuniform
channel, and it would thus be difficult to justify simple scalar ex-
pressions, as given in Eqs. 4.6.8 and 4.6.10. Overcoming these diffi-
culties is a major advantage of utilizing the natural coordinate system

over a Cartesian system."

4,7 TWO-DIMENSIONAL DEPTH-AVERAGED EQUATICNS

The three-dimensional time-averaged equations (Eqs. 4.6.5 and
4.6.10) apply for river flows as well as for many other types of flows.
However, 1n order to use these two equations to obtain concentration
distributions, it is necessary to know or to calculate the three wveloc-
ity components ( u uy » and uz ) as functions of x, v, 2z,
and t , i.e. throughout the length, depth, and width of the section of
river being investigated. If these velocities, the boundary configura-
tion (bed and water surface), the diffusion coefficients, and the
release conditions are known, the three-dimensional variation of s
can be calculated as a functionof x, vy, 2z, t , i.e., the result
is the temporal variation of s over the length, depth, and width of
the river. In some cases, this much detail about s may be required so
that the effort of obtaining all of the required input information may
be justified. However, in many situations in rivers, the concentration
is rather uniform aleng each individual vertical line. As a result,
there is no need to calculate the variation of s with z . The
mathematical process by which this unnecessary variation is removed is
integration or averaging of Eqs. 4.6.5 and 4.6.10 over the local flow
depth producing two-dimensional equations. Also, even though the
depth-averaging accomplishes the objectives of removing the unneeded
variation of s , 1t also removes the vertical variations of u, and

uy from the advection terms, The effects of the variations of u
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and ug > which can make a significant contribution to the transport

process, are normally included in modified diffusion terms.

4.7.1 Depth Averages and Vertical Variations

The depth-average of any quantity ¢ 1is obtained by integrating
(or averaging) the quantity over a vertical line in the flow.

Mathematically, this process is expressed as

?43:%1-.[ odz (4.7.1)

where h is the local depth, z = ZS is the water surface, 2z = ZB

is the bed so that h = ZS - ZB , and ¢ is a function of x, y ,
z , and t . The average E is a function of x, v , and t since
the variation with z has been integrated or averaged out. The value of

¢ at a point on the vertical line can be written as

o= ¢ + ¢ (46.7.2)

where now the primed quantity is a spatial (vertical) variation from
the depth-averaged quantity which is the meaning of the overbar in this
section.

Due to the boundary shear, there is normally a vertical varia-
tion of longitudinal velocity as shown in Figure 32a, which also illus-
trates the interrelationship among u_ s Gx ,» and u; .

Before looking at the depth-averaging of the transverse velocity
uy , 1t may be helpful to consider the two primary types of transverse
velocities. First consider net transverse velocities which, as illus-
trated in Figure 32b, are associated with changes in depth and velocity
distributions along the river channel. Assume that the line AA' is the
x axis along the center of the channel width and that the shape of the

cross section changes as shown in the figure. Since velocities are
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Figure 32. Vertical variations of longitudinal and transverse velocity
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generally higher in the parts of the cross section with the larger
.depths (Yotsukura and Sayre 1976), if AB divides the discharge in half
(for example) at the first cross section, then more than half of the
discharge will be to the right of A'B', indicating that there was a net
flow to the right across the plane ABB'A', giving a net uy transverse
velocity across the plane. As with u s this net transverse velocity
would, in general, have a vertical distribution as indicated by uyl
in Figure 32d. (As is seen in Section 4.7.4, it is possible to use a
coordinate transformation so that the depth-averaged transverse veloc-—
ity is eliminated from the equations.)

Next consider the secoﬁdary motion which develops in bends due
to the combined effects of the vertical distribution of u, (Fig-
ure 32a), the centrifugal forces associated with the water particles
needing to move along curved streamlines, and the centripedal pressure
forces associated with the superelevation of the water surface on the
outside of the bend. The net result is a helical secondary flow cell
which becomes superimposed on the primary longitudinal flow with the
water nearer the surface gradually migrating toward the outside of the
bend and the water nearer the bottom gradually moving toward the in-
side. Looking along the channel, there is a rotating cell as illu-
strated in Figure 32c¢. The vertical distribution of the resulting
transverse velocity 1s illustrated by uyz in Figure 32d. The depth
average of uy2 is zero since the same amount of water moves toward
the outside and toward the inside along any vertical line.

The two components (uyl and uyz) make up the total transverse

velocity uy with a depth average of Gy as depicted in Figure 32d.

4.7.2 Depth-Averaged Continuity of Water

In principle, the depth-averaging process is just the integra-
tion of each term in Eq. 4.6.5 {or Eq. 4.6,10) over the depth as indi-
cated in Eq. 4.7.1. However, the actual integration process is some-
what tedious since 2 and Z are in general functions of x , 2z ,

S B
and t so that Leibnitz' rule (Section 4.3.2) must be used rather than
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being able just to interchange orders of differentiation and integra-
tion as was done in the time averaging.

"In Eq. 4.6.5 (and Eq. 4.6.10), W, and my are independent of
z and can be treated as constants in integration. Designate values of
z at flow boundaries as Z , so that 2Z_ and ZS represent the chan-~

B

nel bed and water surface, respectively. Note that ZS and ZB are

functions of x, y , and t , whereas 2z 1is an independent variable.
Each term of Eq. 4.6.5 is now integrated with respect to z from ZB

to ZS " and then Leibnitz's rule (Section 4.3.2) is applied to obtain

2 (1) (4)
Z 8z 3z
s 3 Ly fs ] bz ;
{ = (myux) dz = — zf myuxdz myuxIZS el ‘“y“xlz e (4.7.3)
B B B
(2) (5)
z Z 3z 9z
s 3 3 fs ) %5 B
{ oy (mxuy) dz 5y _zf mxuydz mxuylzs 3y + mxuylZ 35 (4.7.4)
B B B
(3 (6)
ZS ]
{ T (mxmyuz) dz = m o, zg - mxmyuziz (4.7.5)
B B

The integrals on the right-hand sides of Eq. 4.7.3 and 4.7.4 are
the desired terms. Fortunately, the other (numbered) terms in the
three equations can be eliminated by using the kinematical boundary
conditions at the surface and bed. This boundary condition is fre-
quently stated as the requirement that water particles at the free sur-
face remain there, with a similar condition applying at the bed. At
first glance, this mathematical statement seems inconsistent with what
can be readily observed at the water surface in a turbulent flow,
namely that there are boils or turbulent eddies which continuously
bring some water particles to the surface and carry others downward

away from the surface. However, it must be recalled that the effects
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of turbulence, including these boils or eddies just mentioned, have
been averaged out (Section 4.6) so that they need not be considered in
dealing with Eqs. 4.6.5, 4.7.3, and 4.7.4, and 4.,7.5. (The effects are
in the turbulent diffusion terms in Eq. 4.6.10.) Thus, it is in a
time-averaging sense that a water particle must stay at the surface (or
the bed). Another way of stating this boundary condition is that, in
the absence of evaporation, precipitation, and influx or efflux seepage
across the bed, the time-averaged velocity at each boundary must be

tangent to the boundary. The incremental change in Z, for arbitrary

s
dt , dx , and dz is
3z 3z 3Z
dz, = _S dt + L8 m_dx + 1_S5 m_dy (4.7.6)
5 at m X X my y 'y

since ZS = Zs(x,y,t) . In order to apply Eq. 4.7.6 to the motion of a
fluid particle, select mxdx and mydy as the displacements asso-

ciated with the time-averaged velocities during dt so that

m dx = u_dt
X b'4
(4.7.7)
m dy = u_dt
y 7 y

Substitution into Eq. 4.7.6 and division by dt as dt approaches
zero gives the derivative dZS/dt , which is the time rate of change of

the vertical position or simply u, » 8o that from Eq. 4.7.6,

3Z
le = BtS +
S

9Z

s, 9Zg
ax

B_y_ (4.7.8)

B IN.:

el ¥

»

"™ultiplying Eq. 4.7.8 by mxmy , the sum of the terms 1, 2, and 3 in
Eqs. 4.7.3, 4.7.4, and 4.7.5 is equal to LW m.y azS/at . A gimilar

boundary equation can be derived at the bed, and the sum of the terms
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4, 5, and 6 can be shown to be equal to -mmeBZB/Bt . The depth-—
integrated form of Eq. 4.6.5 thus reduces to

3(2Z

z z -Z)
1 |3 S P 5 s~ “p’ |
el e J myuzdz + 3y I mxuydz + mxmy"—-ﬁi_____] =0 (4.7.9)
Xy ZB ZB

Introducing the new notation
(4.7.10)

and using h = ZS - ZB s the depth-averaged continuity equation for the
water becomes
dh + 1

at m m
Xy

[%; (myhvx) + %; (mxhvy)] =0 (4.7.11)

4.7.3 Depth-Averaged Mass Balance of Solute

Integration of the left-hand side of Eq. 4.6.10 is similar to
the integration of Eq. 4.6.5 as just presented in Section 4.7.2 except
that each of the velocities in Eqs. 4.7.2-4,7.5 is multiplied by s .
Similarly, Eq. 4.7.8 (or the equivalent expression at ZB ) can be mul-
tiplied by s at ZS (or ZB ) to allow elimination of several "terms
arising from application of Leibnitz's rule, so that the depth-
integrated left side of Eq. 4.6.10 is

z Z A
5T _zf sdz + — I5x my ‘zf suxdz 5y L .Zf suy z ( )
B y B B
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"Integration of the right side of Eq. 4.6.10 requires use of
another boundary condition" related to any flux of the solute "across
the water surface and the bed." Since evaporation, precipitation, and
seepage were assumed to be zero in the previous section, there can be
only sorptive-type transport of the solute across the boundary with no
advective transport across the boundaries, in this derivation. 1In gen-
eral, advective transport can also be included (Holley and Yotsukura
1979). Let ch be an increment of water surface area having a hori-
zontal projection {on the x-y plane) of dAH , Where dAH = mxmydxdy .

The unit normal outward vector at the water surface is

=4
[}
AT~
Blr-'
wl a»
™~
%)
[ ok 4
]
EI'-'
q:i ar
~
)
Ly
+
L d
e
]
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where 1, i, k are the unit vectors in the respective coordinate

directions. A similar equation with opposite signs in the first term
on the right-hand side of Eq. 4.7.13 would give the unit normal outward
vector at the bed. Also, let f be the unit diffusive flux vector:

z dx + D 9s T d, + Dm s T dg >
f=-X mosy F_ WY _(d+D) —k (4.7.14)
m ax my Iy £ m 9z

Application of Leibnitz's rule in the depth integration of the right-
hand side of Eq. 4.6.10 gives two terms with integrals over the depth
plus three terms at the surface and a similar three terms at the bed.

The sum of these six terms is equal to
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do do
> S > B _
- (%'H)ZB q - (F‘H)ZB W = - fS - fB (4.7.15)

where dUB is an increment of bed area having a horizontal projection
of dAH +» In the first term in Eq. 4.7.15, fon dUS is the normal
diffusive flux for a water surface area of do_ . Having dAH in the

denominator gives the flux per unit of horizongal area and makes the
terms in Eq. 4.7.15 consistent with the terms in Eq. 4.7.12 and with
other depth-averaged equations to follow. The final equations in See-
tions 4.5 and 4.6 were obtained after dividing by an incremental volume
(mxdxmydydz); in this section, the equations from Section 4.6 have been
multiplied by dz and integrated over the depth, meaning that the
resulting terms have still effectively been divided by mxdxmydy and
thus represent the various physical processes per unit of horizontal
area. As indicated in Eq. 4.7.15, this flux at the surface is given

the symbol f The second term (without the negative sign) in

Eq. 4.7.15 issa similar downward diffusive flux at the bed. If there
are no sorptive transfers at the boundaries, then fS and fB must be
zero. If there are sorptive transfers, then conservation of mass at
the boundaries requires that fs {or fB ) be equal to the outward
flux or efflux per unit area of the horizontal projection of the water
surface (or bed). With these definitions, the depth~integration of the

right-hand side of Eq. 4.6.10 gives

m Z m_Z
L S22 S an) B+ | X S 4y 2,
mm 9x|m b4 m’ 9x 9y | m y m’ dy
Xy xZB yZB

(4.7.16)

Es
-f -f_ - f° ksdz
s B
Zg
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"Before equating [Eqs.] 4.7.12 and 4,7.16 for the depth-
integrated advection-diffusion equation, integrals in [Eq.] 4.7.12,
such as fsuxdy , will be considered further. In this section, over-
lined and prime notations pertain only to depth averaging (Eq. 4.7.1).
The function ¢(x,y,z,t) 1is the sum of % (x,z,t) and ¢'(x,y,z,t) ,
where ¢' 1is a local deviation from the depth averaged ¢ .

"The integral in the second term of [Eq.] 4.7.12 may be written"
using one of Reynolds' Rules (Eq. 4.3.7) as

f sudz = h Ssu =h su +s'u (4.7.17)

"Note that the part of Eq. 4.7.17 in parentheses is analogous to
the last parenthesized part of Eq. 4.6.7. The difference is that
Eq. 4.7.17 refers to depth averaging, whereas Eq. 4.6.7 refers to time
averaging. It is due to Taylor's (1954) longitudinal dispersion theory

that this spatial covariance term s'u; , may also be equated to a

gradient-type flux form

Stu|=_£c.§§ {(4.7.18)
m Ix o

which is analogous to Eq. 4.6.8. The symbol kX [which has no rela-
tion to a first-order reaction rate coefficient] is the longitudinal
advective~dispersion coefficient introduced by the depthwise variation
of u, [Figure 32a] and s . The other covariance ETG; from
[Eq.] 4.7.12" with u; shown in Figure 32d "may be handled in the
manner similar to that of Eq. 4.7.18."

"Fhe first integral of [Eq.] 4.7.16 may be written as
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ZS as LK

{ (dx+Dm)*§-§dz=h(dx+Dm)a—x

B

(4.7.19)

- H
=h ((dx oy B a %ﬁ-)
The covariance term {[the last term in the parentheses] is usually
related to the product-of-averages term [the first term in the paren-
theses], but small relative to it, so that it is conveniently absorbed
into the first term. Similar approximations will be applied to the
second term of [Eq.} 4.7.16."

The depth-averaged advective-diffusion equation is obtained by
equating Eqs. 4.7.12 and 4.7.16, substituting approximating expres-—
sions, such as Eqs. 4,7.18 and 4.7.19, and moving all diffusive flux
terms to the right-hand side of the equation, so that

8 =y .18, == 3 -
ot (hs) + [ (myhuxs) + 3y (mxhuys)J

m m ox
Xy
m -
=L 03 [ Yy +3 +p) 28 (4.7.20)
m.xm.y ax mx X X m’ 93X

m —
X = 98 -
+ [;y’ h(ky + dy + Dm) ay] - fs - fB - khs

2

where it has been assumed that k is independent of 2z so that the

last term in Eq. 4.7.16 equals khs . Introducing the new notation
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e = kx +d_+D (4.7.21)

where e and ey are the overall mixing coefficients in the respec-
tive coordinate directions, the two-dimensional advective-diffusion

equation is finally written (Yotsukura and Sayre 1976) as follows:

3 1 s d i
3T (hc) + E;E; [§§ (myhvxc) + 3; (mkhvyc)
m m
el | e B0} 4@ [ Xy, 26 (4.7.22)
m m 3x \m X 9% gy \m y oy
Xy X ¥y i

- fS - fB = khe

"In going from the three-dimensional Eqs. 4.6.5 and 4.6.10 to
the two-dimensional Eqs. 4.7.11 and 4.7.22, no assumptions were intro-
duced except for those related to spatial covariance terms, such as
Eqs. 4.7.18 and 4.7.19. One must remember that the advective-
dispersion coefficient, as defined by Eq. 4.7.18, is an asymptotic
approximation and thus applies only when the solute coﬁcentration is
well distributed over the depth of flow (Fischer 1973). For a steady
uniform flow, Taylor's longitudinal dispersion theory has been verified
by Aris (1956), Elder (1959), Fischer (1966b), and Sayre {1967), among
many others. Note that the mixing coefficient e is the sum of the
advective-dispersion coefficient k , the depth-averaged turbulent dif-
fusion coefficient d , and the molecular diffusion coefficient Dm ’

where k >> d >> Dm , and also implicitly includes any net transport
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assoclated with covariance terms such as the last term in the paren-
theses in Eq. 4.7.19,

4,7.4 Stream-Tube Model

By virtue of the depth averaging, Eqs. 4.7.11 and 4.7.22 do not
contain vertical variations but they do still contain a transverse
velocity term (vy). This term causes considerable difficulties when
seeking to obtain either approximate analytical solutions or numerical
solutions for concentratlon distributions. As discussed by Yotsukura
and Sayre (1976, 1977), there are at least two ways of eliminating the
vy term. The following derivations follow the general procedures of
Yotsukura and Sayre but combine points from the original paper (1976)
and the reply to comments on the paper (1977).

Rewrite the depth-averaged mass balance equation (Eq. 4.7.22) by
expanding the derivatives of products on the left-hand side, so that
the left-hand side becomes

de + c oh +-—~l—- [c %— (m hv ) + m_hv gc
X Ty X ¥y X

h at ot mm 3%
Xy

(4.7.25)

] dc
+ c 5; (mxhvy) + mxhvy 5; }

Then the continuity equation (Eq. 4.7.11) multiplied by ¢ can be used
to cancel three terms in Eq, 4.7.25, If the longitudinal diffusion

term can be neglected, Eq. 4.7.22 can be written as

5 hv 5 hv 3 1 3 L e
x y 7 Iy y
- fS - fB ~ khe

For steady river flow, oh/3t = 0 . Then the continuity equation

(Eq. 4.7.11) can be written as
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] d
F (myhvx) + 3y (mxhvy) = 0 (4.7.27)

One way of eliminating the vy term is to choose a coordinate
system aligned with the depth-averaged streamlines so that vy = 0
(Fischer 1966b, Chang 1971, Sayre and Yeh 1973). However, Yotsukura
and Sayre (1976, 1977) preferred using a coordinate transformation
which allows vy to be eliminated by introducing the cumulative

discharge

Y
q ——»fmyhvxdy (4.7.28)
YL

~ The cumulative discharge is the amount of discharge between the left
bhank (YL) and any transverse position denoted by the value of y in
the upper limit of the integral. The coordinate transformation can be
accomplished by integrating Eq. 4.7.27 with respect to y from YL to
y to obtain

y

- 9 __ 9%

mxhvy = -3 fmyhvxdy = -5 {(4,7.29)
I

The derivation of Eq. 4.7.29 makes use of Leibnitz's rule, the fact
that y and x are independent so that 3y/8x = 0 , and the equiva-

lent of Eq. 4.8.9 for Y, and for steady flow. (Yotsukura and Sayre

L

assumed the special case of Ve = vy =0 at Y but the use of

L L
Eq. 4.8.9 produces the same result with less restrictive assumptions.)

Substitute Eq. 4.7.29 into Eq. 4.7.26 to obtain
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d9¢ Vi dc 1
at + m ax

=]
=]
b4y
|

1 o /% e
" nm Ay \m %y 3y
Xy Xy y

(4.7.30)

fS - fB - khe

Using Eq. 4.3.10 with a

b2 =q , b3 =t , the derivatives in Eq. 4.7.30 can be written as

1% 3,7y, ay = t , and b1 =X,

dc _ 3¢ 9x | 3dc 9q + de 9t _ dc
dt 9x 9t 9dq 8t It 3t It

Je _ e 3 43¢ 3q 3¢ Bt Bc m_hv S (4.7.31)
Ix ax Xy

dc _ d¢ 8x + 3¢ 3q + dc It
dy dx dy 3q dy 9t Oy

This derviation assumes that longitudinal distances along the original
coordinate system and the streamline coordinate system are identical;

in general, this may not be exactly correct. By virtue of Eq.4.7.31,

9 mx 3(_', 3 mx ac
— = he =—=]= 3= = he_ 5o
3ymy y 9y yxaqmy y 9y

m
=nhv | = e (mhv %-‘3 (4.7.32)
y x93 |m_ ~y\y x 9q

I
=
=
<

[}
=)
g
IQJ
=]
=4
N
=]
[}
I8
S

Substituting Eqs. 4.7.29, 4.7.31, and 4.7.32 into Eq. 4.7.30 and then
dividing by h gives

v f f
§£+_>53£=_3£2_(mxh2ve EE)-._S.__.E-kc (4.7.33)



This is the general (assuming that the effects of e are negligible),
depth-averaged stream-tube equation which derives its name from the
fact that constant values of ¢q represent depth-averaged streamlines
or lines which, for all x values, have a certain, constant fractiom
of the total discharge to the left of them and the remainder to the
right. Also, 9, - q; or Aq represents a stream tube containing a
certain fraction of the total discharge. In a sense, vy disappears
in the derivation of Eq. 4.7.33 because there is no flow across stream-
lines which are now used as part of the coordinate system.

Yotsukura and Sayre (1976) originally presented an expression
for a steady-state concentration distribution for a conservative

solute., For these conditions, Eq. 4.7.33 becomes

dc 3 2 ¢
-5; = a—q (mxh vxey 3-2!-) (4.7.34)

4.8 ONE-DIMENSIONAL AREA-AVERAGED EQUATIONS

The depth-averaged two-dimensional (2D) equations which are pre-
sented in Section 4.7 apply to rivers regardless of the type of pollu-
tant release and should be used for a large majority of prediction
problems, if possible. However, the 2D approach requires information
on the transverse varilation of depth and of depth—-averaged velocities.
Historically, one-dimensional (1D) approaches have been used for many
problems where they really were not appropriate. Nevertheless, because
of this historical interest in 1D approaches and because occasionally
1D approaches are either justified physically or required for quick
approximations, the derivation of.the 1D equations is presented in this

section.

4.,8.1 Area Averages and Cross-Sectional Variations

The area average of any quantity is obtained by integrating {or
averaging) the quantity over the cross-sectional area of the flow.
This is a double integrafion which may be accomplished by first inte-
grating over the depth and then integrating the result over the width.
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Since the depth integration has already been done in Section 4.7, the
results of that section can now be integrated over the channel width to
obtain area-averaged equations. Mathematically, this integration over

the width can be expressed as

Ir
f ¢hmydy (4.8.1)

where h 1is the local depth, y =Y,  is the left edge of the water

L
surface, y = YR is the right edge, and A is the cross-sectional
area given by
YR
A= f bm, dy : (4.8.2)
YL

The cross-sectional average $ is a function of x and t . The
value of ¢ at any transverse point in the cross section can be

written as

=0+ ¢ (4.8.3)

where the overbar indicates an area-average value in this section and
the primed quantity is a spatial (transverse) variation from the area-
average,

Many aspects of the integration are very similar to the depth-
averaging in Section 4.7 and thus are presented somewhat more briefly
here. However, there is one distinct difference that arises from the
way in which the integrations are done. Recall that it was mentioned
that each of the terms in Eqs. 4.7,11 and 4.7.22 could be interpreted

as representing various physical processes or quantities per unit of
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horizontal area (dAH) of the river. Since, at an arbitrary point in
the river, the incremental longitudinal and transverse distances are
respectively mxdx and mydy , then dAH = mxmydxdy . Because of the
forms of Eq. 4.7.11 and 4.7.22, it is convenient to multiply by mxmydy
and then perform the integration across the channel width rather than
multiplying by just mydy before integration, Most of the terms in
the resulting 1D equation involve some type of width-average of m to
account for the fact that the actual amount of the physical process
which is present at each point depends on the local length (mxdx) along
the channel while the terms being integrated represent the various
processes per unit length (dx) along the x axis (Figure 27) by virtue
of the multiplication by mxmydy before integration.

In Sectionm 4.7.1, there is a brief discussion of the reasons for
the existence of transverse velocities and the vertical variations of
longitudinal and transverse velocities. In addition to those vertical
variations, transverse variations of the various physical quantities
are illustrated in Figure 32. For example, typical isovels of longi-
tudinal velocity are shown in Figure 33a, along with a transverse

distribution of longitudinal velocity (Figure 33b).

DEPTH AVERAGE TO
OBTAIN vy

ux ISOVELS
{ARBITRARY UNITS)

a. Cross-sectional variation

N \

b. Transverse variation of depth-averaged velocity

Figure 33. Transverse varilation of depth-averaged velocity
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4.8.2 Area-Averaged Continuity of Water

Eq. 4.7.11 is first multiplied by mxmydy and then integrated

with respect to y from Y. to YR . The integration of the three

L
terms in Eq. 4.7.11 gives
R Y
fmf—llmd=§-f bm_d hy | 'y o,
y 3¢ By pre n m dy - (mxmy )) Y, i (mxmyh)IYL T (4.8.4)
YL YL
Y Y.
R R
f 2 3 Mg i
= (mzhvx) dz = " f mzhvxdz - (mzhvx)YR e + (mzhvx)YL T (4.8.5)
YL YL
YR
3
= h dy = . -
f e (1!1x vy) y + (mxhvy)YR (mxhvy)YL (4.8.6)
Y
L

In some cases, the depth and velocity are both zero at YR and YL 80

that the six terms to be evaluated at YR and YL in Egs. 4.8.4-4.8.6
would be zero. However, in a more general case, with the depth and
possibly the velocity being (mathematically) non-zero at the water's
edge, there are conditions at the water's edge equivalent to those dis-
cussed in conjunction with Eqs. 4.7.6-4.7.8 for the surface and bed.

In order for the depth-averaged flow to follow a (possibly) moving

boundary at the water's edge, it is required that

aY 3

- R 1
dYp = 5= dt + =

Y
x R b dx (4.8.7)
X

9x x

since YR = YR(x,t) . Select mxdx in Eq. 4.8.7 such that

mxdx = vxdt (4.8.8)

139



Then, as in Eq. 4.7.8 since mdeR/dt = vy at Y

v | 5Y

_.X = .——.—R—+
m Y ot L
Y 'r

BYR

x

B |b<<:

(4.8.9)

Multiplication by mxmyh at YR allows cancellation of three of the
terms in Eqs. 4.8.4-4,8.6, while the same procedure at YL allows can~
cellation of three more terms, leaving the area-averaged continuity

equation as

,YR YR
9 ] _
ﬁ_[‘ mthydy + ™ f hvxmydy =0 (4.8.10)
YL YL

for situations with no seepage, precipitation, or other flow of water
across the channel bed or water surface. Let the average value of m

be defined by

YR
f mthydy = mxA (4.8.11)
YL
and let
V=yv
X
(4.8.12)
M=m
X

Then after assuming that M 1is independent of t and dividing by M,
Eq. 4.8.10 becomes
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2|
+

= 0 (4.8.13)

o4 L
Q2
Y

4.8.3 Area-Averaged Mass Balance of Solute

Integration of the left-hand side of Eq. 4.7.22 is similar to
the integration of Eq. 4.7.11 just presented in Section 4.8.2 except
that each h 1in Eqs. 4.8.4-4.8.6 is multiplied by c . To perform the
integration, multiply each term in the equation by mxmydy and then
integrate from YL to YR . Eq. 4.8.9 (or the equivalent at YL ) can
be multiplied by mxhc at YR (or YL ) to allow elimination of
several terms arising from the application of Leibnitz's rule, so that
the width-integrated left side of Eq. 4.7.22 becomes

L

YR YR
g—t f cmthydy + g-; f cvthydy (4.8.14)
YL

Integration of the right side of Eq. 4.7.22 requires another
boundary condition similar to Egs. 4.7.13-4.7.15. As before, if h
goes to zero at YR and YL » then several of the terms arising from
application of Leibnitz's rule are equal to zero since they contain h
at YR and YL . For other, more general cases, let dA be an incre-
ment of length along the water's edge with mxdx being the length of
the projection of dA on a longitudinal coordinates surface (Sec-
tion 4.4) at the water's edge. Then, the normal unit outward vector at

YR is
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where i and j are the unit vectors along the respective coordinate

(4.8.15)

1]
o
LIV

surfaces. A similar expression with opposite signs in the first term
on the RHS of Eq. 4.8.15 would give the unit normal outward vector at

YL . Also, let f be the depth-averaged unit diffusive flux vector:

-
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(4.8.16)
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Application of Leibnitz's rule to the width integration of the right-
hand side of Eq. 4.7.22 after it has been multiplied by mxmydy gives,
among other terms, two terms evaluated at YR and two similar terms at

Y. . The sum of these four terms is equal to

L
> 1 dA > et 1 d
-t « Dy (m— ax) T by (m— az)
L\'x Y R \'x Y

{(4.8.17)
= ~{(m_hf) - (m_hf)
X YL X YR

where, to be consistent with the other terms In the width-integrated
mass balance equation, f in Eq. 4.8.17 is defined as the boundary
efflux per unit of vertical area so that hf is the efflux per unit of
length along the x axis, and m is therefore needed on the right-hand
side of Eq. 4.8.17 to give the correct flux per unit of length at the
boundaries. The integrated right-hand side of Eq. 4.7.22 then becomes
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3 : T_z dc
= - hex e dy - (mth)Y - (mth)Y
¥ X L R
L
(4.8.18)
YR
- f (fS + fg+ khe) mxmydy
YL

Before equating Eqs. 4.8.14 and 4.8.18 for the width-integrated,
1D, advective~diffusion equation, some of the integrals need to be con-

sidered further.
"The integral in the first term of [Eq.]) 4.8.14 may be written

as

YR

f cmhmdy =Aem. = Acm + c'm' (4.8.19)
Xy x X X

YL

The covariance term i.e. ETEE is a peculiar term resulting from the
use of the natural coordinate system (as noted in Section 4.8.1). The
term will be kept in the present form for later comments.

"The integral in the second term of [Eq.] 4.8.14 is written as

f cvthydy =Acv_=Acv +c0'v (4.8.20)

The covarilance term of Eq. 4.8.20 is analogous to [similar terms in]
Eqs. 4,6.7 and 4.7.17. 1In extending Taylor's longitudinal dispersion
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theory to natural streams, Fischer (1966) showed that "under rather
restrictive conditions as presented in Section 6.3" this covariance can
also be expressed in a gradient-type flux form. In the natural coordi-

nate system, the flux form may be written as

v . _ x BC (4.8.21)
I_n ax e
x

which is analogous to Egs. 4.6.8 and 4.7.18., The symbol Kx is the
longitudinal advective-dispersion coefficient induced by the widthwise
variation of Yy and ¢ .

"The integral in [Eq.] 4.8.18 is written as

? |
3

Qr

Y .
R — Y ]
®x 3 ®x dc ®xY 3¢ ®x dc
f hmdy = A — —=All— = |+{— |\ " (4.8.22)
Xy m_ 9x m_ J\9x m ax
X X p'4 X
L

In order to express (dc¢/9x) in terms of dc/dx , apply

Leibnitz's rule again to obtain

= p b 3(hm_)
L f e, 1|  2m)
il f e hmydy =% f [B_x (chmy) -t = :l dy
L o)
(4.8.23)
YR
- Y 3y 9 (hm )
_sc 1 R, 1 L1
5 7 (chm))y ==+ 2 (chmy)Y el f ¢ —gz— dy
YL

With presently used analyses, it is not necessary to try to evaluate

the covariance term (the last term in the brackets) in Eq. 4.8.22 and
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the last three terms in the final form of Eq. 4.8.23 because the net
contribution of all of these terms is probably small compared to the
first term in the brackets in Eq. 4.8.22, which in turn normally pro-
vides a small contribution to the total longitudinal mixing when com-
pared to the mixing mechanisms represented in Eq. 4.8.21. (Also, if
all of the terms in Eqs. 4.8.22 and 4.8.23 had to be evaluated, there
would be little benefit in using a 1D representation.)

The last terms in Eq. 4.8.18 may be integrated as follows, where
it is assumed that k is not a function of y :

YR YR ; .

- S, 3
f (fS + £y 4+ khe) mxmydy = f m (h =+ kc) hmydy
3 )

m fs m fy -
=\ )+ =~=}+kme [A (4.8.24)
m fS m.xfB -
SN ) Y + Am ke + Ak m'o’
h h X X

Recall that fS and fB are fluxes at the free surface and bed per

unit of horizontal area. Thus, f/h 1is a flux per unit of volume in

the vertical water column where the flux f is taking place. In the

averages of fS and f_ , m is retained to give the correct hori-

B
zontal area per unit of transverse length (mydy).
From Eqs, 4.8.14 and 4.8.17, the width-integrated form of

Eq. 4.7.24 may be written as
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1 () Y x | [9¢c
A f ¢ Tox dy + (m )(Bx) (4.8.25)
v x
L

Ak m'c'
X

the definition of V and M in Eq. 4.8.12 and let

(4.8.26)

It is normally implicitly assumed, since the terms marked with an

asterisk (*) in Eq. 4.8.25 apparently contribute very little to the

transport process, that any influence of the terms can just be included

in E as a mixing coefficient. Then, since M is independent of ¢t ,

Eq. 4.8.25 can be written as
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X S X B ; _A -
- A[( 4 ) +( T ) + kc] T ke m_ (4.8.27)

- F]& [(mth)Y + (mth)YR]

L

Writing fS and f_, in Eq. 4.8.27 in terms of cross~sectional

B
averages to be consistent with the other terms may tend to obscure the

physical meaning of the terms, for example,

(mxfB 1 ‘,‘ mxfB
A\5—) =43 S hmydy| = f m, £gm dy (4.8.28)

so that this term represents the bottom efflux per unit of channel

length (dx), while the f_, , {(m hf) » and (m hf) terms are simi-
S p:4 YL X YR
lar terms at the surface, left edge, and right edge, so that the sum of

these four terms, which is called F , is the total efflux per unit of
channel length (dx):

= s meiB\|. 1
F=A h ) + (-h— + P_I [(mth)Y + (m hf)Y :] (4.8.29)
- L R

With this definition, Eq. 4.8.27 may be written as
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(4.8.30)

- F - AkC - A ke'm !
M X

"In going from the depth-averaged Eqs. 4.7.1l1 and 4.7.22 to the
cross-section-averaged Eqs. 4.8.13 and 4.8.30 no assumptions were intro-
duced except for those related to the spatial covariance terms, such as
in Eqs. 4.8.21" and the terms marked by an asterisk in Eq. 4.8.25. "As
was the case with kx s the advective dispersion coefficient, Kx ’
induced by the widthwise variation of Ve and ¢ , is an asymptotic
approximation." Thus, its application assumes that the solute concen~
tration is well distributed over the chamnel width (Fischer 1973). The
overall mixing coefficient, E , as defined by Eq. 4.8.26 is more com-
plicated than that for a rectangular Cartesian coordinate system, which
may be obtained by letting M = m = 1 in Eq. 4.8.26, Nevertheless,
Eq. 4.8.26 clearly shows that contributions to the mixing coefficient
are additive if ome recalls that e, {the two-dimensional mixing
coefficient) is the sum of the advective dispersion coefficient (kx)
induced by depth integration, a depth-averaged value of the turbulent
diffusion coefficient (dx)’ and the constant molecular diffusion
coefficient (Dm). According to Fischer's (1966) study and other stud-
ies, the contribution of Kx to E is by far the most significant of
all the contributions., Fischer's theory, as an extension of Taylor's,
has been satisfactorily verified in a steady uniform open-channel flow.

The covariance terms involving m; "in Eq. 4.8.30 are terms
unique to the natural coordinate system, since they will be zero in a
rectangular Cartesian system, wherein m; = 0 . Note that m; is
determined predominantly by the geometry of the coordinate system,
whereas c¢ 1is dependent on the widthwise distribution of solute con-
centration,” and f' , as a surface flux, in many cases might be pro-

portional to c¢' . In a sharp bend, m; might be large enough to cause
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a small contribution from the m}i{ci terms, but even that is doubtful

since one of the conditions for using a one-dimensional advective-
dispersion coefficient (E), as mentioned above, is that the concentra-
tion distribution be well mixed transversely. This means that in order

f

to use a 1D equation, c¢' must be small. Thus, for most cases, the

covariance terms involving m' and c¢' or £f' are probably insignif-
icant. If these terms are neglected and M is assumed to be approxi-

mately unity, Eq. 4.8.30 may be written as

d aC F
- (AE -5-}-{-) ol e kC (4.8.31)

after using C times Eq. 4.8.13 to eliminate some of the terms which
result from expanding the derivatives on the left-hand side of
Eq. 4.8.30.

4.9 FURTHER COMMENTS

"As outlined in the introduction, merits of the transport equa-
tions derived herein are drawn mostly from analytical considerationms.
By use of the natural coordinate system, one can define a stationary
coordinate system for an entire flow field, in which the channel axis
meanders and the width and depth vary from point to point. As no
assumptions are introduced in the derivation process except those
related to covariance terms between solute concentration and advective
velocities, the transport equations thus derived apply to unsteady or
nonuniform natural channel flows with moving boundaries.

"On the other hand, in order to apply gradient-type diffusive
flux models to various covariance terms, solute concentration must be
well distributed over the depth and [or] the channel width. Another
restriction is that, because of the present configuration of the natu-
ral coordinate system, the predominant flow direction must be horizon-
tal." This restriction is not a severe one for many rivers.

"Gradient-type diffusive flux models were introduced into the

advection~diffusion equations with only cursory references to the
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mechanics of turbulent flows. Understanding the mechanics, however, is
an essential prerequisite to applying the equations properly to a real
turbulent flow. The reader is referred to Fischer's (1973) comprehen-
give review of the mechanics of mixing. [See also Fischer et al.
1979.] Briefly, the gradient-type flux models for dispersion and dif-
fusion have been verified as asymptotic approximatioms only in a steady
uniform flow. Their applicability in an unsteady flow is less certain
theoretically and experimentally. The advective-diffusion equations

' where the

are workable models in most natural rivers and estuaries,'
magnitude of the turbulent velocity fluctuations is small relative to
the longitudinal veloeity.

"Transport equations in the natural coordinate system have two
additional parameters, m, and 1:n.y , compared with those in a rectan-
gular Cartesian coordinate system. Significance of these parameters
beyond their analytical utility 1s not well known currently." At the
very least, the inclusion of these metric coefficients shows the level
of approximation involved when a meandering x,y,z system is superim-
posed on a river and m and m are assumed to be unity. "Sayre and
Yeh (1973) found that the range of m is from 0,84 to 1.14 for the
Aspinwall Bend in the Missouri River near Cooper Nuclear Statlon, which
probably represents one of the sharpest bends in a large river. It is
thus apparent that, for one-dimensional equations, the metric coeffi-
cient, M , will tend to unity if one locates the x axis in the central
part of a channel as Sayre and Yeh did in their Missouri study.

"Despite some uncertainties and limitations arising from the
current knowledge on the mechanics of turbulent mixing, Egs. 4.6.5 and
4.6.10 for three (space) dimensions, Eqs. 4.7.11 and 4.7.22 (or
Eq. 4.7.33 or 4.7.34) for two dimensions, and Egs. 4.8.13 and 4.8.30
for one dimension represent one of the most workable sets of equations
for solute transport by turbulent flow in a natural channmel,"

(The passages in quotations in Chapter 4 were taken from

Yotsukura (1977); see Section 4.1.3.)
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CHAPTER 5. CALCULATED CHARACTERISTICS OF STEADY-STATE
CONCENTRATION DISTRIBUTIONS

5.1 STEADY-STATE DISTRIBUTIONS

Concentration distributions in a river may be approximated as
being steady-state distributions if the river flow, the upstream con-
centration distribution (e.g. from an effluent discharge or tributary
inflow), and the rate coefficients for any distributed sources and
sinks (e.g. reaction, production, surface transfer, etc.) are approxi-
mately constant. For such steady-state situations, the longitudinal
concentration gradients in rivers are frequently small enough that the
effects of longitudinal mixing (which is proportional to the concentra-
tion gradient times a mixing coefficient, Egs. 4.5.3, 4.7.18, and other
similar expressions in Chapter 4) are negligible compared to the other
processes influencing the concentration distributions.

In this chapter, concentration distributions are given for typi-
cal 3D, 2D, and 1D steady-state situations. There are many situations
for which concentration distributions could be calculated; only a few
examples are illustrated. Also, in this chapter only calculated re-
sults are presented; comparisons of data and calculations are presented
in Chapter 7. In discussing the solutions, the terms "point source"
and "line source" are used to refer to the mathematical representation
of effluent discharge conditions at the upstream end of the reach,
while the term "distributed sources or sinks” refers to the reactions,
decay, surface transfer, etc., that take place within the reach.

Most of the calculated distributions are given in terms of
dimensionless variables since these variables allow the general charaé—
teristics of the distributions to be demonstrated and discussed without
needing to use specific hydraulic characteristics (depth, velocity,
etc.). These dimensionless variables also form the basis for comparing
measured concentration distributions from different rivers with each
other and for interpreting the calculated distributions for specific
situations. It is highly desirable to become accustomed to thinking in

terms of the dimensionless variables when considering questions such as
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the relative shapes of the concentration distributions, degree of mix-
ing, etc., for transport problems in rivers.

Various dimensionless variables are introduced as needed for the
calculations. However, there is one variable (called the dimensionless
longitudinal distance) that occurs with so much regularity that it
deserves speclal mention. This variable relates the time for which
transport has been taking place (the flow time, x/V , from the point
of release to the cross section of interest) to a characteristic time
(tc) for mixing. The characteristic time (tc) is defined as the time
required for a given amount of mixing to take place. The time for the
mixing process to transport mass over a distance L is proportional to
the distance squared (if the mixing coefficient is constant); in a sim-
ple diffusion problem, four times as much time is needed for the mixing
process to increase the width of a concentration distribution to 2L
as to increase it to L . For example, consider a steady-state release
into steady, uniform flow in a rectangular channel. Four times as much
time is needed for mass to mix across the full channel width as for it
to mix across half of the width. Thus, if mass released at the center
of the channel reaches the banks in a time t, s then mass released at
one edge of the channel requires 4t1 to mix across to the far side.
The same type of comparison can be made for the concentration distribu-
tions for the two release conditions to reach any specified degree of
uniformity, not only for the time for mixing to carry mass to the edge
of the channel. Similarly, for a 1D longitudinal mixing process which

can be described with a dispersion coefficient, if t, is required for

the length of the distribution to increase from zero it the release
point to some specified length, then 4t2 is required for the length
to increase to twice that amount. Furthermore, the time for a given
degree of mixing to take place is inversely proportional to the mixing
coefficlent, as would be expected from the fact that the rate of mass
transport in a diffusive-type process is proportional to the mixing
coefficient (Eqs. 4.5.3, 4.5.4, and other similar equations in
Chapter 4). Thus, if L 1is defined as a significant distance for the

mixing process in a given problem and D 1s the mixing coefficient,
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effects of longitudinal mixing (which is proportional to the concentra-
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similar expressions in Chapter 4) are negligible compared to the other
processes influencing the concentration distributions.

In this chapter, concentration distributions are given for typi-
cal 3D, 2D, and 1D steady-state situations. There are many situations
for which concentration distributions could be calculated; only a few
examples are illustrated. Also, in this chapter only calculated re-
sults are presented; comparisons of data and calculations are presented
in Chapter 7. In discussing the solutions, the terms "point source"
and "line source" are used to refer to the mathematical representation
of effluent discharge conditions at the upstream end of the reach,
while the term "distributed sources or sinks" refers to the reactions,
decay, surface transfer, etc., that take place within the reach.

Most of the calculated distributions are given in terms of
dimensionless variables since these variables allow the general charac-
teristics of the distributions to be demonstrated and discussed without
needing to use specific hydraulic characteristics (depth, velocity,
etc.}. These dimensionless variables also form the basis for comparing
measured concentration distributions from different rivers with each
other and for interpreting the calculated distributions for specific
situations. It is highly desirable to become accustomed to thinking in

terms of the dimensionless variables when considering questions such as
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the relative shapes of the concentration distributions, degree of mix-—
ing, etc., for transport problems in rivers.

Various dimensionless variables are introduced as needed for the
calculations. However, there is one variable (called the dimensionless
longitudinal distance) that occurs with so much regularity that it
deserves special mention. This variable relates the time for which
transport has been taking place (the flow time, x/V , from the point
of release to the cross section of interest) to a characteristic time
(tc) for mixing. The characteristic time (tc) is defined as the time
required for a given amount of mixing to take place. The time for the
mixing process to transport mass over a distance L is proportlional to
the distance squared (if the mixing coefficient is constant); in a sim-
ple diffusion problem, four times as much time is needed for the mixing
process to increase the width of a concentration distribution to 2L
as to increase it to L . For example, consider a steady-state release
into steady, uniform flow in a rectangular channel. Four times as much
time is needed for mass to mix across the full channel width as for it
to mix across half of the width. Thus, if mass released at the center
of the channel reaches the banks in a time L then mass released at
one edge of the chammel requires 4t1_ to mix across to the far side.
The same type of comparison can be made for the concentration distribu-
tions for the two release conditions to reach any specified degree of
uniformity, not only for the time for mixing to carry mass to the edge
of the channel. Similarly, for a 1D longitudinal mixing process which
can be described with a dispersion coefficient, if t, is required for
the length of the distribution to increase from zero at the release
point to some specified length, then 4t2 is required for the length
to increase to twice that amount, Furthermore, the time for a given
degree of mixing to take place i1s inversely proportional to the mixing
coefficient, as would be expected from the fact that the rate of mass
transport in a diffusive-type process is proportional to the mixing
coefficient (Eqs. 4.5.3, 4.5.4, and other similar equations in
Chapter 4). Thus, if L 1is defined as a significant distance for the

mixing process in a given problem and D 1is the mixing coefficient,
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then a characteristic mixing time to be used for nondimensionalization

of the problem can be defined as

N

(5.1.1)

rt+
]
UIE"‘

The nondimensional distances are given various symbols as appropriate
for the various mixing problems considered in subsequent sections, but

if a general nondimensional distance is defined as X, » then

x/V
x, = XV (5.1.2)
* 12

For unsteady transport problems, dimensionless time is similarly defined

as

t, = ~—— (5.1.3)

Converting between dimensionless and actual distances is con-

sidered in Chapters 7 and 8.

5.2 THREE-DIMENSIONAL SOLUTIONS

5.2.1 Assumptions
Eq. 4,6,10 forms the basis for obtaining 3D analytical solu-

tions. However, several assumptions and simplifications are normally
reasonable:

a. 9s/ot = 0 . This is inherent in the specification of steady
state.

b. Negligible effects of longitudinal mixing. The term
involving dx is deleted. (See Section 5.1.)

€. u =u = 0 . As is shown later (Sections 5.2.6 and 5.2.7),
the flow distance over which 3D effects are significant is normally

relatively short in the absence of density differences. In this short
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distance it is common to assume that changes in depth may be neglected
{so the vertical velocity, uz , 18 zero), that the x axis of a
Cartesian coordinate system may be aligned with the mean flow direction
(so that the depth average of the transverse velocity, uy s is zero),
and that any variations of v and uy over the depth have negligible
influence. (See assumption f below, also.)

d. u_=v_ = constant . If U, =u, = 0 , then by virtue of
Eq. 4.6.5 and assumption f below, u cannot vary with x and can
then be taken out of the derivative on the left-hand side of
Eq. 4.6.10. Furthermore, the vertical variations of u contribute
only to longitudinal spreading, which is usually unimportant in 3D
steady-state transport. Thus, u  may be replaced with its depth
average (vx, Eq. 4.7.10), which is taken as constant.

e. h = constant . The flow is steady, so h does not change
with time. Also, for the short distances in the 3D region, h is
assumed not to change with either longitudinal or transverse distance.

f. m = my = 1 . For short distances, channel curvature is
neglected. (See assumption ¢ above, also.)

g dy = constant , dz = constant . Dm is normally absorbed
into the definitions of the turbulent diffusion coefficients (dy’ dz),
and these coefficients are assumed to be constant for the short 3D
region. They may then be taken out of the derivati;es on the right-
hand side of Eq. 4.6.10.

h. k = constant in the nondimensionalization of the equations
(Section 5.2.2). The solutions in Section 5.2.4 are presented for
k = 0 , but for steady-state distributions, the effect of a first—order
reaction can be taken into account by multiplying the given solutions
by exp (—kx/vx) s or by exp (-k3x3) using the dimensionless
variables and parameters in Section 5.2.2,

i. 3s/dz = 0 at the water surface and streambed. Any absorp-
tion, adsorption, or other transfer of the solute across the surface

and bed can be neglected within the short 3D region.
j. Constant density.
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With these

assumptions, Eq. 4.6.10 may be written as

—= +d —= -~ ks (5.2.1)

In sequence from left to right, the terms represent longitudinal advec-

tion, transverse mixing, vertical mixing, and distributed sources and

sinks.

5.2.2 Dimensjonless Variables and Differential Equation

In order to define dimensionless variables and then to write

Eq. 5.2.1 in dimensionless form, the depth h 1is used as the charac-

teristic distance for mixing. The dimensionless variables, which are

given the subscript 3 to indicate that they are for 3D distributions,

are then defined as

¥
2,4 =§ (5.2.2)
2
k. = h /dz = BEE
3 i/k d
z
, d 1/2
hév |-X s
x\d
- s _ z
3 N ]
* 2 4 m
i vx(;iz)

where m is the mass of solute released per unit time in the effluent
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discharge and h 1is the flow depth. The dimensionless variables may

be interpreted as follows:

X3 = ratio of flow time (x/v } to characteristic time (h /d )
for vertical mixing ovet the depth,

¥y = relative transverse coordinate which is scaled so that the
diffusion rates are the same with respect to Y4 and Zq
even though d and d may not be equal.

24 = vertical coordinate relative to the depth.

k3 -~ ratio of characteristic vertical mixing time (h2/d ) to
characteristic decay or reaction time (1/k)}. :

Sy = concentration relative to a reference concentration which
is the concentration that would exist after complete mixing
of the given m in a hypothetical section h deep and

h(d /d,) /2 Gide.

Introduction of the dimensionless variables into Eq. 5.2.1 gives

853 3 83 8253
T 5 + 7 - k353 (5.2.3)
3 8y3 323

Solution of this equation, with the appropriate boundary conditions,

gives the concentration distributions as a function of x3 s Y3 o and
Zy .
5.2.3 Coordinate Origin and Boundary Conditions

The upstream condition to be represented is a passive point

"a" above

source with a mass discharge rate (ﬁ) located at a distance
the stream bed. The origin of the coordinate system is located on the
stream bed directly below the source so that the coordinates of the
source are X, = 0, ¥q = o, Zy = ag = a/h . The mathematical

boundary conditions may then be expressed as
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85 = 6(y3)6(z3 - a3) on Xy = 0

853
—= =0 on z =0 and 1 (5.2.4)
9z
3
33 = 0 for x3 + ®

where &( ) is the Dirac delta function.

5.2.4 Analytical Solutions

The analytical solution for the concentration distributions (s3)
as a function of Xg 5 Yg o and Zq is given from Egqs. 4.3.2 and
5.2.4 using the method of images as

i 2 2
© 2 [z - (~-1)a, - 21] +y
83 = 4ml; E E exp (- = 3 42 3 (5.2.5)
3 i ==c0 j=1 3
or, if ay = 0, as
1 L) (23 - 21)2 + yg
8, = -——— E exp | ~ (5.2.6)
3 2wx3 Jmee 4x3

Using the method of separation of variables, the solution may also be

written as

o0

2
1 73 2.2
85 " i3 exp \- Z-x—) 1+ 2 Z cos (ina3) cos (i'sz3) exp ( i“r x3) (5.2.7)
2(1!x3) 3 i=1

5.2.5 Concentration Distributions

Various characteristics of the concentration distributions are
shown in Figures 34 and 35 for ag = 0 and a, = 0.2 for a conserva-
tive solute (k3 = 0). For k3 # 0, the effects of a first-order decay

or reaction can be included by multiplying the calculated concentrations
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by exp(—k3x3 if the longitudinal concentration gradients are much
smaller than the vertical and transverse gradients, as is usually the
case for steady-state distributions in rivers. Figure 34a shows con-
centration contours at the bed for the left half of the distributions.
The transverse distributions of concentration (Figure 34b) are Gaussian
or normal curves for all Xq (if no lateral boundaries are consid-
ered). Concentration contours for the vertical plane through the
gource are shown in Figure 34c. The distributions (Figure 34d) are
Gaussian for the shorter distances {smaller x3 values), but when the
solute reaches the free surface, the "reflection" of the solute from
the surface due to the required zero vertical gradient or "no flux"
condition at the surface (Eq. 5.2.4) begins to change the shapes of the
distributions until, because of the finite depth, the solute ultimately
becomes well mixed over the vertical (as illustrated by the nearly ver-
tical contour for s, = 0.3 in Figure 34c and the distribution for

3
%, = 1 in Figure 34d. Figures 34e and 34f give the surface and bed

czncentrations for a vertical plane straight downstream from the
source. The -1 slope for the maximum bed concentration (Figure 34f) is
characteristic of 2D mixing (vertical and transverse in this case) with
constant mixing coefficients while the -~1/2 slope corresponds to 1D
mixing (transverse in this case) with a constant coefficient after the
solute becomes well mixed over the depth. (Recall that longitudinal
mixing is negligible for most steady-state problems such as this one.
Thus, even though the concentration distribution is three dimensional,
there is only advection in one of the dimensions so that the maximum
number of dimensions for mixing is two.) As can be seen in Figure 34f,
the characteristic slope of -1 applies only in the region where the
reduction of the maximum concentration is not affected by "reflections"
from the boundaries. If lateral boundaries were present, the -1/2
slope would change when the reflections from those boundaries began to
influence the maximum concentration.

With the source located above the bed at ay = 0.2 (Figure 35),
many characteristics of the concentration contours and distributioms

are similar to those in Figure 34 for a; = 0 . The primary
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differences are that the initial vertical Gaussian distribution begins
to be destroyed as soon as the lower part of the distribution reaches
the bed and that the maximum concentration moves to the bed (Fig-

ures 35c, d). Depending on the value of ay 5 8 vertical Gaussian dis-
tribution with the maximum concentration at the bed may be reestab-
lished before reflection from the free surface begins. The reason that
the maximum moves to the bed (or, in a more general case, to a bound-
ary) can be explained as follows. Initially, vertical mixing moves
mass both upward and downward from the source location since diffusive
mass flux is always in the direction of decreasing concentration. When
the diffusing mass reaches the bed (or any boundary with a no-flux
boundary condition), the mass must accumulate there., Thus, the concen-
tration increases at the boundary (e.g., Xy = 10-2 » Figure 35d) while
the maximum concentration away from the boundary continues to decrease
due to mixing. The boundary concentration increases until it is ulti-
mately equal to the maximum concentration away from the boundary (Fig-
ures 35c, f). Then the decreasing gradient is only away from the
boundary. Thus, from that point on downstream, the maximum concentra-

tion remains at the boundary with diffusion taking place away from it.

5.2.6 Vertical-Crossing Distance

For each source condition, there is a downstream distance
(called the vertical-crossing distance, x3’c) at which the solute con-
centration distribution reaches the free surface (Figures 34c, d
and 35c, d). Nevertheless, the crossing distance cannot be mathemati~
cally defined as the distance at which the concentration at the surface
(z3 = 1) changes from zero; since the calculated concentration even for
very small Xq approaches zero asymptotically, there is a calculated
non-zero value of Sq at zq = 1 for all xq >0 ., Thus, some speci-
fied non-zero value of sy at z, = 1 must be used to define x3,c .
This non-zero 84 might correspond to a certain value of s ; on the
other hand, for illustrative purposes, it is convenient to take a rela-
tive value of 84 since Xy . can then be calculated without needing to

specify ﬁ s b, vx » etec, Thus, x can be defined as the value of

3,c
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X4 for which the concentration at the surface (y3 = Q, Zy = 1) first
reaches some specified small fraction (e.g. 0.0l1) of the maximum con-
centration on the plane ¥q = 0 for the same X3 - One advantage of
using dimensionless variables is that the crossing distance (and the
mixing distance, Section 5.2.7, or the distance for any other relative
degree of pixing) is just a constant value of Xq for a given effluent
discharge position., This condition is directly related to the physical
interpretation of the dimensionless longitudinal distance variable as
the ratio of the flow time to the characteristic mixing time. Thus,
regardless of the values of the individual variables (depth, velocity,
mixing coefficient, etec.), the same relative amount of mixing takes
place between the release point and any specified dimensionless longi-
tudinal distance (for a given relative location of the source, i.e.,

a in this case).

3 .
for various source locations (a3) are shown

= 0.01 and 0.05 . These results

The values of x
3,c

in Figure 36 for S3,surface/53,max

were calculated using Eq. 5.2.5. For a, approaching 0.5 (i.e. mid-

depth), the calculated X3 . values are of questionable worth since
3
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Figure 36. Vertical crossing and mixing distances for various
point sources (3D)
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the calculated concentration distributions approach an exact mathemat-~

ical symmetry (for as = 0.5) that would never be realized physically.

5.2,7 Vertical-Mixing Distance

In a manner similar to the crossing distance, the vertical-mixing
distance (x3,m) can be defined as the distance required to achieve a
specified degree of relative vertical uniformity. Again, relative uni-
formity must be specified because absolute mathematical uniformity is
approached asymptotically as X, approaches infinity. Based on
Eq. 5.2,6, Figure 36 gives four curves for x3,m for different uni-
formity criteria expressed as the ratio of s3’ surface C° SB,bed .
For nearly uniform concentration distributions in the vertical, the
distributions have a mathematical "odd symmetry" about the mid-depth so

that for large Xq

°3,surf ~ %a _ 1 53,surf ~ ®3, bed (5.2.8)
3 2 4
where c, 1is the depth-averaged concentration along a vertical line.

d
Thus, the maximum deviation from the average concentration is about

half of 1 minus the values shown on the x3 m curves.
»

The value of x has a fairly strong dependence on the speci-

fled degree of uniformié?. For example, for ag = 0 in Figure 36, the
flow distance to reach the 0.95 tolerance is about 65 percent greater
than for the 0.75 tolerance. Nevertheless, regardless of the tolerance
selected to define x3’m s the actual flow distance required to obtain
vertical uniformity is frequently relatively short. For example,
taking dz = hU,/15 (Section 7.4.1) where U, is the shear velocity,

X can be written as

3

1/2
) : (5.2.9)

ool 4

"3=T§(
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where f 1is the Darcy-Weisbach friction factor. For example, if

X = (3.3 and f = 0.02 , then xm/h would be 90. For this set of

vzizes, the concentration distributions would be essentially uniform
over the flow depth for downstream distances greater than 90 times the
local depth. However, as illustrated by the figures showing calculated
concentration distributions, nonuniform transverse distributions of

concentration remain downstream of the vertical mixing distance.

5.3 TWO-DIMENSIONAL SOLUTIONS

In Section 5.2, it was shown that the region with significant 3D
aspects downstream of a passive point source is relatively short. With
any initial mixing, the 3D region would be even shorter. Thus, rela-
tively close to the effluent structure, the concentration distributions
become essentially uniform over the depth. Downstream from that point,
the important variations in the concentrations are in the longitudinal
and transverse directions, so these distributions may be treated as
being two dimensional. In 2D steady problems, the mass can be consid-
ered as being advected along the depth-averaged streamlines and as
being mixed normal to the streamlines. Thus, these 2D problems are
analyzed in this section using the streamtube model (Eq. 4.7.34).

Since the solutions apply for any depth and velocity distributions,
they can be used to represent the simplified case of a rectangular
channel with a constant velocity by using a constant depth and

velocity.

5.3.1 Assumptions

The assumptions that are used for the 2D solutions are as
follows:

a, 9c/dt = 0 for steady state.

b. Negligible effects of longitudinal mixing. As was pointed
out for the 3D assumptions in Section 5.2.1, the longitudinal concen-
tration gradients for steady-state situations are frequently small
enough that the rate of longitudinal mass transport by the mixing mech-
anism is negligibly small. For the depth-averaged case, the longitudi-

nal mixing is due primarily to the differential advection associated
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with the velocity variations along a vertical line (Section 4.7.3).

c. mxhzvxey = Df = constant. This series of terms which ap-
pears in Eq. 4.7.34 is called the diffusion factor (Df) and is assumed
to be constant in the sections dealing with analytical solutions. This
assumption is discussed in Section 7.3 on the estimation of mixing
coefficients. In general, this assumption is more reasonable for
releases and concentration distributions in the deeper, higher velocity
regions where the percentage changes in h and v, are smaller than
in the regions near the banks where the percentage changes are larger.

The assumption of constant D, is also useful for studying transport

f

characteristics over long distances since the local varlations of Df

then do not have a large influence on the overall behavior of the
transport.

d. k = constant, fS = constant times concentration, fB
stant times concentration. For general analytical considerations, it

= con-~

could be assumed that all of the distributed sources and sinks along a
vertical line could be combined into one first-order reaction term with
a constant rate coefficient K . This one term would then represent
both decay or reactions within the flow and transfer across the flow
boundaries at the water surface and the streambed (Section 4.7.3). See
also assumption h in Section 5.2.1.

e. mxhzvxey(acfaq) = 0 at the left and right banks. This con-
dition states that there is no mass transport transversely at the banks
and is satisfied if any of the individual variables (depth, velocity,
concentration gradient, etc.) is zero at the banks. This condition is

independent of the assumption of constant Df.

5.3.2 Dimensionless Variables and Differential Equation

In order to define dimensionless variables, the characteristic
length for mixing is taken as the channel width since, for 2D transport
problems, interest is frequently in the concentration distributions
across the width and in the flow time required for various degrees of
uniformity of the concentration across the width. However, when using

the streamtube model, traversing the stream from one bank to the other
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is represented by crossing the total flow (Q) rather than by crossing
the physical width of the stream. (Nevertheless, for lack of another
more desirable term, the term "distance'" is still used for the trans-
verse coordinate even though it is actually discharge; each amount of
the discharge corresponds to some distance across the stream. See Sec-
tion 7.5.) Also, the mixing is represented by the diffusion factor
(dimensioné LST-Z) rather than a mixing coefficient such as e
{(dimensions LZT"I). As a result, the form of the dimensionless longi-
tudinal distance (xd) may at first appear to be different from the gen-

eral form previously discussed. As explained below, x, is basically

d
the same type of variable as x, (Eq. 5.1.2) and Xy (Eq. 5.2.2). For
these 2D problems, the dimensionless variables are denoted by a sub-
script d to indicate the 2D depth-averaged situation.

The dimensionless variables are defined as

I

d- 2
Q

_9q

qd Q

c, = —

d m/Q
vx

v, = (5.3.1)
. h

hd_H

P -k

d DfV
_£Q°

£, =~
mHDfV
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where Q 1is the river flow rate. The variables may be interpreted as

follows:

Xq = dimensionless longitudinal distance. The functional equiv-

alence of Xy and the previous dimensionless distances can

be seen by considering an ideal case where all of the vari-
ables in Df (depth, velocity, and mixing coefficient) and

in Q (depth, velocity, and width) are constant. Substitu-
tion of these constants into Eq. 5.3.1 with m = 1 gives

X (x/V)/(B /e ), in accordance with the previous varia-

d
bles. Thus, the form of Xy shows that Q /D is a charac-
teristic distance for transverse mixing; the characteristic
time analogous to t, of Eq. 5.1.1 is then QZ/(DfV)
transverse position as a fraction of the total discharge so

that constant 9 corresponds to a depth-averaged
streamline.

concentration relative to the concentration if the initial
effluent discharge were diluted in the entire river flow.

velocity relative to the cross-sectional average veloc-
ity (V).

depth relative to the cross-sectional average depth (H).

ratio of characteristic transverse mixing time (Q /D V) to

characteristic decay or reaction time (1/k).

ratio of characteristic transverse mixing time (QZ/DfV) to

characteristic time for transfer across the flow boundaries

(f/mH), Note that, in applications, f would normally be
written as a transfer coefficlent times a concentration or
a concentration difference which, when made nondimensional,

would absorb the m in the definition of £q

Introduction of these variables into Eq. 4.7.33 gives the dimensionless

streamtube form of the mass balance equation as

=vy 5 - fd,S - fd,B - kdcd (5.3.2)
d 3y
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Solution of this equation, with the appropriate boundary conditions,
glves the concentration distribution as a function of X, and qq -
Except for Section 5.3.8, only solutions for conservative substances

(f = 0, k = 0) are considered. As is the case for the 3D solutions
considered previously, the effects of first-order reactions may be
approximated by multiplying the concentrations for conservative sub-
stances by exp(—kdxd) or by a similar expression with k replaced by
the rate coefficient for transfer across the flow boundaries as repre-
sented by f . This type of approximation neglects the type of be-

havior considered in Section 5.3.8.

5.3.3 Coordinate Origin and Boundary Conditions

For these calculated distributions with passive sources {(no
initial mixing), the origin is placed so that Xq < 0 corresponds to
the cross section containing the source, and the origin for 94 is at
one bank (the right bank for the solutions presented in this sectiom).
The wvalues of qd then range from 0 to 1. There are many upstream
source configurations which could be considered, but only two types are
illustrated in this section. One is a point source located at qd,I .
The other, which is called a partial line source, is a line source
extending across the stream from qd,l to qd’2 with qd,l < qd,2 .
This type of partial line source could correspond to conditions at the
junction of two tributaries having different concentrations, or it
might be used to approximate the conditions at the end of an initial
mixing region. For these solutions, it is assumed that the initial
mass flux (m) is uniformly distributed along the region from ngl to
qd,2 . This assumption corresponds to a uniform concentration along
the partial line source. For the upstream boundary, the mathematical

boundary conditions then may be written for the point source as

cq = 6(qd,I) on X, = 0 (5.3.3)

and for the partial line source as
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(5.3.4)

For any upstream condition, assumption e in Section 5.3.1 gives boundary

condition at the banks as

2c

[

=0 on 4q = 0 and 1 {(5.3.5)

Q
(=N

q

5.3.4 Analytical Solutions

The analytical solutions for the concentration distributions
(cd) as a function of Xy and qq can be obtained from Egs. 5.3.2,
5.3.3, and 5.3.4, For a point source, the solution for a conservative

substance using the method of images can be written as

e 2 [ 3 J2
- 1 9 - -D7qy ;- 21]
Tl DD IR E T .3.6)
(4‘de) d

e j =1

Using separation of variables, the equivalent solution for a point

source is

- 22
cq = 1+ 2 :E: cos (nﬂqd’I) cos (and) exp (-n' T xd) (5.3.7)

n=1

For a partial line source using the method of Images, the solution is
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) 2 J
- (~1)Yq, - 24
1 94 ( d
c, = erf
d - 20q, 5 - aq,) ; 5_': 2(x ) 2
i=—e j=1 d
{(5.3.8)
PR PR
e | a1 (-1>7qq - 21
2(xd)1/2

Using separation of variables, the equivalent solution for a partial

line source is

c, =1+ _sin (nnq, ,)
d 1r(qd 2~ 9, 1) z: d,2

(5.3.9)
. 22
- sin (and,l)— * cos (nﬂqd) exp (—n T Xd)

5.3.5 Concentration Distributions

Various concentration distributions can be calculated from the
analytical solutions given in the previous section in order to obtain
some general insight into the transport processes. For illustrative
purposes, three gpecific situations (namely, a point source located at
qd,I = {0 , a point source at qd,I = 0,2 , and a partial line source
from U,1 = 0 to 49,2 = 0.2) have been selected for presentation of
various aspects of the concentration distributions. For these three
situations, Figures 37-39 give various aspects of the concentration
distributions to parallel the information in Figures 34 and 35 for the
3D transpoert situation. For the 2D situations depicted in Fig-
ures 37-39, the concentrations are uniform over the depth so that the
2D figures give the entire description of the evolving concentration
distributions in terms of X, and 94 - The relationship between

d
4y and actual transverse distance (y) 1is illustrated in Section 7.5,
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The maximum and minimum concentrations are shown for the three
source configurations in parts ¢ and d of Figures 37-39. More informa-
tion on maximum and minimum concentrations is given in Figures 40
and 41. For Figures 40a and 4la, each curve is for a single point
source located at the indicated value of qd,I » while each curve in
part b of the figures is for a line source extending from qd"1 =0 to
the indicated value of qd’2 . Figure 40 gives the maximum concentra-
tions as functions of longitudinal distance. For the point sources,
the actual location of the maximum concentration starts at the trans-—
verse location of the source but eventually moves to the nearer bank,
as shown in Figure 38a. For the partial line source, the maximum con-
centration is always at the bank. Figure 41 is a companion graph to
Figure 40 and gives the ratio of maximum and minimum concentrations.

cd,min/cd,max
since the analytical solutions indicate that these curves become

)

The curves are given as semilogarithmic graphs of (1 -

straight lines for large values of Xq *
For the point sources, the log~log plots in Figures 37d and 384
~-1/2
d

in the early part of the transport process. After "reflection" from

show that the maximum concentrations decrease in proportion to x

the boundaries begins to affect the maximum concentrations, the slope

of the versus X, curves becomes progressively flatter until

cd,max d
the slope becomes zero when transverse uniformity is obtained and the

concentration distribution no longer changes with x The different

values of x; at which the slope changes from -1/2 gor the two point
sources can be used to illustrate the use of a dimensionless longitudi-
nal distance defined on the basis of the significant distance over
which mixing must take place to achieve a specified result. In this
case, the specified result is the modification of the rate of decrease
of the maximum concentration due to reflection from the boundaries.

The significant distance is the distance from the source to the bound-
ary (for the mixing to carry the concentration distribution to the
boundary) and back (for the mixing to carry the effect of the reflec-
tion back to the point of the maximum concentration). Since x, is

d
defined using the total distance across the stream as the significant
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Figure 40. Calculated maximum concentrations for various

sources (2D)
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distance, the effect of reflection is seen at different values of xd

for the different locations for the point sources. For 9.1 = ¢ , the
]

slope changes at about x, = 0,2 , while for = 0.2 , the change

d 94,1

occurs at about xd = 0,008 ., The ratio of these two values of xd is

25 since the significant distance for the first case is five times
larger than for the second (0 to 1 and back, as contrasted to 0.2 to 0

and back) and the definition of =x, involves the significant distance

d
squared (Egs. 5.2.2 and 5.3.1). If, for the specific purpose of con-

sidering the rate of decrease of the maximum concentration, the signif-
icant distance applicable to each situation (Q in one case and 0.2Q in
the other case) were used in defining another dimensionless longitudi-

nal variable (say, x' ), then the rate of decrease of ¢ would
d d,max
T

d
Returning to the dimensionless distance (xd) as previously de-

change at the same value of x for both sources.

fined (Eq. 5.3.1) and as used in the figures, Figure 40b illustrates

that the longitudinal distance required for the concentration at the

bank for each of the line sources to begin dropping from its initial

value is inversely proportional to the square of the length of the

original line source. For example, for qd 9 = 0.2 , the decrease in
>

the maximum concentration begins at about Xg = 0.0025 , while for

= 0,4, Xd

= 0,8, x

qd 2 is four times larger at about 0.0l, and for
3

q
d,2 d
behavior results from the fact that the concentration starts dropping

is again four times larger at about 0.04. This

at a distance which is large enough for the mixing to have carried
water from outside the end of the source to the bank, and the longi-
tudinal distance (or flow time) required for a certain amount of mixing
to take place is proportional to the square of the (transverse) dis-

tance over which the mixing takes place.

5.3.6 Transverse-Crossing and Transverse-Mixing Distances

Vertical-crossing and vertical-mixing distances were discussed
in Sections 5.2.6 and 5.2.7. This section and Figure 42 present the
analogous distances for transverse mixing with depth-averaged 2D con-

centration distributions. Figure 42a for point sources and Figure 42b
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for partial line sources give the transverse-crossing distance (xd c)
3

and the transverse-mixing-distance (Xd,m) for several tolerances. For
medium to large rivers, the transverse mixing distance may be many
miles, or many tens of miles, so that within a reach of interest,
transverse uniformity may never be achieved, especially when it is con-
sidered that any tributary inflows will make the approach to transverse
uniformity of concentration slower than is depicted in the figures.
Some specific situations are considered in Section 7.5. Nevertheless,

as a general indication of the distances involved, consider three

rivers:
Width Depth Velocity v/U Tm
River ft ft fps * miles
A 50 1 0.6 8 2
B 150 6 3 14 6
C 800 13 5 19 110
The calculation of x 1is based on Xd,m = 0.3 and a typical trans-

verse mixing coefficient of ey = O.SHU* (Seetion 7.4). The value of
V/U* is indicative of the flow resistance since this wvalue is equal to
(8/f)1/2

smaller river, transverse mixing takes place rapidly enough that most

s where f 1is the Darcy~Weisbach friction factor. For the

of a reach of interest might be in the region where the concentration
distribution is essentially one dimensional, although the maximum con-
centrations in the river would still be in the region near the origin
where 2D aspects are important., For the larger rivers, the mixing dis-
tances can be so great that the majority of a reach of interest may be
in the region where 2D aspects of the transport and mixing processes

are important.

5.3.7 Overall Mixing Parameters

The previous sections deal with various aspects of the concen-
tration distributions across and along a channel. Sometimes, it is
useful to have a single parameter to represent the degree of uniformity

of the concentration distribution across the width of the channel, The
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two primary parameters that have been used for this purpose are the
coefficient of variation (Cv) and the degree of mixing (P). Using the

dimensionless concentration, Cv is defined as

1 ) 1/2
C, =[.0/' (cg =1 dq (5.3.10)

Values of Cv decrease in the downstream direction as the uniformity

increases. The limiting values are infinity at a point source and zero
at complete mixing. (A zero value can never be obtained experimentally
because of random measurement errors.) The degree of mixing, P , is a

closely related parameter which is defined by

1
_ 1
P—1—36f ley - 1 dq (5.3.11)

and increases in the downstream direction. The limiting values are 0
at a point source and 1 at complete uniformity. For a partial line
source, the initial value of P is equal to the fraction of the dis-
charge covered by the source. For example, for a partial line source
from qd,1 = 0.2 to qd,2 = 0.5 , the initial value of P is 0.3.
Values of Cv and P for point sources and for partial line sources
beginning at one bank are shown in Figures 43 and 44. The graphs are
plotted on semilogarithmic axes and the P values are plotted (1 - P)
since both graphs then give straight lines as X4 increases. (In
analyzing data, it is sometimes helpful to be able to plot the data so
that the anticipated behavior gives a straight line. However, field
data seldom give a straight line because the slope of the line is

related to Df , and D is not exactly constant for rivers as assumed

f
in the analysis. Rather, it tends to vary about an average value.)
For large X4 » the ratio of Cv to (1 - P) is constant and equal to

n/21/2 2 9 99 .
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5.3.8 Equilibrium Concentration Distribu-
tions with Distributed Sources or Sinks

The previous discussion of concentration distributions and mix-
ing relates primarily to conservative substances, but it also gives a
general indication of the amount of transverse mixing to be expected
for nonconservative substances. One definite difference is that con-
servative substances theoretically approach a2 uniform concentration
distribution as x, increases, However, for nonconservative sub-

d
stances, the equilibrium distribution at large x, for the dimension-

less concentration may be nonuniform, with the am:unt of nonuniformity
depending on the type of distributed source or sink and on the river
hydraulics. The physical explanation for the existence of an ultimate
equilibrium nonuniform concentration distribution varies somewhat de-
pending on the type of distributed sources and sinks for the problem
being considered.

In order to have a specific situation to discuss, consider the
case of simple reaeration in a straight, prismatic channel with the
flow having an initial oxygen saturation deficit and no distributed
sources or sinks other than reaeration. Typically, the water nearer to
the edges of the channel moves more slowly than the water in the cen-
tral part of the river so that between any two cross sections, the
water nearer the banks has a larger travel time and therefore more time
for reaeration to take place. In addition, the depths are smaller near
the banks so that the absorbed oxygen is distributed into a smaller
amount of water. Thus, both the velocity distribution and depth pro-
file contribute to having higher oxygen concentrations or lower defi-
cits nearer to the banks. (There is probably also some transverse var-
iation of the reaeration rate coefficient (Ka)' Since this type of
variation has not been well documented, it is not included in this dis-
cussion.) Transverse mixing tends to bring the transverse concentra-
tion distribution toward uniformity, but the rate of transverse mixing
is proportional to the concentration gradients. Ultimately, regardless
of the initial concentration distribution at x, = (0 , a balance or

d
equilibrium is reached between the tendency of the velocity and depth
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variations to cause lower deficits near the banks and the tendency of
the transverse mixing to cause an approach to uniformity. Once this
equilibrium is reached, a properly defined dimensionless concentration
distribution does not change with increasing Xg
For this reaeration situation, consider a steady-state concentra-
tion distribution in a straight, prismatic channel. Let the dimension-

less variables be

v
= X
Va T v
C ~-¢
ef = 2
d cC -¢C
S 0
= J ‘
Ve =% (5.3.12)
K B°
fd = He
y
- h
=3

where CS is the saturation concentration, C0 is the initial concen-
tration, and KL is the mass transfer coefficient so that fS = —KL
(CS - ¢} . The parameter fd is similar to the previously defined k
(Eq. 5.2.2) and k

3
(Eq. 5.3.1) in that it represents the ratio of a

d
characteristic time for transverse mixing to a characteristic time for
surface transfer of oxygen, i.e. a characteristic time proportional to
the time required for the deficit to change by any given amount due to
surface gas transfer. For example, for simple first-order reaeration

in a mixing tank, H/KL » is the time required for the deficit to

decrease to 377 of its original value since for t = H/KL s

C
exp (; uﬁu) = exp (-1) = 0.37. (5.3.13)
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Either one of the two characteristic times in fd could be used to

nondimensionalize the longitudinal distance; X4 based on the trans-

verse mixing time is used in this analysis to be consistent with the
analyses in the previous sections. From Eq. 4.7.33, using the defini-

tions in Eq. 5.3.12, the nondimensional mass balance equation for ¢!

d
may be written as
dc! ( BC')
d 123 d
V., — = o — |- f,c! (5.3.14)
d BXd hd Byd d Byd d-d

The distribution of cé can be obtained for specified depth and veloe-

ity distributions by solving Eq. 5.3.14 numerically. From these numer-

ical solutions (and from a theoretical analysis based on the separation

of variables technique), it can be observed that for large xd values,
an equilibrium is reached such that the transverse distribution of cé

relative to its cross-sectional average value does not change with

Xq ¢ Thus, a new dimensionless concentration can be defined to give

the distribution relative to the average:

n (CS ~ C)

Cd = —(E-;—j')— (5;3.15)

where C is the cross-sectional average of ¢ . For specified dimen-

sionless distributions of velocity and depth, the equilibrium distribu-

n
d

eter fd . As fd increases, the time required for a given amount of

cross—~channel mixing increases relative to the time for a given amount

tion of concentration as represented by ¢ depends only on the param-

of gas transfer, so that it is more difficult for the mixing to elimi-
nate the deficit differences being created, as described previously, by
the interaction of the gas transfer and the stream hydraulics. The
result ig that the amount of cross—channel variation of deficit is

larger for a stream with large fd than for a stream with a small
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fd » 1f the hydraulics (relative depth and velocity distributions) for
the two streams are the same.
To illustrate the variation of the equilibrium distribution of

¢ with £, and stream hydraulics, calculations were made for two
d d

cases. For Case A, there was a rectangular cross section and vy

varied over each half of the channel width as the 1/10th power of the
distance from the edge of the channel. Thus, there was no depth varia-
tion and the velocity distribution was relatively flat. For Case B,
the bottom profile was half of a sine wave, and the velocity varied in
proportion to the 2/3rds power of the depth (Yotsukura and Sayre 1976).
This case had a relatively strong variation of both depth and velocity..
Both channels were prismatic. For each case, f_  was varied as an

d

input parameter for the calculations. Figure 45 shows Acg max which
3

' across the channel width,

is defined as the maximum difference in ¢

d
i.e. the difference between the center-line and bank values. As ex-
pected, Acg max increased as fd increased for each case, and for a
]
given f,, Ac" increased from Case A to Case B as the transverse
d d,max

variations of depth and velocity became more pronounced.
Even though the dimensionless deficit reaches an equilibrium
distribution for a prismatic chanmel, that does not mean that the dis-

tribution of the actual deficit (CS ~ ¢) remains constant. Rather, an

equilibrium cH means that (CS - ¢) continually decreases with x

d

" contin-

since the average deficit (CS -~ C) in the denominator of cd

vally decreases in the downstream direction.

5.4 ONE-DIMENSIONAL SOLUTIONS

As discussed in Section 5.3.6 for the 2D solutions, there are
some rivers for which the flow distance required to obtain transverse
uniformity of the concentration distribution can be extremely large in
terms of absolute distances. On the other hand, there are other types
of rivers (e.g. very narrow streams or pool and riffle streams) for
which transverse uniformity may be achieved rapidly, so that transport

problems may reasonably be analyzed using 1D approaches. For these

199
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Figure 45, Calculated magnitude of equilibrium variation
of oxygen concentration
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cases, some elementary 1D solutions for concentration distributions are

presented in this section,

5.4.1 Assumptions

The assumptions that are used for the 1D solutions are as
follows:

a. 3C/3t = 0 for steady state.

b. A = constant, V = constant, E = constant. As with the pPre-
vious cases, the hydraulic and transport parameters are assumed to be
constant for the basic analytical solutions.

¢. K = constant where all of the distributed source and sink
terms in Eq. 4.8.30 are assumed to be represented by a single first-
order "reaction" term with rate coefficient of K .

d. M =1 for a straight, prismatic channel,

With these assumptions, the 1D mass balance equation may be

written as

2
9C _ 2°C

v X E —3 - KC k (5.4.1)
9x

From left to right, the terms in this equation represent the advective
mass flux, the dispersive mass flux, and the removal of mass from the

river by the combined "reaction" processes.
Y P

5.4.2 Dimensionless Variables and Differential Equation

For the 1D problems, the dimensionless variables are denoted by
a subscript a to indicate the area—averaged situation. However, for a
ID transport problem in a river which is assumed to be infinitely long,
there is no significant finite length over which the mixing process
causes the concentration distribution to approach uniformity and thus
there is no length which can be used to form the same type of dimen-
sionless longitudinal distance as was used for the 3D and 2D problems.

Rather, the dimensionless distance is based on the other two primary
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processes in the problem, namely longitudinal advection and the first-
order reaction.

The dimensionless variables are defined as

. Kz
*a v
(5.4.2)
Ca=79——
m/Q
The variables may be interpreted as follows:
x - dimensionless longitudinal distance which is equal to the

ratio of a characteristic advection time (x/V) to a charac-
teristic reaction time (1/X). '

C - concentration relative to the concentration (m/Q) which

would exist if the effluent discharge were simply diluted
in the total riverflow.

Introduction of these variables into Eq. 5.4.1 gives the dimensionless

equation as

-C (5.4.3)

where B = KE/V2 . (Some analyses include a factor of 4 in the defini-
tion of a parameter analogous to B .} If B << 1, as is frequently

the case, Eq. 5.4.3 reduceés to
2. (5.4.4)

which represents a simple plug flow model with a first-order reaction.
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5.4.3 Analytical Solutions

The origin is placed with X, = 0 corresponding to the location
of the source which has an initial mass flux of ﬁ. The steady-state 1D

concentration distribution from Eq. 5.4.3 may be written as

1/2
c, = ———~—l——T7§ exp |- a+ 43%8 il X (5.4.5)
(1 + 4B)
For B << 1, Eq. 5.4.5 can be reduced to
Ca = exp (—xa) (5.4.6)

This solution may also be obtained directly from Eq. 5.4.4.

5.4.4 Concentration Distributions

If K =0, then the concentration for X > 0 is constant and
equal to m/Q , which is the dilution ratio between the mass influx and
the streamflow. For K # 0 , the concentration decreases exponentially
with downstream distance as shown in Figure 46. The values of B8 used
in the figure are relatively large and are used primarily to illustrate
the behavior of the concentration distributions in the event that g
is large. (For many free-flowing streams, B based on natural biolog-
ical and physical processes for K and natural dispersion for E is
on the order of 0.1 or smaller. For pool and riffle streams or very
sluggish streams, larger values of B may be found.) One means of
indicating the effect of B on the concentration distributions is in

terms of Ca (at x, = 0) , which is given by

smax

1
C - _i (5.4.7)
a,max (1 + 43)1/2

The parameter B must be greater than 0.03 before C is reduced

a,max
below 0.95,
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One way of interpreting the effect of B is in terms of its
representing E for a constant K and V . 1In Figure 46, as B in-
creases so does the relative influence of longitudinal dispersion so
that the maximum concentrations decrease and the smaller concentrations
increase as dispersion transports mass down the concentration gradient
from the upstream high concentrations to the downstream regions of

lower concentrations.
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CHAPTER 6. CALCULATED CHARACTERISTICS OF
UNSTEADY CONCENTRATION DISTRIBUTIONS

6.1 UNSTEADY DISTRIBUTIONS

6.1.1 Introduction

Chapter 5 deals with some characteristics of steady-state con-
centration distributions. This chapter presents similar considerations
for unsteady distributions. Some of the general considerations from
Chapter 5 on topics such as crossing and mixing distances and on the
distance required to achieve vertical uniformity can be used as general
guidelines for the unsteady case as well as the steady case and thus
are not repeated in this chapter. Since the 3D region is relatively
short, as shown in Section 5.2.7, no unsteady 3D distributions are pre-
sented. Nevertheless, as illustrated in Section 6.2.3, it can be im-
portant to account for the effects of the vertical distribution of
velocity in the early part of the transport process.

Unsteady concentration distributions exist in rivers for a
variety of reasons such as having a "slug" release, having a continuous
but time-variable release rate, or having time-variable distributed
sources and sinks. The term "slug" release refers to a discharge or
spill that takes place essentially instantaneously; this condition is
also sometimes called an "instantaneous" or "puff" release. Unsteadi-
ness exists as the slug of released material travels downstream. The
slug mixes transversely until essentially uniform conditions are
achieved in the transverse direction and continually mixes longitudi-
nally. The advecting and spreading slug of material is sometimes
called a "cloud." 1If there is a continuous but time-variable effluent
discharge, then a time-variable or umsteady concentration distribution
results in the river. This type of situation is not considered expli-
citly in this manual; Thomann (1973) presented an analysis of unsteady
ID distributions resulting from variable effluent discharge rates.
Perhaps one of the best known examples of the third type of unsteadi-

ness is the varying dissolved oxygen (D0) distribution that results

206



from the diurnal variation of photosynthetic production of oxygen. For
all three cases, the unsteadiness 1s associated with some aspect of the
substance being transported but the flow 1s steady. Most of the pre~
sentation in this chapter is related to slug releases, both because
many of the essential features of transport problems can be demon-
strated for slug release and because many other types of releases can
be represented as a superposition of slug releases (Carslaw and Jeager
1959, Yotsukura et al. 1983, Kilpatrick and Cummings 1972, Yotsukura
and Kilpatrick 1973). Situations with unsteady river flow are not con-
sidered in this manual, There have not been extensive analyses for
such situations, although some cases are considered by Jobson (1981).

In free-flowing rivers, the important mechanisms influencing the
longitudinal transport process are the average longitudinal velocity,
the distribution of velocity, mixing across the velocity distribution,
and temporary storage zones, if any are present (Section 6.2.4b). The
average velocity influences the general rate of downstream movement of
the cloud. The velocity distribution produces the differential advec-
tion that provides much of the longitudinal spreading. The mixing
moves particles randomly from point to point and therefore from veloc-
ity to velocity within the cross section. By influencing how long a
particle remains in a region with a given velocity, the mixing across
the velocity distribution also influences the rate of longitudinal
spreading. The temporary delay or retention of parts of the cloud in
storage zomes can influence both the general rate of downstream move-
ment of the cloud and the rate of longltudinal spreading.

Since differential advection is a significant mechanism in
longitudinal spreading processes, it is important to have a reasonable
means of representing the velocity distribution for unsteady transport
problems. It is preferable to have the velocity distribution repre-
sented explicitly in the analysis. This is done for the transverse
distribution of velocity in the first three methods discussed in Sec-
tion 6.2. The fourth method does not properly account for the velocity
distribution and is therefore normally not as desirable as the other

methods. Nevertheless, it is sometimes used because of the ease of
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calculation., For 1D problems, the effects of the distribution of ve-
locity and the mixing across the velocity distribution are included in
the longitudinal mixing coefficient or in other spreading coefficients

for representations which do not use mixing coefficients.

6.1.2 Moments of Concentration Distributions

There are sometimes benefits in studying the moments of concen-
tration distributions resulting from slug releases. For example, the
rate of movement of the centroid gives the average stream velocity (if
there are no temporary storage mechanisms present, Section 6.2.4b), and
the rate of change of the variance can be used to obtain a longitudinal
mixing coefficient. Since the calculation of moments involves integra-
tion over (and therefore elimination of) one of the independent varia-
bles on which the concentration depends (Eq. 6.1.2), the presentation
and interpretation of some of the important features of concentration
data can be done more efficiently by using moments. Also, in making
predictions, it is frequently much easier to calculate the moments of
the distributions than to calculate the concentrations themselves.

Even though direct calculation of moments does not give the actual con-
centrations, the calculated moments do give much useful information
about the transport process. Furthermore, means are being developed to
be able to estimate concentrations from calculated moments (Tso 1982;
Section 6.2.4h).

In a general case, the depth-averaged concentration may be a
function of longitudinal distance, transverse distance, and time so

that

c = c(x,y,t) (6.1.1)
With measurements made at some specific longitudinal and transverse
locations, i.e. at specific x and y values, the measured distribu-

tions would be functions of t . For such distributions, the temporal

moments (np) are defined as
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n, = fctp dt (6.1.2)
0

The zeroth (p = 0) moment gives the area under the ¢ versus ¢t
curve. The centroid (t) can be obtained from the zeroth and first

moments since

=]

7|
(= § )

(6.1.3)

rtl
fl

The variance comes from the second and zeroth moments (and the first

moment in t):
n
o2 =n_2~ 2 (6.1.4)

The square root of the variance, i.e. the standard deviation (0) is a
measure of the "width" of the ¢ versus ¢ distribution, The skew-
ness (S) of the distribution comes from the third and lower moments and

is defined as

E1d
3 350? - £
0
S = 3 (6.1.5)
[4)

In general, as the order (p) of the moments increases, it becomes pro-
gressively more difficult to obtain accurate calculations of the
moments from data because small variations in ¢ values on the tails
of the distribution can cause relatively large variations in the

moments,
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6.2 TWO-DIMENSIONAL SOLUTIONS

6.2,1 General Comments

The dimensionless flow distances required to achieve various
degrees of transverse uniformity of concentration for steady-state con-
ditions are considered in Section 5.3.6. Approximately the same flow
distances are required to achieve transverse uniformity for unsteady
concentration distributions. Thus, there are many unsteady situations
which are two dimensional and need to be analyzed as such. 1In spite of
this fact, there have been relatively few analyses of the general char-
acteristics of 2D unsteady tramsport problems in rivers. Thus, most of
the examples that are presented in this section are for the simple case
of a rectangular channel with a parabolic transverse distribution of
longitudinal velocity.

For 2D unsteady transport problems, the longitudinal spreading
is associated primarily with the differential advection due to the
distribution of velocity and the mixing across the velocity distribu—
tion, as discussed in Sections 4.8.3 and 6.1.1. The accuracy of calcu-
lated concentration distributions depends to a large degree on the
accuracy with which the important mechanisms are represented in the
calculations. In the following four subsections, results are presented
from four different methods for analyzing 2D unsteady transport prob-
lems. The first three methods have the capability of directly repre-
senting the primary mechanisms. The effects of temporary storage are
included in only the third method; in principle, they could be included
in any of the methods. The last method does not properly account for
the important aspect of the transverse distribution of velocity and the
related differential advection.

The differential mass balance equation representing 2D unsteady
transport using general curvilinear coordinates may be written from

Eq. 4.7.26 (retaining the e term from Eq. 4.7.22) as
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(6.2.1)

3 % ac
+ 7=| =~ he — |- Khe
oy m, ¥ ay

In Eq. 6.2.1, the transfers across the surface (fs) and the bed (fB)
and the reaction within the water column as represented by k have
been combined into a single first-order reaction term represented by

K . As demonstrated by the depth-averaging process leading to

Eq. 4.7.22, ey in Eq. 6.2.1 represents the effects of differential
advection associated with the vertical distribution of velocity and
vertical mixing (Eqs. 4.7.18 and 4.7.21). 1If the y axis is along the
streamlines, then vy = 0 1in Eq. 6.2.1. On the other hand, if the
streamtube model is used, the mass balance equation can be written from

Eq. 4.7.33 as

dcy xde 13 (T oac
dt  m_9x m_mh 3x\nm X 9%
X X x
(6.2.2)
+ ZE 9 m 2 e se ). S_ EE - Ke
mo9q \ X Xy 3q h h

where the longitudinal mixing term has been retained in the development
from Eq. 4.7.22 to 4.7.33.

The calculated results given in the following sections are for a
straight, rectangular channel so that Eq. 6.2.] can be used with m, =
1, my =1, vy =0, and h = constant . As with the steady-state
solutions in Chapter 5, the calculated results for the unsteady distri-
butions are presented in dimensionless form with the dimensional vari-

ables being
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where the subscript r indicates a depth-averaged dimensionless repre-
sentation in a rectangular channel. See Sections 5.1.2, 5.2.2, and
5.3.2 for a discussion of the interpretation of similar dimensionless
variables, The parameter e, is generated as a coefficient in the
differential equation in the process of nondimensionalizing other terms

in the equation. Egq. 6.2.1 may now be written as

g
[
o

ac X _ 4 c ac
Btr + v = e + (6.2.4)

In Eq. 6.2.4, it is assumed that the substance being transported is

conservative (K = 0); the concentration has not been nondimensicnalized.

6.2.2 Numerical Solutions

The amount of published work for 2D unsteady transport is much
less than that for steady 2D problems. One reason is that even for a
straight rectangular channel and for a conservative substance, it gen-
erally is not possible to obtain analytical solutions to Eq. 6.2.4 when
vx is a function of y , but this dependence on y must be included

to properly represent the longitudinal spreading. Thus, most of the
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solutions which have been published for unsteady problems have been
obtained numerically, but even then the 2D results have frequently been
averaged tramsversely with only the width-averaged results being
presented.

A thorough discussion of various numerical solution techniques
is beyond the scope of this manual. Only two points will be mentioned.
One is that it is not a trivial matter to obtain a numerical scheme
which does not have significant numerical dispersion (i.e. one for
which the numerical scheme itself does not cause attenuation of the
peak concentration and spreading of the cloud) and which does not cause
oscillations of the tail of the concentration distribution. The other
point is that, in recent years, there has been considerable attention
in the literature to obtaining improved numerical schemes; so, early
publications should be used with care. Even 80, most of the more
recent publications deal with the numerical schemes themselves (fre-
quently for 1D problems) rather than with the characteristics of the
concentration distributions which exist for various situations., As a
result, it is not possible to draw generalized information from the
literature. Thus, concentrations were calculated for one idealized
flow situation to provide some insight into the transport processes and
into the types of information which can be obtained from calculations.

The situation considered in these calculations is a rectangular
channel with a parabolic transverse distribution of velocity. The
effects of longitudinal dispersion associated with the vertical distri-
bution of velocity are demonstrated in the results of the calculations.
A scheme was used which had zero numerical dispersion. In order to
accomplish this condition of zero numerical dispersion, the velocity
distribution had to be modified slightly, but was still approximately a
parabolic distribution. (Thus, in a general problem, it may not be
~ possible to use this type of scheme since the veloecity distribution had
to be adjusted slightly to achieve the zero numerical dispersion.

Also, the scheme depends on having a prismatic channel where the veloc~
ity distribution does not change with downstream distance.) Because of

symmetry, calculations were made for only half of the channel;
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10 filaments were used. Figure 47 shows contours of the calculated
concentrations for a vertical line source in the filament next to the
channel centerline. Note the changes in the scaling for the X, axis.
The solid curves are for e = 0.00001 in Eq 6.2.4. One condition
that would give rise to this value would be eX/HU* = 6 (Elder 1959),
ey/HU* = 0.5, B/H =140, V/U* = 14 ., -(See Chapter 7.} For a
centerline source, the mass is originally in a small region and is not
exposed to significant differential advection due to the transverse
distribution of veloecity so that the initial increase in the cloud
length is due primarily to the effects of the vertical distribution of
velocity as represented by e and e in the calculations. However,
as transverse mixing increases the width of the cloud, differential
advection associated with the transverse distribution of velocity
begins to increase the cloud length also; eventually, the effects of
e become negligible. Ultimately, mixing causes the concentration
distributions to approach, but never totally achieve (Fischer et al.
1979; Fig. 47; Section 6.2.5e), transverse uniformity.

The dotted curves in Figure 47 show the contours for e  or
e = 0 . Since trhis numerical scheme has no numerical dispersion, this
latter condition is equivalent to the frequently used assumption of
negligible effects of the vertical distribution of velocity on the
longitudinal transport process. The figure demonstrates the types of
errors which are introduced by assuming that e = 0 . Especially for
the small dimensionless times, using e, = 0 gives distributions which
are much too steep on the leading edge and gives maximum concentrations
which are much too large (Figure 48). The same general types of errors
should be expected in calculations for actual flows. {The abrupt
fronts in Figure 47 are sometimes not evident because of numerical dis-
persion in solutions. It is the authors' opinion that, whenever prac-
tical, numerical dispersion should not be used to represent actual
physical dispersion. It is generally desirable to be able to control
the calculated dispersion independently from the factors which influ-
ence the numerical dispersion, namely the finite difference grid size

and the difference scheme used in the calculations.)
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Figure 47. Calculated two~dimensional concentration contours with and
without longitudinal dispersion (Continued)
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RATIO OF MAXIMUM CONCENTRATIONS

15 |—

i

o |

103 1072
t, = DIMENSION LESS TIME

Figure 48, Ratio of maximum calculated concentrations for
two-dimensional situations with e = 0 and with e #0
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The general characteristics of the concentration distributions
are discussed further in the next section as the results of the random

walk simulations are presented.

6.2.3 Random Walk Simulations

Most of the calculated concentration distributions that are
presented in this manual and in the technical literature in general are
based on solutions to the differential mass balance equations for vari-
ous situations. The random walk approach is an alternative approach
which has been presented in the literature (Bugliarello and Jackson
1964, Sullivan 1971), but has not been widely used for idealized chan-—
nel flows or for rivers even though it is a Lagrangian scheme that has
zero numerical dispersion. The usefulness of the method for natural
streams with varying cross-sectional shapes and varying velocity dis-
tributions has recently been demonstrated (Jeng and Holley 1986).

Fundamentally; one of the main differences between solving dif-
ferential mass balance equations and using the random walk approach is
that the mass balance equations represent the time-averaged mixing
mechanisms by using mixing coefficients in diffusion-type terms while
the random walk approach has discrete particles that undergo random
displacements to represent the mixing, and ensemble averages for large
numbers of particles can be used to represent the concentration distri-
butions. In the present case, the advection is in the longitudinal
direction and the random displacements are in the transverse direction
to represent transverse mixing. No longitudinal mixing comparable to
e, is included in these sample calculations. Thus, these results are
valid only for t, greater than about 0.05 (Figure 48). The effects
of e can be included in the calculations (Jeng and Holley 1986).

Since mixing processes are normally characterized in terms of
mixing coefficients rather than iIn terms of random walk parameters, it
i{s necessary to have a relationship between the two types of represen-
tations, but the relationship depends on the way in which the random
mixing is represented in the simulation and on the probability distri-

butions used for the random steps of the discrete particles., One means
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of bridging between the two methods is to apply the relationship ey =

0.5302/8t for each time step in the random walk simulation, with 02
being the transverse variance of the concentration distribution. In
that case, 302/8t 1s equal to the variance of the probability distri-
bution divided by At for the simulation since the variance of the
probability distribution is equal to the increase of 02 for one time
step for a large number of particles. In these calculated results, a
rather elementary representation was used for the random transverse
steps of the particles. The step length (L) was taken as constant and
equal to 1/20th of the chamnel width. For each time step (At), each
particle had equal probabilities of moving one step to the right,
remalning at the original transverse position, or moving one step to
the left. For this situation, the relationship between e  and
302/3t then gives 7

2 2
_ 190" _ L
7% T3 (6.2.5)

Substitution into the nondimensional expression for Atr (Eq. 6.2.3)

leads to

IL—'
win o

At =

. (6.2.6)

where Lr = L/B . Thus Atr corresponding to each step of the parti-
cles was fixed by the selected Li of 0,05.

The simulation was done by releasing a large number of particles
(5000, in this case) with an initial distribution corresponding to the
assumed initial condition. For each time step, each particle was
advected a distance downstream based on &tr and on the flow velocity
at the particle's initial transverse location and was displaced trans-
versely in a random manner. (The velocity could be taken from the
initial position of the particle before the random transverse step or

from the average velocity over the path length. In this example, the
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former method was used.) The velocity distribution was the same as
that used in the numerical solution discussed in the previous section.
The no-flux or reflective boundary condition was satisfied by simple
reflection of the transverse path if a particle's path would have moved
across one of the side boundaries. At various times and locations, the
particles in AxrAyr cells were counted, with Ayr always being 0.05
and with Axr being increased from 0.002 to 0.05 as the 1eegth.of the
cloud increased. The number of particles in each grid should be
divided by the grid area (Axrﬂyr) and by the total number of particles
released to obtain concentrations corresponding to an initial release
of a unit mass.

Tables 7 and 8 give samples of the calculated results for a
plane source and a centerline source. The moment-related quantities
were calculated from the actual particle distributions, not from the
summed particle counts shown in the tables. First, consider the spa-
tial distributions for the plane source (Table 7). Since longitudinal
advection is faster than transverse mixing (and since the effects of e
are not included in these calculations), the distributions for the small
times result primarily from the advection with the original line source
being distorted into the shape of the velocity distribution. Thus, a
source which is originally uniform across the flow area becomes non-
uniform due to the differential advection. The resulting transverse
concentration gradients give rise to transverse mixing so that the con-
centration distributions gradually approach transverse uniformity, but
absolute transverse uniformity is never achieved in unsteady transport
problems (Taylor 1953, 1954; Fischer et al. 1979; Section 6.2.5e). The
length of the cloud continually increases. For all times except at the
very beginning of the transport process, the total length of the cloud
is less than would be iﬁdicated by the differential advection based on
the total differences between the maximum and minimum velocities; since
transverse mixing moves particles from point to point with different
velocities at the different points, there is no particle that stays on

the streamline with the maximum velocity to continually be advected with
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Table 7

Random Walk Simulation for a Plane Source

DIMENSIONLESS TIME = ,00333
SPATIAL PARTICLE COUNT MAP:
FIL1*

1 880 0 o

2 S04 0 o
3 337115 o0
4 793l 0
5 0508 o
6 0 348 170
7 0 145 388
8 0 04
9 0 0505
10 o o 486
DIMENSIONLESS DISTANGE * 1000
2 o0 2
LATERALLY INTEGHATED PARTICLE COUNT:
150015002000
MOMENTS:
RELATIVE  CENTROID
FILAMENT COUNT * 1000
1 .0960 -2.544
2 .1008 -2.015
3 1024 -1.182
% 1006 -.495
5 .1016 129
6 .1636 .62
7 L0986 1.048
8 .0982 1.316
g 1010 1.530
10 0972 1.622
T0TAL 1.0000 .00}

STD DEV
* 1000 VARIANCE
425 .00000018
.699 .00000049
.621 .00000039
.541 00000029
454 .00000021
.365 .00000013
.2814 .00000008
.204 .0000000Y
120 .000600001
.OuT ,00000000
1.481 .00000219
(Continued)

SKEW COEF
69719
.00791

-.07211
-.on4gy
= 13431
-, 1031
-.31934
-.21433
-.53560
-.77702

-.61718

* Filament 1 is next to the channel boundary. Filament 10 is next to

the centerline,
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Table 7 {(Continued)

DIMENSIONLESS TIME = .01000

SPATIAL PARTICLE COUNT MAP:

FIL

t 299 169
2 157 192
3 T
4 o o
5 o 0
6 ¢ 0
7 o 0
8 o QO
g 0 0
10 ¢ 0
DIMERSIONLESS

-6

39
98

o 0o ¢ 0

77 ¢ 0 0

109135 82 0 0

65 178 190 29 0

30
0
Q
a
0

0

a7 215 159 17
21 139 189 116

0 U2 225 268

o o 75 %08
o0 o 052
o 00Uyt

DISTANCE * 1000

-4

=2 0 2 4

LATERALLY INTEGRATED PARTICLE COUNT:
483 512 341 498 668 6771821

MOMENTS:

FILAMENT

1

nN

-

TOTAL

Q W & N ;N x W

RELATIVE CENTROID

COUNT * 1000
L1014 -7.094
.1028 -5.565
.0948 -3.507
L1004 ~1.581
L1016 .234
0930 1.765
.1070 2.843
0966 3.843
042 4.u51
.0982 4.759
1.0000 012

STb DEV

* 1000 VARIANCE
1.421 00000202
2.052 00000421
2.289 00000524
1.961 .00000385
1.790 00000320
1.4 00000208
1.094¢ 00000119
804 .00000065
501 00000025
257 .00000007
4,341 .6000188Y

{Continued)
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SKEW COEF
.95193
22168

-.17886
~. 36606
- 43692
-.39420
=. lusey
=.T7454
-1.15042

-1.80637

-.56842
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Table 7 (Continued)

DIMENSIONLESS TIME « ,03000
SPATIAL PARTICLE COUNT MAP:

FIL

1 W O6T119 72 55 51 30 29 21 21 14 T 4 1 1 ¢ 0 0 0 0 o
2 12 48 69 56 44 B8 39 37 39 23 26 23 11 16 7 2 0 0 o 0 @
3 0 16 3% 37 42 45 36 WY 39 37 37 38 28 23 23 1T 6 4 o o o
] 0 4 6 17 28 26 20 33 38 42 29 42 ug 42 3 32 30 12 9 0 o
5 @ 0 0 3 9 4o1& 13 1 4y 30 33 61 S4 50 43 51 s2 1 11 o
6 @ 0 06 0 0 2 2 4 5 9 20 26 26 3B 3 ¥ 52 63 67 56 20
7 G 0 0 ¢ 0 0 t T 0 4 B B 15 22 29 43 61 16 87 97T 69
8 © 0 0 0 0 0 0 0 0 0 4 0 2 8 T 1T 28 60 72125 1N
9 9 0 9 0o 0 0 0 © 0 0 ©0 0 0 o0 § & 15 37 50 115 284
10 0 0 06 06 0 0 0 0 0 ¢ 0 0 0 t 0 6 4 11 37 8 n

DIMENSICNLESS DISTANCE * 1000
=26 =24 -22 -20 -18--16 -14 -12.-10 ~8 -6 -2 6 2 ¥ 6 8 10 12 13

LATERALLY INTEGRATED PARTICLE COUNT:
22 135 228 185 178 176 142 161 156 155 168 177 196 205 187 211 247 315 353 U85 918

MOMENTS: _
RELATIVE CENTROID STD DEV

FILAMENT COUKT * 1000 ® {000 VARIANCE SKEW COEF

1 1004 -17.955 5.577 00003110 90541

2 L1000 -14.985 7.246 00005250 55261

3 1012 =-10.517 7.966 00006345 22153

L3 0986 =5.598 8.157 .00006653 = JA5797

5 .0984 208 7.133 .00005087 -.60978

[ L0940 U.646 £.304 -00003975 -.68151

i 1042 T.823 5.116 00002617 =1.07304

8 .0988 1G.805 3.T4% .00001406 -~1.65859

9 1028 12,366 2.627 .00000690 ~t.5824

10 1016 13.380 1.™1 .00000327 =-2.48701

TOTAL 1.0000 053 12.578 00015820 -.50036
(Continued)

(Sheet 3 of 6)
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Table 7 (Continued)

DIMENSIONLESS TIME = .10000

SPATIAL PARTICLE COUNT MAP:

FIL

] T 3 30 43 49 37 37 M 33 20 26 24 16 30 26 17 13011 8 9 9 1 2 1 ¢ 0 o o
2 e 1 15 21 3% 40 37 34 31 30 19 25 28 23 17T 18 19 9 4 & 6 8 & 6 2 1 a 0
3 o 1 9 14 13 30 36 31 31 33 33 19 33 23 25 22 21 23 18 15 16 16 13 19 6 4§ @

[} 0 0 2 1% ™ 24 29 20 17 25 26 24 17 26 2T 20 2% 17 24 23 22 27 18 20 20 11 2 ©
5 6 0 2 ¥ 5 5 13 15 27 22 25 14 26 21 4 26 20 22 & 22 24 35 29 21 4 2% 4 Q
L] Q o 0o o0 4 s 4 10 13 9 17 13 18 18 22 11 14 29 24 27 33 28 30 55 52 3 45 1
T © 0 0 0 0 © 2 3 4 10 9 10 1M 10 18 20 12 23 24 23 32 35 29 38 45 42 7T 3
a8 o 0 o 0 0 1 3 4 7 6 6 6 10 9 10 13 12 24 23 2y 28 ug 68 %5 113 13
9 g ¢ o ¢ o o o 2 1 1 1 1 5 3 9 6 6 12 10 11 24 28 29 28 44 493125 27
10 6 0 0 ¢ 0 0 0 1 0 0 t 2 2 3 4 3 T IC 6 10 15 19 26 31 60 Q4 173 6O

DIMENSIONLESS DISTAKCE # 1000

-85 -80 -75 =70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 -0 S5 10 1% 20 25 30 315 w0 L5 S0

v

LATERALLY INTEGRATED PARTICLE CQUNT:
15 5% 96126 142 163 160 158 157 164 138 16t t61 t72 152 146 169 158 170 204 218 212 265 337 448 55U 104

MOMENTS: )
RELATIVE  CENTROID STD DEY

FILAMENT COUNT * 1000 * 1000 VARIARCE SKEW COEF

1 6978 ~41.785% 25.078 .00062891 .58306

2 0014 -35.380 270 .00073554 .62046

3 Jd0z2 -24.817 29.513 .O00BTTO4 .32532

5 0980 -15,210 31.674 .00100325 .01291

5 0980 -3.525 31.247 00097637 -.23367

6 L1108 10.208 29,308 00085895 -.72912

7 1000 17.27 25.317 .DO06L096 ~.80955

8 1022 25.954 22,616 00051147 -1,46992

9 0950 30.910 18.673 00034867 -1.63997

10 .1050 35. 404 15,558 00024205 ~2.06279

TOTAL 1.0000 UG8 37.227 .00138583 -.bo204
{Continued)

(Sheet 4 of 6)
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Table 7 (Continued)

DIMENSIONLESS TIME =

SPATIAL PARTICLE COUNT MAP:

FIL

' 2 n
2 1 5
3 2
4 o 4
5 o 1
6 o 1
7 o 0
8 o o
9 ¢ o
10 o o

13
17
17

)

0

3
21
25

22

11
2
2
2

2

7
26
19
22
23
20
8
7
2

3

.30000

33
4t
18
26

20

T
4

DIMENSIONLESS DISTANCE * 1000
=220-200-180-160-140-120-100 -BQ -60 -40 -20

4L 4
36 43
37 34
37 33
32 35
M 27
22 29
15 18
1 n

9 15

LATERALLY INTEGRATED PARTICLE COUNT:
5 26 63 123 167 195 260 286 317 328 327 381 355 408 389 409 446 384 130

MOMENTS:
FILAMENT
1

Q W @ =\ N VM oE oW oN

-

TOTAL

RELATIVE'

COUNT

0946

+0958

0904

.0992

1070

J064

.1086

-1060

0912

L1008

1.0000

CENTROID

* 1000
-54.927
=b3.9%1
-29.023
-22.5M

-B39
13.204
26.751
40.078
%4.238
47.438

3.196

45
5
27
3r
37
37
21
25
20

-

25
42
27
42
38
24
49
27
26
28

23
13
37
19
B
28
33
2n
32
27

5y
32
38
36
37
iy
34
1
33
50

~0

35
k)]
3
38
39
50
35
4
26

29

20

36 23
37 23
44 36
39 27
42 43
47 54
47 sh
41 55
u no

VR

up 60

STO DEV
* 1000 VARTANCE
77.779 00604350
77.086 .00594222
83.130 .00691058
81.581 .00665551
80.376 00846034
79.845 .00637525
74,521 .00555389
72.334 .00523226
71.508 .00511334
69.897 .004BB562
84,664 .00T171453

{Continued)
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18 6
20 29
29 22
38 =8
49 49
52 59
52 66
58 76
1 59
53 61

&5

17
25
35
38

80 100 120 140

SKEW COEF

06742

.Oh785

-.196143

-.09534

~.25018

=. 49274

- 41966

-.68157

-.50784

~-.6301

=.32918
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Table 7 (Concluded)

DIMENSIONLESS TIME = 1.00000

SPATIAL PARTICLE COUNT MAP:

FIL
1 1
2 0
3 0
5 1
5 1
6 1
7 0
8 0
9 0
10 o

2

[*}

Wb W e

o v oW = -

1]

3

16 37
22 32
15 25
10 36
18 35
g 24
12 19
16 26
6 14

T 10

35
36
35
55
30

35
22

26
18

20

DIMENSIONLESS DISTANCE * 1000
' -450-400-350-300-250-200-150-100 -50

42 s
45 48
32 84
34 4y
27 45
33 W
30 Uy
23 13
23 33

26 36

LATERALLY IKRTEGRATED PARTICLE COUNT:
4 18 58 125 258 312 314 438 443 514 622 497 467 406 310 151

MOMENTS
FILAMENT
1
2
3
y
5
-6
7T
8
9
10
TOTAL

RELATIVE

COUNT
0870
JdMY
.0898
1058
1042
L1094
L1026
L1064
.0960

Q974

1,0000

CENTROID

* 1000
-ko.014
-22.5T4
-14.716
~4,545

7.321
27.032
26.415
35.039
59.015
57.547

13.856

33
1]
u8
43
42
43
ug
45
4s

36

38 54 u8
56 52 38
43 ST 48
50 S4 &9
64 65 52
4T 72 58
66 67 53
64 63 48
bo 76 u4

46 62 61

32
u3
30
52
39
53
u7
56
52
63

17 17
T 2
30 18
45 24
37 36
43 by
3T 32
53 43
56 42

51 W

20
18

17
18

-0 50 100 150 200 250 300

STD DEV
* 1000

158.550
159.916
163.256
169.373
169.602
167,462
159.209
161.899
154.106

150.137

164.633

VARIANCE
+02513801
02557327
02665248
02868709
02876467
028004337
02534758
02621134
L02374830

2251

02710404

L]

VoW W
£ w

350 100

44 19

SKEW COEF
L0Ug91
~.075%6
-.Quut6
-.12096
=.15297
-.22933
-, 18489

26150
=.306%0
-.37163

= 17756

22

6
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Table 8

Random Walk Simulation for a Centerline Source

DIMENSIONLESS TIME = .00167

SPATIAL PARTICLE COUNT MAP:

Fr ™

1 ]
2 ¢
30
] 0
5 0
6 0
7 1]
8 569
9 1664
10 2767

DELTA X FOR COUNTING =

DIMENSIONLESS DISTANCE * 10000
8

LATERALLY INTEGRATED PARTICLE COUNT:

5000

MOMENTS:
FILAMENT
1

o+

L - - T B S ¥ ]

TOTAL

RELATIVE
COUNT

2]

¢

.1138
.3328
5534

1.0000

CENTROID
* 1000

o o o o o

o o

750
+750
750

£750

.0002
STD DEV

* 1000 VARIANCE
L] 1]
o] [+]
0 [+]
0 4]
1] 0
1] I]
0 Q
[+] 4}
.000 ,00000000
. 000 00000000
000 20000000

(Continued)

SKEW COEF

0

0
.00000

00000

Q0000

* Filament 1 is next to the channel boundary.

the centerline.
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Table 8 (Continued)

DIMENSIONLESS TIME = .00500

SPATIAL PARTICLE COUNT MAP: DELTA X FOR COUNTING - .00Q2

FIL

1 O 0 0 9
2 o o 0 0
3 o o0 0 0
y 2 0 0 O
5 15 3 0 0
6 8 58139 0
T & 5u 158 252
3 0 71721733
9 o 0 511463
10 0 0 131833

DIMENSIDNLESS DISTANCE * 10000
16 18 20 22

LATERALLY INTEGRATED PARTICLE COUNT:
31 155 5334281

MOMENTS:
RELATIVE CENTROID STD DEV

FILAMENT COUNT * 1000 % 1000 VARIANCE SKEW COEF
1 0 0 0 ¢ 0

2 0 0 ] 0 0

3 0 <] ¢ 0 0

L L0004 1.583 ] [+} 0

s L0102 1.783 107 .0O0C0001 ~. 71485

6 oMo 1.956 REY .00000002 -.90780

7 0940 2.08s 2138 .00000002 -1,16213

8 1824 2.178 093 ,00000001 -1.6QU52

9 .3028 2.224 051 .00000000 -2.91412

10 .3692 2,242 .025 .00000000 -4.566705
TOTAL 1.0000 2,194 107 00000001 -2,65604

(Continued)

(Sheet 2 of 7)
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Table 8 (Continued)

DIMENSIONLESS TIME = ,01000

SPATIAL PARTICLE COUNT MAP:

FIL
1 1 ¢ 1 1 0 o0 t o
2 © ¢ 1 o6 o0 2 2 4
3 o 0o 1 0 3 1 3 2
3 o o 0 1T o1 1 1
5 a 1t 0o 0 06 0 0 o
6 6 0 0 0 0 0 1 o
7 0 0 98 0 0 0 1 o0
a 6 0 0 © 0 0 0 o
9 6 6 ¢ °0 0 0 0 o
10 0 o 0 0 0o 0 ¢ o
DIMENSIONLESS DISTANCE * 10000
2 & 6 B 10 12 14 16

LATERALLY INTEGRATED PARTICLE COUNT:

i 1 3 2 8 4 9 to
MOMENTS:
RELATIVE CENTROID
FILAMENT COUNT * 1000
1 .0010 958
2 0032 1.810
3 .0092 2.354
4 .0208 2.742
5 0u66 3.380
6 0876 3.719
7 3294 4.035
8 L1845 4,236
9 2458 k.37
10 .2720 b, L2
TOTAL 1.0000 4,150

DELTA X FOR COUNTING =

T ¢ 0o 0
0 2 1
o 4 y 2
L B 1+
1t o6 7 6

22

27

STD DEV
* 1000

57T
370
634
J6UT
550
488
410
+309
213

<150

533

(Con

-0002

17
9 25
26

13

26 28 30

Sh 4y

VARIAKCE
.00000033
-00000032
.00000047
00000042
,00000030
.0000002Y
00000017
.00000010
00000005

+00000002

.00000028

tinued)
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13
28
37

12

32

91 112

E
33
22

11

34

o o

-
[~
= o
o o

o 6 9 o o
o
o

36 28 4t [ ]

72 79 % 2 o

51 70 118 168 181 0

27 65 88 202 349 158

Py

57 154 508 4s7

18 33 115 471 718

36 38 4o E2 4y ug

118 201 272- 416 73515311333

SKEW COEF

+29995
-.04849
-.82813
-.63232
-1.16171
=1.06397
~1.70012
-1.83458
~2.86795
-3.65021

-2.55350
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Table 8 (Continued)

DIMENSIQNLESS TIME = .02500

SPATIAL PARTICLE COUNT MAP: DELTA X FOR CQUNTING = .0010

FIL

1 t 2 0 7T 1 3 T T 1t 14 8 16 18 ¢ 12 12 8 9 2 1-0 0 O
2 o 0 3 2 2 2 4% 5 10 13 6 12 13 17 t4 1T 15 17 14 11 5 0 0
3 0 06 1 0 3 2 & 0 3 3 13 14 9 1T 12 22 18 26 28 26 16 6 O
8 o o 1 © 0 2 1 & 3 5 6 8 11 %5 10 24 24 33 49 52 4w 33 1
5 0 0 1 0 0 © 2 T 2 3 3 4 L 10 14 21 22 4o sy 63 9T 62 17
6 ¢ ¢ 0 o 0o © 6 © 2 o0 t t S5 3 7 17T 25 35 47 90 119 145 84
7 ¢ 0 0 0 © 0o o 2 o6 1 t 2 2 5 3 T It 25 33 6B 107 177 198
8 0 0 ¢ 0o O O ©o 0O 0 0 @ o0 0 2 2 & 5 12 36 5% 113 184 333
9 @ 0 0 0 0O 6 O O o t 1 6 1 0 6 2 1 10 13 35 75 201 474
10 o o 0 0 ¢ 0 9 ©0 0 0O o0 0 6 0 0 1 4 3 T 23 63217 599

DIMENSIONLESS DISTANCE * 1000
-1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ©0 1 2 3 4 S5 & 7T 8 9 10 N

LATERALLY INTEGRATED PARTICLE COUNT:
1 2 6 9 6 9 18 19 31 40 39 57 63 T8 7T 129 133 210 283 U23 63910251706

MOMENTS:
RELATIVE CENTROID STD DEV

FILAMENT COUNT * 1000 * 1000 VARIANCE SKEW COEF
1 0296 -.053 3.87 .00001577 -.37334

2 L0364 2.188 n.232 00001774 ~.50222

3 QUl6 4,175 3.890 .00001513 -.Bru4

Y L0852 5.890 3.535 ,60001250 -1.25756

5 L0840 7.194 2.962  .00000878 -1.72342

3 Ja182 8.471 2.183 .000004TT -1.59194

7 1283 9.208 2.085 00000435 -2.40003

8 RITT 9.816 1.511 ,00000228 -1.51870

9 .1628 10.278 1.27% 00000163 ~3.61440

10 1834 10.493 919 00000885 -2.49309

TOTAL 1.0000 8,483 3,437 00001181 -2.11048

{Continued)

(Sheet 4 of 7)
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Table 8 (Continued)

DIMENSIONLESS TIME = ,05000

SPATIAL PARTICLE COUNT MAP: DELTA X FOR COUNTING = 0020

FIL
1 2 8 Y % 392 8 11 12 12 23 18 23 23 26 23 32 25 18 14 25 16 6 3 g 0
2 1 3 b kT 7 UM 8 17 13 19 15 16 25 18 25 31 26 19 36 16 24 1 )
3 1 0t 2 5 6 5 § g 9 9 15 11 19 15 25 21 22 35 33 36 32 38 26 13 0
4 0 0 1 0 0 3 3 6 4 B 7 17 12 14 18 z0 21 31 19 29 29 41 50 s¥ 9 2
5 © 0 0 0 2 5 4 2 3 5 9 g9 § 1 1215 27 25 24 32 37 45 61 76 65 g
6 0 0 0 0 0 0 0 0 3 8 9 7 7 10 10 17 5 25 20 22 43 49 8o ) 116 39
7 6 a0 0o o0 0o v 1 2 2 2 ¢ 5 6 5 1T 17 16 14 29 15 a9 72 88 134 69
8 6 0 0 0 ¢ 0 0 0 0 2 0 1 4 5910 § 8§ 8 22 15 30 55 59 88 171 130
9 ¢ 0 0 0 0 1 0 2 6 0 o 1 2 ¢ 3.9 4 5 8 16 25 32 54199 144 193

10 ¢ ¢ 0 0 0 o 0 o0 @ o 1 2 301 1 4 8 5 8 13 28 30 32102 204 195

DIMENSIONLESS DISTANCE * 1000
=28 -26 -24 -22 -20 -18 =16 -14 “12-10 -8 -6 -4 -2 o0 2 4 g 8 10 12 14 15 18 20 22

LATERALLY INTEGEATED PARTICLE COUNT: )
3 5 6 10 14 3 28 32 M1 59 73 95 88 111 125 154 168 193 194 222 300 369 472 678 882 637

MOMENTS:
RELATIVE  CENTROID STD DEV
FILAMENT COUNT * 1000 * 1000 VARIANCE SKEW COEF
1 0688 -.638 10,001 00010002 -.41050
2 0724 2,268 10.476 -00010976 -.48925
3 0780 5.494 10,251 +00010509 -.78822
4 0836 8.375 9.459 ~000089NT -.81956
5 <0968 10.821 9.033 -00008160 -1.23275
6 .1154 13.874 7.495 -00005617 -1.46834
7 L1100 14.950 7.129 00005082 -1.62623
-] «1248 16.768 5.746 -Q0003302 -1.81284
9 .1228 17,710 5,552 +00003082 -2.53915
10 L1274 18,347 4,700 00002209 -2.45258
TOTAL 1.0000 12,147 9.843 00009639 ~1.30678
(Continued)

fSheet 5 0of 7)
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Table 8 (Continued)

DIMENSIONLESS TIME = .10000

SPATIAL PARTICLE COUNT MAP: DELTA X FOR COUNTING = .0050

FIL

1 e o0 & 9 8 T 14 21 28 28 29 31 3 YO 34 46 39 37 17 &4 O O
2 0 0 S 3 11 13 14 11 18 29 33 37T 43 48 39 42 35 30 33 w4 1 O
3 1t 0 2 2 5 T 8 15 11 23 37 32 30 34 43 33 48 43 42 28 8 ©
y ¢ 0o 3 5 2 5 8 16 22 33 33 34 W1 46 %9 4T 31 4T O 2 O
5 o 0 3 1 3 o0 7 & 14 22 25 32 37 36 39 4T 5B 5B 62 66 3¢ 2
[ e o 0 0 5 7 8 8 1 1% 17 23 31 25 43 33 u4 51 43 81 sy @8
7 © 0 0 o0 t 3 2 6 11 10 1% 23 33 38 36 46 45 45 63110 T3 7
8 0o o o o @ 0 2 6 4 17T 12 20 10 30 27 S50 52 ST 72 88 98 M
9 ©o 0o o 0 6 0 ©o 2 T 9 8 26 12 26 26 29 U3 4 52105 82 18
10 ¢ 0 o0 0 0 O O 1t 5 2 5 %3 16 25 12 45 52 Lo 61 Bom 7

DIMENSIONLESS DISTANCE * 1000
-60 -55 -50 -U5 -%0 -35 -3¢ 25 -20 -15 -10 -5 -0 5 10 15 20 25 30 35 4D A5

LATERALLY INTEGRATED PARTICLE COUNT:
Tt 0 1T 20 35 4% 61 84 125 173 213 270 285 343 345 420 469 438 492 616 4BS 63

MOMENTS:
RELATIVE  CENTROID STD DEY

FILAMENT COUNT * 1000 * 1000 VARIANCE  SKEW COEF
1 .0878 4ok 19.933 .00035733 -. 14675

2 .0918 2,035 19,964 00039856 -.43876

3 .0906 7.070 19.863 .00039456 -.5ug4Y

8 .0982 9.298 19.774 60039101 -.57410

5 1106 14,174 18.880 00035644 ~.T0713

6 Ja012 16.690 19.992 .00039970 -.80422

T 1132 19,881 17.726 00031421 =.82411

3 a2 22,535 16.586 .00027510 -.98367

9 .098H 23.559 16,340 00026699 -.93149

10 .0970 25.916 14,581 00021260 -.97480

TOTAL 1.0000 14.621 20.238 00040956 -, 71851

{Continued)

(Sheet 6 of 7)
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Table 8 (Concluded)

DIMENSIONLESS TIME =

SPATIAL PARTICLE COUNT MAP:

FIL

-

Ww L N o d o2 ow N

10

o N O NOO o

-

0

0

o T E N W

& 4 mm WO

- W W -5

5

"
20
15

12

2

25
27
27
19
27
15
16

13

+20000

39
K1)
24
33
25
23
17
i3

7
13

DIMENSIQNLESS DISTANCE * 1000

33 53
LY B4 4
34 43
29 4z
25 19
17 S0
19 5t
23 42
14 U6

11 44

~80 ~70 -60 -50 -40 -30 -20 -10

LATERALLY INTEGRATED PARTICLE COUNT:
5 b0 65 103 1BY4 225 2U6 467 553 431 56 589 515 523 313 206

MOMENTS:

FILAMENT

WoR N oE W N

-
(-]

TOTAL

RELATIVE

COUNT

.0882

0972

0930

.1066

L1062

.1102

1052

.1000

0968

0966

1.0000

CENTROID

* 1000
3.85%
T.756
8.566
12.867
13.375
18.292

21.119
25,297

23.915

26.764

16.350

-0

55
4o
51
53
45
42
33
35
43
34

10

DELTA X FOR COUNTING =~

57 34
49 48
4y 43
61 59
48 68
u7 83
ho 72
34 T4
s 61
31 47

20 30

STD DEV

* 1000
30.438
32.216
32.678
32.697
33.654
32.949
32.347
31.478
32.161
31.480

33.164

0100

27
53
45
ug
59
54
64
LY}
55
64

40

23 15
34 19
35 20
kg 27
55 25
58 35
59 42
62 45
58 46
91 38

50 60

VARIANCE
.00092649
.00103787
.00106783
.001064908
00113260
.00108566
.00107892
.00099086
00103436

»00099099

-00109988

6

8

9
21
17
26
26
33
30
30

70

10

13

80

79

SK

EW COEF
~.00851
-.t1168
~. 17858
-.27423
- Hou16
-. 45497
-. 47052
-.41585
-.58611

=.59135

=.33u18
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that velocity nor any particle that stays on the streamline with the
minimum velocity. |

The temporal distributions would be somewhat like the reverse of
the spatial distributions. For a given cross section (given X ), the
cloud would arrive first in the center of the channel where the veloci-
ties are the highest and would arrive later at the sides. Farther
downstream as the concentration distributions become more nearly uni-
form, the percentage difference between the time of first arrival at
the center and at the edges would decrease., Also, since the longitudi-
nal spreading process continues as the cloud passes a cross section,
the temporal distributions are generally longer and more highly skewed
than the corresponding spatial distributions when compared in terms of
the dimensionless variables.

The behavior of the tramsport for a centerline source (Table 8)
using the random walk simulation is naturally similar to the results
seen from the numerical solution in the previous section. The mass is
originally in a small region and is not exposed to significant differ-
ential advection due to the transverse distribution of velocity so that
the eloud length does not increase very rapidly at first (if the ef-
fects of the vertical distribution of veloeity as represented by e
are not included as in the calculations). However, as transverse mix-
ing increases the width of the cloud, differential advection begins to
increase its length also. Ultimately, transverse mixing causes the
concentration distributions to approach (but never totally accomplish)
transverse uniformity. For each time, the length of the distributions
(as represented for example by the standard deviation) is smaller for
the centerline source than for the plane source because of the smaller
amount of differential advection in the early part of the process when
the cloud width is small. Again, the general behavior of the temporal
distributions could be deduced from thinking of the spatial distribu-
tions being measured as they are advected past the specified cross
sections and accounting for the continued longitudinal spreading as the

distributions pass.
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6.2.4 Temporary Storage

The rate of longitudinal displacement of a solute being trans-
ported by flowing water can be viewed as being the flow rate divided by
the storage capacity per unit length of the channel. For a simple
channel, the storage capacity is just the volume of the channel so that
the storage capacity per unit length is the channel area and the rate
of displacement is the discharge divided by the area, i.e, the flow
velocity. However, if a channel has storage capacity In addition to
the cross-sectional area where the flow is taking place, the displace-
ment rate for the transported substance is slower than would be indi-
cated by measurement of the flow velocities in the channel (and there
are also other possible changes in the transport process, as discussed
in Section 6.2.5f). The additional storage can be in any region of
water which does not have continuous downstream flow, e.g., the wake
regions behind sand dunes or behind cobbles in mountain streams, "dead
water" regions caused by debris or vegetation along the banks, separa-
tion zones on the inside of sharp bends, or the regions between groins
(jetties) or other bank protection structures. These types of storage
reglons are variously called. separation zones, dead zones, or pockets.
There can alsc be temporary storage in the pools of pool and riffle
streams when the pools are not totally flushed within one mean resi-
dence time (volume of pool divided by flow rate). Another storage
mechanism is the deposition and resuspension of sediment with absorbed
substances.

Naturally, if any of these mechanisms is present in a stream,
they are there for both steady and unsteady transport situations. How-
ever, for steady state, the storage comes to equilibrium with the con-
centration in the main flow; the storage 1s permanent as long as steady
conditions persist and thus has no net effect on the transport process.
On the other hand, for unsteady problems, the storage is temporary with
the solute moving into the storage region as the fromt part of the
cloud passes and then moving back out from storage into the main flow

as the tail of the cloud passes. It is this temporary storage which
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can influence not only the rate of displacement of the solute but also
the variance and skewness of the solute cloud (Section 6.2,5f).

The means of including the storage mechanism in the mathematical
representation of the transport process depends on the type of mech-
anism which is present. For example, for storage zomes, some of the
factors to be considered are the shape, size, and location of the
storage zones, the exchange rate between the main flow and the storage
zones, and the degree of mixing within the storage zones. The only
situation which is considered here is the case of well-mixed storage
zones which are distributed uniformly along the stream bed. It is
assumed that the storage zones are not interconnected longitudinally or
laterally.

In order to include the effects of the storage zones in the

analysis, additional variables are needed:

& %

¢ - concentration in the storage zones. In gemeral, c¢ 1is a
function of longitudinal position (x), tramsverse position
(y), and time (t).

* » '3 * -

h ~ depth of storage zomes. In this discussion, h is taken
to be constant, but this is not a necessary assumption in
general.

% . :

A «~ fraction of the bed area occupied by the storage zones.
*

K - mass exchange rate coefficient between the main flow and

the storage zones. The mass flux per unit plan area of the
storage zones is then K¥*(¢ - c¢*) , with a positive flux
being from the main flow into the storage zones.

The effects of the temporary storage are not included in the

calculations presented in Sections 6.2.2 and 6.2.3, but they are in-

cluded in some of the results in the next sectiom.

6.2.5 Temporal Moments Analysis

a. General comments. As is mentioned in Section 6.1.2, much

information about unsteady transport problems can be obtained from just
the moments of the concentration distributions without knowing the
concentrations themselves. Aris (1956) introduced the concept of

analyzing certain aspects of the transport by converting the
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differential mass-balance equation into an equation for the spatial
moments of the concentration distribution ( ¢ versus x at a gilven
time). One advantage of the moments approach is that the 2D moment
equations for unsteady situations have one less independent variable and
thus can be solved more easily than the 2D mass balance equation for the
concentration while all of the transport mechanisms are retained in the
analysis. Sayre (1969; 1975), among others, used Aris' type of analysis
extensively. A disadvantage of Aris' analysis is that it is for the
moments of the spatial distributions (i.e., ¢ versus x for given
transverse coordinates and given times), while most measurements are
temporal distributions (i.e., ¢ versus t at given longitudinal =x
and transverse y positions). Thus, Holley and Tsai (1978) and Tsai
and Holley (1978) extended the analysis so that temporal moments could
be calculated and compared directly with moments from measured concen-
tration distributions. Another disadvantage of any moment analysis is
that it gives only the moments of the concentration distributions, not
the concentrations themselves. Thus, for making approximate predictions
of concentrations, Tso (1982) investigated the use of similarity func-
tions for estimating concentrations from the moments. (See

Section 6.2.5g.)

b. Dimensionless variables and differential equations. The

same dimensionless variables given in Eq. 6.2.3 are used here since the
same situation (namely a prismatic rectangular channel with a parabolic
transverse distribution of velocity) is being considered. In these
examples of the temporal moments analysis, the velocity distribution is
exactly parabolic rather than the slightly modified distribution used
in the examples in Sections 6.2.2 and 6.2.3. Also, e, is zero; these
results were calculated before the importance of longitudinal mixing
associated with the vertical velocity distribution was recognized. If
e  were to be included, the character of the differential equations

for the moments and the method for solving the equations would change.
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Following the work of Holley and Tsai (1978) and Tsal and Holley
(1978, 1979), the additional dimensionless variables for the moment

calculations are defined as

c = BBHVC T
r Me
y
o5 B>HVc
Me
(6.2.7)
h -
A=A
2
*
o - B /ey B2K
- x %
h /X e h
y

The mass of substance released at x =0 and t =0 is M . The
parameter A is the ratio of the volume of storage zomes to volume of
main flow per unit length of channel. The parameter & is the ratio of
a characteristic time for cross-sectional mixing (B2/ey) to a char-
acteristic time for mass exchange with the storage zones (h*/K*). The
individual parameters A and © have physical interpretations as
given, but in the analysis of the various moments, A and ©§ occur in

specific combinations that are given the symbol § where

91 = (1 + 1) 8
_ 2 _ (1L + &)
92 = {1+ X 91 = Ql SEw— (6.2.8)
o e’ oo
3 A 12

While 91 and 92 are independent parameters that can replace A and

8 in the analysis, 93 is just a convenient combination of the other
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two parameters. For most natural channels, 9 > 1 and A < 1 s0 that

Ql < 92 < 93 (Holley and Tsail 1978).
The differential mass balance equations for the main flow and

the storage zones may now be written in dimensionless form as

be_ dc_ azcr .
ot Ve Tx 2 + eJ\(cr - cy)
T Tr
(6.2,9)
ac: * :
ErRRA SR
r

The last term in each expression accounts for the mass transfer between

the main flow and the storage zones. In writing Eq. 6.2.9, it is

* *
assumed that K , e , h, and h are constant and that ex =0 .

y

¢. Differential moment equations., The situation considered

“here is tranmsport in rectangular channels with constant depth storage
zones, as described above. Similar results for other cross—-sectional

shapes are given by Tsai and Holley (1979). Although the major aspects

of analysis by the use of moments can be
lar channels, there were some unexpected
the results for other shapes. A similar
done for meandering channels by applying
streamtube equations with e, # 0 (Bird

angular channels, the equations for both

seen by considering rectangu-

differences which appeared in

type of analysis has also been
the moment analysis to the

and Holley 1985).
the spatial and the temporal

For rect-

moments are presented, but most of the calculated results are for tem—
poral moments since temporal distributions are normally the ones that
are measured.

The p-th spatial moment of a c.

versus X, distribution along

any y_ and at any t_ in the main flow is defined as
r r

c xpdx
r

S (6.2,10)
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* %
A similar expression defines up as the p-th spatial moment of ¢

for the concentration in the storage zones. The differential equations
for the dimensionless spatial moments are obtained by multiplying

Eq. 6.2.9 by XE and integrating with respect to X, from -« to ©«
(Tsai and Holley 1978, 1979) to obtain

2
3t B2 + pvrup-l
r Y.
* (6.2.11)
ou

When Eq. 6.2.11 is applied for p =0, 1 is defined as being zero.

-1
The p-th temporal moment of a c. Versus tr distribution for

any X, and . is defined as

v =[ e tf_dt (6.2.12)

A similar expression defines v: as the p-th temporal moment of c:
for the concentration in the storage zones. The differential equations
for the dimensionless temporal moments are obtained by multiplying

Egqs, 6.2.9 by tz and integrating with respect to tr from 0 to ©
so that the p-th temporal moments for the main flow and storage zones

are given by
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Ve er 3 2

Tr
2y .
Ve xS gt p\)p_1 + AG(vp - vp) for p > 0 (6.2.13)
r dy

r
p-1

v = vp+ P )

As with the spatial moments, the -1 moments are defined as being zero.

In order to obtain these forms of the equations, some integra-
tion by parts has to be done. In general, the equations must be inte-
grated numerically to obtain the moments, with the solutions for the
moments being obtained recursively beginning with the zeroth moments.
Also, some additional considerations, which are not presented here, are
needed in the derivation of Eqs., 6.2.13. These considerations, as well
as the initial conditions to be used for the numerical integration,
were discussed by Tsal and Holley (1978, 1979).

d. Calculated spatial moments. Since measured concentrations

are normally in terms of temporal rather than spatial distributions and
since some characteristics of spatial distributions are presented in
Sections 6.2.2 and 6.2.3, no further results for spatial distributions
are given here. Moments for spatial distributions have been presented
by Aris (1956) and Tsai and Holley (1978, 1979) for flows with no
storage zomnes, by Valentine and Wood (1977) for flows with storage
zones, and by Sayre (1969, 1975) for different types of storage mech-
anisms. Tsai and Holley (1978, 1979, 1980) discussed the relationships
between spatial and temporal moments.

e. Calculated temporal moments with no temporary storage.

Eq. 6.2.13 was solved for a rectangular channel with a parabolic veloc-
ity distribution and with no storage zones for a plane source across
the full width of the channel (Figure 49) and for a point source on the

channel centerline (Figure 50). 1In these calculations, V. = 0 was
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at the edge of the channel and Yo = 0.5 was at the center. The fig-
ures give the results for four transverse locations with equal inter-
valgs of 0.150 of the channel width between the locations. The results
are also shown for the cross-sectionally averaged concentration (Cavg)'

First consider Figure 49 for the plane source. In this case,
the mass is initially distributed uniformly across the channel width.
The zeroth moments are initially smaller in the central part of the
channel and larger near the banks because of the velocity distribution;
in the center the mass moves rapidly because of the higher velocity and
thus gives smaller temporal moments, while nearer the banks, the mass
moves more slowly and gives longer ¢ versus t, curves and thus
larger temporal moments. As the mass is transported downstream, trans-—
verse mixing causes the concentrations distribution to become progres-
sively more nearly uniform so the differences between the various
transverse positions gradually disappear and for x> 0.05 , the areas
under the concentration curves are all within 57 of the average value.
However, as can be seen from the higher moments (the centroids and the
variances), the concentrations themselves are not totally uniform
across the width.

The influence of the velocity distribution on the transport can
also be seen in the time of occurrence of the centroids. For all xr R
Er is smaller in the central part of the chanmel than near the banks.
As x_ increases, the rate of increase of tr eventually becomes the
same across all of the channel. However, the concentration distribu-
tions near the banks always lag behind those in the center of the chan-
nel. This effect is seen in the fact that Er is always larger near
the banks, even for large X, - As xr continues to increase, the
difference in the times of occurrence of the centroids at the center
and at the banks remains constant, but this difference becomes propor=-
tionally smaller since all of the Er values are continually increas-
ing. The behavior of the variances is generally similar to that of the
centroids with smaller variances for the concentration distributions in
the central part of the channel than for the sides of the channel.

Proportionately, the differences in the variances across the width of
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the channel are larger than the differences in the centroids. Signifi-
cant differences exist in the variances even in the central 20% to 30%
of the channel width. Thus, in conducting longitudinal mixing tests,
it can be important, as pointed out by Holley and Tsai (1978), to prop-
erly account for the streamline on which measurements are made.

Figure 50 gives the temporal moments for a centerline source.
Since all of the mass is initially in the center of the channel, the
zeroth moments are initially large there and zero near the banks. The
zeroth moments begin to increase from zero for each ¥, as transverse
mixing brings mass to that v, o Note that the dimensionless moment is
greater than unity for many positions (e.g. for X, < 0.1 din the cen-
tral part of the channel). Thus, if concentrations were measured for
any of these positions and taken as being the average for the cross
section and then integrated with respect to time to check the mass bal~
ance, it would appear that more mass had been recovered than was re-
leased into the flow. When comparing the plane source case and the
centerline case, there are marked differences in the zeroth moments and
there are some differences in the development, during Fischer's initial
period (Section 6.3.2), of the transverse distributions of centroids and
variances. Nevertheless, the ultimate behavior and relative
distribution of the centroids and variances is the same for both cases
(and for any other type of initial condition which might be considered)
because, as Fischer et al. (1979) showed, the ultimate, equilibrium
transverse concentration distribution depends on the channel shape, the
velocity distribution, and the transverse mixing, but not on the initial
condition. Also, even though the changes in the concentrations can be
represented by 1D analyses for X greater than about 0,1, 1D analyses
cannot properly account for the transport processes and the development
of the concentration distributions within the initial period. The
calculations also show that there can be significant differences between
the moments for the average concentration, as would be represented in a
1D analysis, and the concentration on the center line of the channel.
Recall that X, of 0.1 can correspond to very large actual distances

for medium and large streams (Section 5.3.6).
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f. Calculated temporal moments with temporary storage. The re-

sults of Holley and Tsai (1978) can be used to demonstrate the influ-
ence of temporary storage on the transport process. The caleculations
were for a rectangular channel with a parabolic velocity distribution,
with a plane source across the full width of the main flow, and with
uniformly distributed storage zomes of constant depth on the channel
bottom. Caleculated results for other cases were given by Tsai and
Holley (1979). For the rectangular channel, the results were given
(Figure 51) for the moments of only the cross-sectionally averaged con-
centrations with NO ’ T, 52 , and S being the zeroth moment, cen-
troid, variance, and skewness for the averaged concentrations in the
main flow and T* being the centroid for the average concentration in
the storage zones. Some of the observations that are made below are
based on analytical results (Holley and Tsai 1978, Tsai and Holley
1979) as well as on the results shown in the figure. The analytical
work was done for any shape prismatic channel with constant depth
storage zones and with the initial instantaneous upstream source being
in only the main flow.

Figure 51 shows no dependence of NO on the storage zones since
all of the mass must eventually move downstream even if some of it is
delayed temporarily by storage. Comparison of NO in Figure 51 with
the curve in Figure 49 for the cross-sectionally averaged concentration
shows that the two curves are the same. Consideration of the centroids
begins to reveal how the storage mechanism can influence the transport
process. Rather than plotting the centroids themselves, Figure 51b
gives the quantity T/(1+A) - X, . Thus, this figure shows the dif-
ference between the time of occurrence of the centroid (after account-
ing for the slower cloud travel assoclated with A) and the centroidal
time (T = xr) which would exist for a simple 1D transport problem.

If Ql is large (say, greater than 1000), then there is rapid
exchange between the main flow and storage zomes so that the concentra-
tion distributions in the two regions move downstream in phase with

R
each other and with T =T . This condition is called "concentration
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equilibrium" between the main flow and storage zones. When concentra-
tion equilibrium exists, the primary effect of the storage is to slow
the cloud movement relative to the flow velocity in proportion to the
ratio of the total storage capacity to the storage in the main flow,
i.e. in proportion to (1 + A). See Eq. 6.3.20. Thus, this factor has
been included in the plots of the centroids (and variances) so that all
of the remaining variation depends only on Ql (and QZ }, as shown in
the figure. For 91 < 1000 , the exchange with the storage zones is
slow enough that the concentration distributions in the storage zones
lag behind the downstream movement in the main flow. This lag is shown
by the fact that T*/(l + 1) > T/(1 + X) for the smaller values of Ql
in Figure 51. As the lagging mass in the storage zomes mixes back into
the main flow, it adds to the upstream tail of the cloud, increasing the
variances and skewnesses (Figures 5lc and 51d). Even for A =0,2, S
for large X is only slightly greater than for A =0 and decreases
as X, increases.

The values of the Q's and A for matural streams are fre-
quently small enough that concentration equilibrium exists (Holley and
Tsai 1978). While these calculations for a rectangular channel with a
parabolic velocity distribution are indicative of many of the essential
types of influences of storage zones, some of the details of the behav-
jor are different for different shapes of channels and for different
distributions of storage zones. Other cases were considered by Tsai
and Holley (1979}.

g. Estimated concentration distributions, In principle, the

shape of a concentration distribution is uniquely determined if the in-
finite series of moments of the distribution is known. Since it is not
practical to calculate all of the moments to determine concentration
distributions, Tso (1982) investigated the possibility of using the
first four (zeroth through third) calculated moments to estimate the
concentrafions. Since only four moments were used, it was necesséry to
make some additional assumptions; he assumed that the concentration
distributions are similar, i.e., that they may be estimated from a

gimilarity function whose area, centroid, variance, and skewness are
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determined by the calculated moments. He investigated five similarity
functions to determine which one most nearly represented the shapes of
114 concentration distributions measured in 10 tests in laboratory
flumes and in 27 fields studies. The Pearson Type III (PT-III) dis-
tribution was the best of the ones that he investigated. The same sim-~
ilarity function had been used by previous investigators (Sayre 1975,
Liu and Cheng 1978) without presenting considerations as to why it was
selected. A further discussion of the general shapes of measured con-
centration distributions is given in Section 7.7.3¢ and the PT-III dis—
tribution is illustrated in Figures 72 and 82, The mathematical ex-
pression for the PT-III distribution as a concentration distribution

may be stated as

n t-g °7! t - g
c =3 I‘c()b ) ( " P) exp (- _—E_P) (6.2.14)
PP P P
where
2
2
bp = ( 3 )
02 1/2
aP = b (6.2.15)
P
_E. (ozb )1/2
&p P
with n = the zeroth moment , t = the centroid ’ 02 = the variance ,

and S = the skew coefficient .

6.2.6 Pseudo Two-Dimensional Analysis

In 2D unsteady problems, the transverse distribution of longitu-
dinal velocity is a major part of the longitudinal spreading process,
but the inclusion of this velocity distribution makes it impractical to
try to obtain analytical solutions for concentration distributions and

even means that it is not a trivial matter to obtain accurate numerical
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solutions. Thus, strictly as an expedient, it has sometimes been as-
sumed that the transport can be represented by using the cross-
sectionally averaged velocity (V) for the advection and using longi-
tudinal and transverse mixing coefficients to represent the spreading.
This approach normally cannot correctly represent the transport mecha—
nisms since transport is not one dimensional during the early part (xd
< 0.2) of the process (Fischer et al., 1979). Even though a longitudi-
nal mixing coefficient really should not be used from the standpoint of
the mechanics of the transport, if one is used, it probably should be
one that increases with downstream distance or flow time. (See Sec-
tion 7.7.3b for ID situations.) This type of approach should be recog-
nized as generally being more of an approximation than the methods dis-
cussed previously. If a decision is made to assume a constant
coefficient, there is no rational basis for specifying the "correct"
longitudinal mixing coefficient in general terms {(except perhaps for the
very early part of the process when the longitudinal spreading is due to
the vertical distribution of velocity, Section 6.2.2).

For a constant velocity V , constant area A , and constant
mixing coefficients E and ey in a rectangular channel of width 3B ,

the differential mass balance equation may be written as
fepyd_plcy, a—ngc (6.2.16)

where all of the reactions are combined into one first-order term. For
a slug of mass M released at x =0, y=a,and t = 0 , the con-

centration is given by the method of Images to be

o 2

2

c=-—-——M— exp (-—Kt)E E exp - (X—&E::—Ez-i-
j=1

4T \} Eey {m—co

(6.2.17)

(= (=1Ya - 2m)?
be t
¥
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A modification of this expression can be used if E is assumed to be a
function of =x (Section 7.7.3b). If Eq. 6.2.17 were to be used, it
probably is best to use it for estimating conditions for limiting cases
where the largest and smallest reasonable mixing coefficilents are as-
sumed to determine if there are potential problems that require a more

detailed analysis.

6.3 ONE-DIMENSIONAL SOLUTIONS

This section gives some of the solutions that have been pre-
sented in the literature for 1D conditions. However, it should be
noted that some of these solutions apply only under rather restrictive
conditions (Section 6.3.1) and that the 2D approaches discussed in the
Section 6.2 can be used for calculations from the release point,
through the 2D region, and on into the region where 1D conditions
exist. Thus, if one has the capability of making the 2D calculations
discussed earlier, there is really no need (other than some savings in
computational time) to also have a separate capability for 1D calcula-
tions and, in general, better representation of the transport processes

in free-flowing streams is obtained with 2D models.

6.3.1 Criteria for Existence of One-Dimensional Conditions

Basically, the criterion for using a 1D mathematical analysis is
that ID physical conditions exist, i.e. that the variation of the con-~
centration across the width of the channel for the majority of the
cloud is small compared with the average concentration at that cross
section. Sayre (1968) and Fischer et al. (1979) discussed specific
criteria for the existence of 1D conditions. Sayre (1968) and Tsai and
Holley (1979) showed that the dimensionless flow distance required to
obtain 1D conditions depends on the stream hydraulics (cross-sectiongl
shape and velocity distribution) and the location of the initial source
within the cross section. Fischer et al. (1979) recommended assuming
ID conditions only for X3 > 0.2 ., The calculations of Tsai and Holley
(1979) indicate that the critical value of x; 1s 0.1 £ 0.05 for the
various conditions that they investigated. The examples in
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Sections 7.5 and 7.8 include illustrations of the relationship between
actual flow distances and dimensionless distances. For very small
streams, the actual distance may be only a few hundreds of feet. For
medium to large rivers, the distance may be so great that the transport
is two dimensional throughout the region of interest. If the required
distance is large, then a possible 507 variation in the critical value
for 1D conditions can correspond to a very long distance. Neverthe-
less, there are some aspects of transport calculations for rivers (e.g.
the mixing coefficients) where it may not be possible to know the
parameters with an accuracy of 50Z.

The above considerations are for free-flowing streams with con-
tinuous cross sections where the differential advection associated with
the velocity distributions is responsible for the longitudinal spread-
ing. For pool and riffle streams where the mixing within the pools and
the gradual depletion of solute stored in the pools accounts for the
longitudinal spreading, ID conditions may be obtained after the flow

has passed through one or two pools.

6.3.2 Fischer's Initial Period

Fisher (1966a, 1966b) was the first to demonstrate explicitly

for rivers that Xd d,lD)

for 1D conditions to exist. This fact was implicit in Taylor's (1953,

must be greater than some critical value (x

1954) pioneering work on longitudinal dispersion but, before Fisher's
work, most persons working with transport problems in rivers had not
recognized the great importance of accounting for the processes within
the region where 2D conditions exist. Fischer's original presentation
was in terms of flow times instead of distances, so the time (or re—

gion, x ) for which 2D conditions exist has come to be known

a * *a,1p
as Fischer's initial period. Among other things, Fischer pointed out
that the velocity distribution is all that is needed to account for the
highly skewed concentration distributions that are frequently observed
to occur in streams. His observation is supported by much subsequent
work, including the skewnesses in observed distributions {Section 7.8).

Since 2D conditions exist in the initial period, 2D calculations should
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be used to represent the transport in the initial period. As mentioned
above, 2D calculations correctly represent the transport in the 1D
region also, so they can be continued as far downstream as desired, or

some provision can be made for switching from 2D to ID computations at

the end of the initial period. If the latter approach is taken, the ;mmmmmmwwwu

transverse differences in the concentration distributions (as repre-
sented for example by the differences in the centroids and variances in
Figures 49 and 50) will not be obtained from the subsequent 1D calcu-
lations. Also, even for calculations for cross sections beyond the
initial period, provision must be made to account for the skewness and
other characteristics of the concentration distributions which

develop during the initial period.

6.3.3 Distributions with No Temporary Storage

When 1D conditions exist, the transport may be represented by
Eq. 4.8.31. If it is assumed that all of the sources and sinks can be
represented by one first-order reaction term with a rate coefficient of
K , that the cross-sectional area, velocity, longitudinal mixing coef-
ficient, and first—order rate coefficient are constant, and that the
effects of temporary storage are negligible, then the differential mass

balance equation may be written as

2
aC ac _ a3 C
‘ge'i‘v-a';('-E?—KC (6.3.1)

For unsteady situations, advection and dispersion are frequently the
primary mechanisms, with decay or reaction taking place relatively
slowly. For these situations, the dimensionless terms can be defined
based on V and E with the effects of K being represented in a

parameter for the problem rather than in the variables:
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L'r:l|<4'
]

E
E E
(6.3.2)
_ AEC
Cp = W
KE
8=

where M is the mass initially released into the flow and the other
variables are defined in Section 4.8.3.

In dimensionless terms, the solution to Eq. 6.3.1 for a slug of
mass (M) released instantaneously at x_ =0 and t_, =0 ({with 1D

E E
conditions existing immediately after the release) is

(6.3.3)

This type of solution implies that 1D conditions exist for all Xp > 0
and thus does not account for the skewness of the concentration distri-
bution that develops during Fischer's initial period. If the initial
period is a significant fraction of the total study reach, Eq. 6.3.1
should be solved beginning at the end of the initial period (i.e. at
XE’ID ) rather than beginning at Xp = 0 , and the initial condition
should be the skewed distribution that exists at the end of the initial
period. Since Eq. 6.3.3 does not account for the skewness that de-
velops during the initial period, it does not apply until after the
cloud has traveled long enough in the 1D period for the initial skew-

ness to be eliminated by the longitudinal mixing, Fischer et al.
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(1979) suggested that Eq. 6.3.3 should be used only for X4 (= xe /VB )
> 1 . This distance is so great for medium and large rivers that

Eq. 6.3.3 has very little region of strict applicability for such
rivers.

a. Spatial distributions. If Eq. 6.3.3 does apply, it gives a

Gaussian or normal spatial distribution which has the follbwing
characteristics:
(1) It is being advected with the velocity V and the cen-

troid is always at EE = tp.
(2) The area under the CE versus Xg

decreasing because of the reaction (if B# 0 ) and is given by

curve is continually

<0

chde = exp (-Bty) (6.3.4)

—gxy

and is thus decreasing exponentially due to the first-order reaction.

(3) The maximum concentration is given by

1
CE,max = (_4h)17§ exp (-BtE) (6.3.5)

th

The maximum concentration decreases in proportion to t;l/Z due to the
mixing and simultaneously has an exponential decrease if there is a
first-order reaction.

(4) The nondimensional spatial variance grows linearly with

time according to

= 2t (6.3.6)

%, x E

so that the length of the distribution, which is proportional to Op « *
H

grows in proportion to the square root of time.
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b. Temporal distributions. The characteristics of the temporal

distributions (CE versus tE) represented by Eq. 6.3.3 for a fixed
location (xE) are somewhat different from what would be observed if the
spatial distribution described above were "frozen" and simply advected
past the observation location, The differences are due to the fact
that, as the cloud passes the observation location, it is both dispers-~
ing due to the longitudinal mixing and decaying due to the first-order
reaction. Both of these processes cause some difference in the varia-
tions of the moments for the temporal distributions compared to the
spatial distributions, including the fact that the temporal distribu-
tions are slightly skewed while the spatial ones are symmetrical (but
the skewness of the calculated 1D temporal distributions is much less
than the skewness that develops during the initial period), Some of
the characteristics of the temporal distributions are given below. In

the following equations

st o

A= 2
(6,.3.7)
1
B = ORI ———
C 1+ 4p) /2
For B<<1, A=~RB and B=1 .
(1) The area under the concentration curve is
f CEth = B exp (—-AxE) (6.3.8)
0]
It is only for B8 << 1 that
f CEth = exp (-BXE') (6.3.9)
0
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For this case, the area under the temporal concentration curve de-
creases exponentially due to the first-order reaction in a fashion sim—
ilar to that for the spatial distributions (Eq. 6.3.4)., For the larger
values of B , the combined effects of the mixing and the reactiomn give
a different rate of decrease of the area.

(2) The centroid is given by
t, = Bx, + 2B (6.3.10)

If the cloud velocity (VE c) is derived from the rate of change of the
3

centroids, then

-1

3
n
]

=

(6.3.11)

Thus, the reaction gives an apparent cloud velocity which is too large
unless B << 1 so that B=1 .

(3) The variance is

o2 = 283 + sB®

E,t E (6.3.12)

so that

ot _ 9p3 (6.3.13)

or, in terms of the original dimensional variables,

2
dot

= - 2E (6.3.14)

31+ 4p)302
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For a conservative solute (8 = 0), the rate of increase of the variance
can be used directly to obtain the longitudinal mixing coefficient (E).
However, for g > 0 , the derivative in Eq. 6.3.14 is smaller than it
would be for a conservative solute in the same flow; thus the mixing
coefficient indicated by the rate of change of the variance would be
too small if this derivative were used without accounting for the reac-—
tion. Even for relatively small values of g , the error in calcu-
lating the longitudinal mixing coefficient can be significant because
of the three-halves power on the term containing B in Eq. 6.3.14,
Eq. 6.3.14 also shows that the calculated value of E depends strongly
on the value of V for given concentration data, but the values of V
can frequently be obtained rather accurately from the concentration
data. (See also Section 7.8.)

Even though Egs. 6.3.11 and 6.3.14 were derived from a mathe~
matical solution based on the assumption of 1D conditions for all
x > 0 , it can be shown using superposition that these expressions
involving the gradients of t, and 02 are also valid for the

E E,t
1D transport which follows a 2D initial period if Eq. 6.3.1 is valid.

6.3.4 Distributions with Temporary Storage

Thackston and Schnelle (1970) analyzed the 1D equivalent of the
problem considered in Section 6.2.5, 1l.e., a channel with storage zones
distributed uniformly along the stream bed. They considered the case of
uniform flow with constant velocity, mixing coefficient, and exchange
rate coefficient with the storage zones., For this situation, the mass
balance equations for the main channel and the storage zones may be

written for conservative substances as

* %
3Ca+vgg=Eazc_KA
2~ H

*
_a (C - C) (6.3.15)
Bta X %

and
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*
aC *
2= K «-c% (6.3.16)

ata h

(The sign is wrong on the last term of Eq. 6.3.15 in the original
paper.) The variables are defined in Sections 4.8.3 and 6.2.5.
Thackston and Schnelle considered only the case with A* =1, but the
results can be scaled to other values of A* . They assumed an instan-
taneous initial source at x, = 0 and t = 0 and used LaPlace trans-
forms to solve the differential equation. The transforms had to be
inverted numerically, so their results were presented graphically for a
limited number of situations, as shown in Figures 52 and 53. The fig~
ures are given as originally presented by Thackston and Schnelle. In
addition to previously defined quantities, the parameters for the cal-

culations were Pe = Vx/E and

* * *
h /K _ h Vv
x/ V/(1 +1) K (1*+ A)x

R = (6.3.17)

where R 1is the ratio of characteristic times for exchange with the
storage zones and for movement of the cloud through the reach of length
x (when concentration equilibrium exists). All of the calculated re—
sults were for Pe = 1000 and t = 6,95 hr . In retrospect, there are
two unfortunate things about the way that the results were given.
First, the results were not given in totally dimensionless form; spe-
cifically, the time axes on the graphs are not dimensionless. Thus,
the results cannot be interpreted as broadly as might have otherwise
been the case. Second, the dimensionless variables and parameters have
the original dimensional variables and parameters intertwined in such a
way that extreme care must be used in interpreting some of the graphi-
cal results. For example, there may be a tendency to view Figure 52 as
showing the change in concentration versus time at a given distance if
the amount of storage capacity is changed. Thackston and Schnelle

apparently did this and came to the incorrect conclusion that the
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presence of storage zones decreases the residence time, or increases
the effective advective transport rate, for a given reach of a river.
The problem is that, while x is in Pe , x and A are both in R
so that changing ) while holding R constant means that x cannot
be constant for the curves in Figure 53. If the type of analysis used
by Thackston and Schnelle were done in such a way as to lock at the
effect that increasing A would have on concentration distribution at a
given x , it would be seen that the residence time would be increased
for the stream reach and that the changes in the shapes of the concen-
tration distributions would be in accord with the discussion presented
in Section 6.2.4 for the 2D analysis.

(Thackston and Schnelle's results are presented to demonstrate
the calculated effects of temporary storage on the concentration dis-
tributions. However, they did not account for Fischer's initial period
(Section 6.3.2) in their analysis so that much of the effect which they
attributed in their data analysis to the storage mechanism probably was
probably due to the effect of the transverse velocity distribution.)

While there are no simple analytical solutions for Eq. 6.3.15,
an analytical solution can be obtained for the case of concentration
equilibrium between the main flow and the storage zones (the limiting
case of very rapid exchange between the main flow and the storage zones
or very large K* ). For this case the mass balance equation can be

written as

2
€ _gact

X ax2

1+ ) %E‘ +V (6.3.18)

Since X appears only in the time-derivative term, a new variable can

be introduced with

£ = (6.3.19)
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thereby reducing Eq. 6.3.18 to the mathematical form of Eq. 6.3.1 (with

K =0). In dimensionless terms, the solution for a slug of mass M

released at x =0 and t =0 ig
2
X - t!
CE=__1_1/'§ exp -(—EF,E-)— (6.3.20)
(4ﬂté) E

K Vzt/[E(l + A)] = tE/(l + A) . Thus, the only effect of

storage for the case with concentration equilibrium is to slow the

where ¢t!

whole transport process down in proportion to 1/(1 + A) .

6.3.5 Cells—-in-Series Model

Stefan and Demetracopoulos (1981) analyzed the transport of a
slug of mass through a series of well-mixed cells in the context of
transport in rivers. They used this type of representation as an ap-
proximation for the transport through a reach of the Upper Mississippi
River with irregular cross sections. They also mentioned that this type
of representation might be used as an approximation of the conditions in
a pool and riffle stream. The mass balance equation for any cell may be

written as
S— == - = =KC (6.3.21)

where C 1is the concentration in the cell, t d4s time, W 1is the
rate of mass input into the cell either from the upstream cell or from
an external source, ¥ is the volume of the cell, Q@ dis the flow rate
out of the cell, and K 1is a first-order rate coefficient., They
solved Eq. 6.3.21 for constant ¥ , Q, and K, and with the only
external input being an instantaneous release of mass M into the
first cell at t = 0 ., The concentration may be written in dimension-
less terms for the j-th cell (j > 1) as
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g1
s

c “exp [-(1 + Ks)ts} (6.3.22)

s (j-1)!

where the dimensionless variables are

_C¥
Cs M
= Qt
ts vV (6.3.23)
. k¥ 5
KS = Q -

The concentration distribution may be integrated to determine the tem—
poral moments and these may be used to evaluate the following parame-—

ters for the CS versus tS curves:

8,0 s s (1 + K,)J
0 s

N B
s (1L +X)
S (6.3.24)

—3
s (1 + K )2
s
2

s j1/2

In sequence, these quantities (all in terms of the dimensionless con-
centration, Cs’ for the j—th cell) are the area under the concentration
versus time curve, the centroid of the distribution, the variance, and
the skew coefficient. The effects of the first-order reaction can be
seen by comparing these results with the equivalent terms with

KS = 0 , This type of comparison shows that any reaction not only
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causes less mass to pass through a given cell so that Ns,o decreases
as KS increases, but also causes the centroid of the concentration
curve to occur earlier since the reaction has more time to reduce the °
concentrations on the tail than on the rising limb of the distribution.
The reaction also causes the total width of the distribution to de-
crease because of the additional reduction of the concentrations on the
tail, so that o also decreases for a given cell (or a given x ) as
KS increases. However, all effects of Ks compensate in such a way
that Ss is independent of KS . The dependence of the concentration
distributions on KS is similar to the dependence on B in
Egqs. 6.3.7-6.3.12,

Stefan and Demetracopoulos used Eqs. 6.3.22 and 6.3.24 to re-
write the concentration distribution in terms of time relative to the

centroidal time for the j~th cell. An alternate version of their equa-

tion may be written as

j-1

1 i s . 8
C =— -— exp [- § — (6.3.25)
Y + . -
s (G-t {1 Ks ts :

Sample conmcentration distributions from Eq. 6.3.25 are plotted in Fig-
ure 34a as given by Stefan and Demetracopoulos for a conservative
solute (KS = 0); Note that this method of plotting continuously dis-
torts the scales as j dincreases since CS is multiplied by 3§ and
since tS increases linearly with j . This type of scaling results
in a vertical exaggeration and a horizontal compression as j (or

Es ) increases. A similar plot is given in Figure 54b for KS = 0.05 .
This value implies that 5% of the mass is lost due to reaction in a
time equal to the residence time in one cell (since [1 - exp (~0.05)]
= 0.05) . One effect of the reaction, namely the reduction of mass,
can be seen by comparing the area under the curve for a given j in
Figure 54a with the area for the same j in Figure 54b. The graphs

also demonstrate that the reaction reduces the concentrations on the
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tails of the distributions more than on the rising and central parts of
the distributions.

This cells-in-series model is a specific case of general lumped

parameter analyses discussed by Martin (1976) and Beer and Young (1980,
1983).
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CHAPTER 7. EXPERIMENTAL CONSIDERATIONS

7.1 INTRODUCTION

This chapter presents some considerations related to experi-
mental programs, gives some information on numerical values and related
considerations for mixing coefficients, and summarizes some experi-
mental results from field studies. Both steady and unsteady problems
are considered, but 1D steady-state experiments are not included be-
cause they are influenced primarily by distributed sources and sinks
such as biologlcal and chemical processes which are not within the =
scope of this manual.

In this chapter, a brief summary is given of the types of data
which are desirable for field studies. Then some data analysis tech-
niques are presented (particularly for determining mixing coeffici-
ents), available results for mixing coefficients are summarized and
discussed, and finally a few sets of data from the literature are pre-
sented., These types of information are given first for steady-state
transverse mixing experiments and then for unsteady, longitudinal

transport experiments.

7.1.1 Steady-State Transverse Mixing Experiments

The literature contains data and data analyses for both labora-
tory and field studies. Much of the available data has been summarized
by Fischer et al. (1979). Most of the laboratory studies have been
conducted in rectangular flumes. There has also been a very limited
number of laboratory studies in rectangular meandering channels and an
even more limited number in meandering laboratory channels with
cross-sectional shapes approximating those of natural channels. Some
of the field studies have been for relatively short reaches, for exam-—
ple, reaches which were contained within one bend or which were short
enough that the tracer being used to study the transport did not dis-
perse across the channel width since the reach was shorter than the
crossing distance. In other studies, the reaches were longer, and some

studies have been conducted with the reach length being on the order of
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the mixing distance. Most studies of transverse mixing have been con-
ducted with steady-state injection and concentration distributions;
Beltaos (1975) presented a method for using a slug injection for trans-
verse mixing tests., This method is illustrated in Section 7.5.4.

The primary objectives of experiments on steady~state 2D trans-
port problems have been (a) the determination of transverse mixing
coefficients, (b) the evaluation of characteristics of concentration
distributions, and (c) the demonstration of the utility of the

streamtube model.

7.1.2 Unsteady Longitudinal Mixing

With very few exceptions, the data collection and analysis pro-
grams for experiments on unsteady longitudinal transport and mixing
have assumed that ID conditions existed, even though this assumption
frequently has not been checked either experimentally or by estimating
the mixing distances necessary to achieve approximately 1D conditions.
Nordin and Sabol (1974) summarized the results from 51 experiments in
24 rivers for slug-type injections. For small streams, the tracer in-
jection has frequently been made by simply dumping the tracer near mid-
stream; for larger streams, there has sometimes been an attempt to
spread the tracer across the stream width to approximate a line source
condition. However, if the criteria for ID conditions are actually
met, the details of the release method should be of little importance,
There have also been numerous laboratory studies, again mostly in rec-
tangular channels. Most of the available results for longitudinal mix~
ing coefficients for both laboratory and field studies were summarized
by Fischer et al. (1979).

Some of the primary objectives of the unsteady experiments have
been (a) determination of the longitudinal mixing coefficient, (b) dem-—
onstration of the importance of the transverse distribution of velocity
in the Iongitudinal mixing process, and (c) investigation of the causes
and characteristics of the "long tails" often observed on temporal con-

centration distributions.
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7.2 DESIRABLE FIELD DATA

This section presents a summary of the types of data which would
be desirable for a thorough experimental field study. It is generally
desirable to have the types of data described here regardless of the
objectives of the experiments. However, it is recognized that it may
not be feasible to collect all of these data for each experiment. The
discussion assumes that an artificial tracer is used to determine the
transport patterns. The necessary changes should be apparent if a

naturally present tracer 1s used.

7.2.1 Hydraulic Characteristics

a. Stream discharge. The discharge can generally be obtained

from US Geological Survey stream gaging records to define the flow
conditions for the study and to provide a check of the velocity and
depth measurements discussed in paragraph 7.2.1d below.

b. Stream stage. The stage can also be obtained from stream

gaging records. In addition, a temporary staff gage should be in-
stalled and read periodically during the test to monitor for possible
unsteadiness. Measuring the water height on bridges or other permanent
structures can prove useful for resolving discrepancies which sometimes
appear during data analysis.

c. Plan-form geometry. The information which is needed to

define the plan-form geometry includes the stream width at the injec-

tion cross section, at each of the measurement cross sections, and at

any significant changes in width and alignment of the stream. Meander- 2
ing streams are frequently characterized as a series of approximately .
circular ares connected by approximately straight sections. The arcs

are described by the location of the center of curvature, the radius of
curvature for the stream centerline, the length of arc, and the stream

width. The straight sections are described by their length, directiom,

and width. Any channel islands or other significant physical features

should be included in the description. All of these features of the

plan-form geometry should be shown on a scale drawing of the study

reach, including enough of the stream upstream and downstream of the
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study reach to Indicate how the flow enters and leaves the reach. As

is seen in Section 7.4, this type of Information and the general char-
acteristics of the cross-sectional shapes (paragraph 7.2.1d below) are
useful for estimating mixing coefficients and for comparing the results

of a particular study with other experimental results.

d. Cross sections and velocity profiles. Standard stream
gaging procedures (Buchanan and Somers 1968) should be used to deter-
mine the cross-sectional shapes and the velocity profiles for the
injection and measurement cross sections and for any other particularly
significant cross sections. Notes should be made and photographs taken
to document the general types of cross sections (well-defined and
unobstructed, patches of sediment and weeds, highly irregular, ete.).
The distributions of depth and velocity are needed in the data analysis
to determine mixing coefficients and in subsequent predictions of coﬁ-
centration distributions. Also, immediately after each cross section.
1s gaged, it frequently is convenient to mark (by means of a tag line,
anchors and floats, etc.) the locations where concentrations are to be
measured, if river traffic will allow this.

Although it is most desirable to have complete stream gaging at
each significant cross section, velocities can be obtained somewhat
easier by the moving boat method (Smoot and Novak 1969) if appropriate
equipment is available. In the absence of time or resources for direct
measurement of velocities, they can be estimated from the depth distri-
butions for free-flowing streams with regular cross sections (Yotsukura
and Sayre 1976).

e. Flow time. For each measurement cross section, it is
helpful to know the time-of-travel from the injection site and to know
the time (tA) at which the concentration from a slug injection starts
rising from zero and the time (tB) at which it falls back to zero
(Section 7.2.2a). This information can be obtained with standard
time-of-travel procedures (Hubbard et al, 1982). Preliminary time-of-
travel estimates can be made with the average velocities obtained from
the stream gaging. There are at least two potential problems with this

approach. One is that the average of the velocities measured at a few
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cross sections may not be the average for the entire study reach,
particularly if the cross sections where velocities are measured
include constricted sections (such as bridge openings) that are fre-

quently used for stream gaging purposes. The other is that the average

flow velocity in the main channel may not give the average veloelty of N

a tracer cloud because of temporary storage effects (Section 6.2.4b).
f. Slope. The slope of the energy grade line is needed to
calculate a resistance coefficient (Manning's n, Darcy-Weisbach £,
Chezy C, etc.). Low Froude number flows have small velocity heads
relative to the flow depth, so the slope of the energy grade line can
be assumed to be equal to the slope of the water surface. Standard
surveying techniques can be used if benchmarks are present in the
vicinity of the study reach. Care should be taken to ensure that the
water surface elevations are obtained at representative points, i.e.
not in sharp bends where superelevation may cause a gsignificant trans-—
verse slope of the water surface nor in high-velocity regions where
obstructions (rocks, debris, etc.) cause a disturbance of the water
surface. When surveying is not feasible, the slope can sometimes be
estimated from the general land slope obtained from topographic maps.
For short study reaches, an accurate determination of the slope may
require considerable effort because of the difficulty of measuring
small changes in water surface elevation. If the flow is undisturbed
so that the slope in the short study reach is the same as for a longer
reach, then the slope for the longer reach may be used, of course.

g. Bed material and bed forms. It is helpful to have notes

and/or photographs about the bed materials and bed forms (flat bed,
dunes, etc.) at representative points through the study reach. This
information, along with the cross-sectional size and shape and the
velocity, can be used to check the resistance coefficient and to pro-
vide a general characterization of the test reach.

h. Storage zones. For unsteady transport problems, it is

important to have information on storage zones along the stream bed
and/or banks. This type of information has not been obtained very

frequently in the past so there are no generally accepted procedures.
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The types of information which are needed are the size (area exposed to
the main flow and volume in the storage zone), location, and distribu-
tion for storage zones such as wakes behind sand dunes of other bed
forms, cobbles or larger stones in the stream, irregularities or debris
along the banks, etc. Visual inspection will frequently reveal whether
possible storage zones along the banks are being continually flushed by
the flow or whether there is a time lag in the exchange with the main
flow. Although the quantitative information will probably need to be
estimated, even estimates are an aid in trying to assess the possible

influence of the temporary storage mechanism.

7.2.2 Tracer Injection

This section presents some considerations related to tracer
injection; the following section discusses concentration measurements.
Moré extensive considerations are given by Hubbard et al. (1982).

a. Steady-state tests. A frequently used procedure for steady-

State experiments is to inject a tracer at a constant rate at a known
location in the stream for a duration great enough tc provide for the
desired length of steady-state conditions at the cross section which is
farthest downstream. The information which is generally needed con-
cerning the injection inecludes the longitudinal, transverse, and verti~
cal location of the injection tube, the concentration of the injected
tracer, the injection rate, and the times at which the injection is
started and stopped. It is desirable for stream gaging to be done at
the injection cross section (as well as the measurement cross sections)
so that the cumulative discharge can be determined for the transverse
location of the injection.

If Rhodamine i1s Being used as the tracer, the injection location
should normally be selected (for example, near the water surface) to
keep the highly concentrated injection solution away from bed sediments
because of possible adsorption losses. Some investigators (for exam-
ple, Yotsukura, Fischer, and Sayre 1970) have added light-weight
liquids such as methanol to the injection solution to bring the
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specific gravity to approximately unity. Although adjustment of the
specific gravity is the recommended procedure, it may be possible in
gome cases to make the injection of diluted Rhodamine near the water
surface in such a way that the mixing associated with the falling dye
plume and with the turbulence in the stream prevent the tracer from
sinking immediately to the stream bed. The analyses of Section 3,6 may
be used to estimate the dilution of the negatively buoyant jet or plume
of injected tracer as it travels over the water depth. This type of
analysis does not include the effects of ambient turbulence and thus
gives a conservative estimate.

The tracer normally is prepared to give a predetermined injec-
tion concentration. Estimated mixing characteristics of the stream and
tracer decay rates are used to determine the injection concentration
which is required to provide accurately measurable concentrations at
the last cross section. Even with a predetermined injection concentra-
tion, samples should be taken periodically from the injected tracer for
later analysis for concentration. At least three samples should be
taken from each container of tracer which is prepared for injection,
with one sample when injection from the container begins, one when
about half of the tracer has been injected, and one when the container
is almost empty. In case there is any nonuniformity in the tracer, the
location from which the sample was taken in the container should be
noted.

The two most common devices for obtaining a constant injection
rate are battery- or generator-operated diaphragm pumps and mariotte
vessels. When operating properly, either type of device is capable of
providing a constant flow rate over many hours.’ Pumps have the ad-
vantage of providing a definite pumping mechanism, and a properly
selected pump generally can operate for several hours from a fully
charged 12-volt automobile battery. Pumps have the disadvantage of
possible mechanical or electrical failure. Mariotte vessels have
no mechanical parts which can fail, and they require no power source.
However, the flow rate usually depends to some degree on the fluid

viscosity and the tube diameter so that adjustments may need to be made
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during a long injection to compensate for changes in temperature.
Also, the injection tube generally must be open to the atmosphere near
the bottom of the vessel with the injection flow passing out of a tube

coming from the vessel, through the atmosphere, then into a collection

device, and finally into a tube to the stream. Care must be taken to R

keep the tube going to the stream from becoming air-locked due to bub-
bles brought from the collection device. Before going to the field,
the selected injection system should be set up and tested for the ex-
pected duration of the actual injection and under conditions as nearly
like those in the field as possible.

Whichever injection device is used, the volumetric injection
rate should be determined periodically {say at about 15- to 30-minute
intervals, since the adverse consequences of a change in injection rate
can be very severe). It generally is acceptable to interrupt the tracer
flow to the stream for about 30 seconds to measure the flow rate with a
graduated cylinder and a stop water. The volume should be read as
rapidly as possible and the collected tracer immediately reintroduced
into the injection system in such a way that it flows directly to the
stream to help compensate for the interruption. (The collected tracer
should not be poured back into the tracer reservoir,)

The required duration of tracer injection to obtain a given dur-
ation of steady-state conditions can be determined as shown in Fig-
ure 55. Figure 55a illustrates the concentration response curve at a
given measurement point for am instantaneous injection at t = 0 ., The
time when the concentration first starts increasing above zero is tA s
and the time when the falling limb of the curve reaches zero (or, say,
2% of the maximum concentration) is tB . As illustrated in Fig-
ure 55b, an injection started at t = 0 with a duration of Ty gives
a steady-state concentration at the measurement point from tB to
TI+tA (Yotsukura et al. 1983). Note that this means that steady-state
may exist at some downstream stations even after the injection is
stopped. When it is crucial to know the limits of the steady-state
period accurately, the actual response curve should be determined with

a slug dye test. In other cases, the response curve can be
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approximated from the time-of-travel and from estimated longitudinal
mixing characteristics for the stream. 1In such casesg, if measurements
of concentration are made near ¢t = tB » it should be directly deter-
mined from the concentration measurements that steady conditions exist.

b. Transient tests. For transient (unsteady) tests, the injec-

tion of dye is much simpler than for steady-state tests. The injection
frequently consists of simply dumping a known quantity of tracer at the
desired location, after adjusting the specific gravity with a fluid
such as methanol, as for the steady-state case. The injection location
should be known in terms of longitudinal and transverse position and
cumulative discharge. The injection generally should not be made in
shallow or stagnant regions of the stream. By estimating the amount of
longitudinal mixing through the study reach and the expected tracer
decay and by specifying the minimum desirable concentration at the
downstream end of the reach, the required amount of tracer can be
specified for the injection.

In mathematical terms, dumping tracer at one location corres-
ponds to a point source. Occasionally, an attempt has been made to
dump tracer rapidly across the width of a stream in order to approxi-
mate a line source. In some situations, this type of injection may be
justified, but frequently it is not needed. Sometimes, this type of
injection has been used on the mistaken assumption that the mixing dis-
tance (Section 5.3.6) is significantly shorter for a line source than
for a point source. Also, it should be noted that the practical
aspectg of trying to achieve a line source usually prevent the physical
condition from corresponding exactly to the normally assumed mathemat-
ical condition, namely a constant initial concentration across the
stream cross-sectional area. Under field conditions, the best that can
normally be expected (except in very small streams) is to be able to
release tracer at a constant rate from a boat which travels at a con-
stant speed straight across the river. Even if this ideal is achieved,
the concentration will not be uniform; it will be higher in the shal-

lower parts of the river.
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As with the steady injection, consideration should be given to
keeping the highly concentrated injection solution away from bed sedi-

ments as much as 1s practical.

7.2.3 Concentration Measurements

a. Steady-state tests. For steady-state tests the objective is

generally to determine the time-averaged transverse distribution of
tracer concentration at specified cross sections. The same method used
to define the transverse locations for the depth and veloecity distribu-
tions can be used for the concentration distributions. As mentioned
previously, the locations for the concentration measurements frequently
are marked in conjunction with the stream gaging at the measurement
cross sections. For cross sections where the tracer plume occupies
only a fraction of the width of the stream, it may be desirable to
locate the concentration measurements closer together in the transverse
direction than the velocity or depth measurements. Although the test
reach for studies to determine transverse mixing coefficients normally
should extend beyond the crossing distance, it is not necessary for the
test reach to extend to the mixing distance (Section 5.3.6). The lat-
ter part of the approach to transverse uniformity may contribute very
1ittle additional information about the transverse mixing process since
the transverse concentration gradients are very small.

It frequently is assumed (Section 5.2.7) that complete mixing
exists over the depth in rivers so that concentrations need to be mea-
sured at only one point in the vertical for each transverse location.
However, in bends the helical motion may distort the concentration dis-
tribution faster than vertical mixing can restore vertical uniformity.
This potential situation has not been analyzed thoroughly enough to be
able to give definitive conditions under which vertically nonuniform
conditions might be expected. As a general guide and until more de-
tailed information is available, it is advisable to take three or more
samples along the vertical at each sampling point for bends for which
UH/U*Rc > 0.04 (Section 7.4.2). Any tendency toward vertical nonuni-

formity should decrease as the transverse concentration gradients
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decrease, but again this behavior has not been quantified,

In seeking to define time-averaged concentrations, it is helpful
to recognize that the turbulent fluctuations of concentration are
greater in the regions where the transverse gradients of concentration
are greater. (See the example for the IJssel River data in Sec-
tion 7.5.2.) Thus, for some cross sections it is necessary to take
definite steps to provide for time-averaging over a sampling period
(ts), which should be on the order of 100H/V where H is the stream
depth and V is the flow velocity. In some situations, a sampling
time of 1l00H/V is prohibitively long so that some compromise is nec-
essary in selecting tS . One method for obtaining time averages is to
make (say) 10 concentration determinations at equally spaced intervals
during the selectedl tS » This approach also gives some information on
the concentration fluctuations, which may be of interest in water qual-
ity considerations. The amplitude of turbulent fluctuations of concen-
tration in the stream is damped if the sample flows through a tube (as
contrasted to being measured directly in, or collected directly from,
the stream). The amount of possible damping can be estimated from
longitudinal dispersion theory for tubes (Taylor 1953, 1954), Another
method for determining the time-averaged concentration is to use sample
bottles which are designed to fill at a uniform rate during tS .

b. Transient tests. For transient tests with slug-type injec~

tion of tracer, the objective is generally to measure the concentration
versus time distributions at selected locations. TFor distances larger
than the mixing distance, the measurements usually are made at only one
transverse location for each cross section. The sampling location is
then normally near the center of the stream, but the exact location is
not very important if there is no significant transverse variation of
concentration., For distances shorter than the mixing distance, the
transverse extent of the cloud for each measurement cross section
should be estimated from transverse mixing considerations, and sampling
should be done at enough transverse locations to describe the variation
of the concentration with both time and transverse position in the

stream. (See Section 7.5.4.) If a slug-type injection is being used
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for a transverse mixing test, then the concentration versus time curves
should be integrated to provide the zeroth moment (no) for use in the
subsequent analyses (Section 7.5.4 and Eq. 6.1.2).

For the steady-state tests discussed previously, the timing of
sampling is not crucial once it has been established that a steady
state actually exists. For transient tests, the timing is extremely
crucial in terms of knowing the time at which sampling should be
started, knowing the approximate time of passage of the tracer cloud so
that an appropriate sampling interval can be selected, and knowing the
time at which each reading is made during the sampling. In some cases
where a sampling tube is being used with a pump to a concentration mea-
surement instrument, 1t is necessary to correct the time of sampling to
account for the flow time in the tube. Temporal concentration distri-
butions are essentially always positively skewed, i.e., the rising part
of the curves is steeper than the falling part. For some distributions
(especially for distances much less than the mixing distance), the
rising part of the curves may be extremely steep so that rather small
time intervals between the first samples are needed to define the

curves.

7.3 DATA ANALYSIS FOR STEADY-STATE EXPERIMENTS

This section summarizes possible methods of data analysis
assuming that the streamtube model is being used to determine a trans-
verse mixing coefficient and that the mixing coefficient is to be cor-
related with the hydraulic characteristics of the stream. (The same
type of results can be obtained by using a coordinate system which fol-
lows the streamlines but without making the variable transformation
from y to q .) It is assumed that the data are from an experiment
using a conservative tracer to determine the hydraulic and mixing char-
acteristics of a stream; since these characteristics are independent of
any biological and chemical processes in a stream (assuming that these
processes do not change the water density or the ambient flow pattern),
information from conservative tracers can be used in models which also

incorporate distributed sources and sinks for other types of substances.

280



An analysis based on the simplifying assumption of a rectangular cross—
sectional shape would be generally the same as what is discussed here
but with fewer variables in some parts of the analysis. The appro-
priate changes for the assumption of a rectangular channel are briefly
noted in the discussion.

It 1s important that the same degree of detail be used in de-
scribing the hydraulics in the data analysis and in the subsequent use
of mixing coefficients obtained from that analysis because the mixing
coefficients effectively represent all of the traﬁsport processes which
are not explicitly included in the model. TFor example, it is not appro-
priate to calculate a mixing coefficient using a streamtube model and
then use that coefficient to calculate concentration distributions from

a model assuming a rectangular cross section.

7.3.1 Coordinate System

Longitudinal and transverse coordinates need to be established.
In order to minimize the deviations of m from unity, the longi-
tudinal coordinate should be along the center of the river with trans—
verse distances measured from this longitudinal axis. However, except
in sharp bends or in very wide, meandering rivers, the difference in
longitudinal distances between two cross sections, whether taken along
the inside or along the outside of bends, is small so that m _ can fre-
quently be approximated as being equal to unity. Then, as a practical
matter, the origin of the transverse coordinate can be taken at either
bank, but the longitudinal distances should be measured along the
center of the stream. Vertical distances are normally measured rela-

tive to the water surface.

7.3.2 Cumulative Discharge

In the streamtube model, the transverse mixing is considered as
taking place relative to the depth-averaged streamlines (Section 4.7.4).
Thus, the concentration distributions are viewed as being a function of
the cumulative discharge in the transverse direction so that this vari-

able accounts for the stretching and compressing of the concentration
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distribution associated with the transverse velocities; the remaining
changes in the transverse direction are attributed to transverse
mixing.

To obtain the cumulative discharge (q) as a function of y
(Eq. 4.7.28), the measured velocities along each vertical line are in-
tegrated to give hvx . If the metric coefficients are needed, then
my is evaluated from the plan~form geometry, and Eq. 4.7.28 is inte-
grated to various y values., The velocity, depth, and cumulative dis-
charge distributdons are frequently presented as shown in the examples

in Section 7.5.

7.3.3 Concentration Simulation

This section and the next one on change of moments summarize
alternate methods for obtaining transverse mixing coefficients. The
simulation method has the advantages that it avoids the large effect
that small concentrations at the edges of concentration distributions
can have on calculated moments and that it is somewhat easier to in-
clude spatial variations of the hydraulics and of ey in the simula-
tion method.

In the simulation method, the 2D mass balance equation is solved
numerically using the measured hydraulic characteristics as inputs and
trying various values of the tramsverse mixing coefficient to obtain
the best fit of the calculations with the concentration measurements.
The magnitude of the mixing coefficient can be varied for different
sections of the stream depending on the hydraulic characteristics.
(See Sections 7.4 and 7.5, where correlations with H and U, and
with positions along a channel bend are presented.) The longitudinal
computational steps usually are significantly shorter than the distance
between measurement cross sections so that some interpolation from the
measured depths and velocities is needed to obtain the inputs for the
numerical solutions. Yotsukura and Sayre (1976) and Holly (1975)
presented examples using the simulation method. Rather elementary
numerical techniques can frequently be used to solve the mass balance

equation since numerical errors giving rise to numerical dispersion in
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the longitudinal direction are not very important for steady-state
problems. However, it is important to use the best possible estimate
of the distributions of depth and velocity across and along the stream
since these distributions can have a significant influence on the cal-
culated concentration distributions. To illustrate this point, a cal-
culated example is given in Figure 56 for a rectangular chanmel with
two source conditions and with power-law velocity distributions in the
transverse direction. An exponent (n) of 1 in the power law gives a
triangular velocity distribution; = = 1/2 gives a parabolic distri-
bution while n = 1/10 gives a rather flat distribution across the
stream. Changes in the depth distributions would give effects similar
to those shown in the figure. However{ in the determination of ey
from concentration data (by either the simulation method or the change-
of-moments method in the next section), there has not been a definitive
evaluation of the possible effects of errors in the depth and velocity

distributions used in the data analysis.

7.3.4 Change of Moments

Mixing coefficients (for processes where the rate of mass trans-
port is proportional to the gradient of concentration) are linearly
related to the rate of increase of the variance of the concentration
distribution, if the variance is not affected by tracer decay or by
channel boundary. In general, this type of relationship exists because
the rate of increase of the variance is a measure of how rapidly mass
is being transported outward (from the regions of high concentration)
due to the mixing process. The analysis to calculate mixing coeffic-
ients from the rate of increase of the variance has come to be known as
the change-of-moments analysis. Some references have derived the basis
for the change-of-moments analysis from analytical solutions for con-
centration distributions, but such derivations are, in principle, lim-
ited to the conditions for which the analytical solutions are valid. A
more general analysis can be based on the differential mass balance
equation. Fischer (1966a) was one of the first to derive this type of
relationship for rivers; his application was for the problem of
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longitudinal mixing, but the subsequent extension to transverse mixing
was based on Fischer's analysis. However, for the longitudinal prob-
lem, rivers are effectively infinitely long so that the concentration
distributions can continue to gpread indefinitely. For transverse mix-
ing, the concentration distributions may eventually reach the river
banks. Thus, Holley (1971) and Holley, Siemons, and Abraham (1972)
developed a generalized change-of-moments (GCM) analysis for transverse
mixing problems to allow inclusion of concentration distributions down-
stream of the crossing distance (Section 5.3.6) into the analysis. The
GCM analysis also allows inclusion of variable depths, velocities, and
mixing coefficients. Beltaos (1978) combined some aspects of the GCM
analysis with the streamtube model. The development which is summa-
rized below is also a combination of the GCM analysis and the stream-
tube model and is thus called the GCM-ST analysis. The analysis pre-
sented here takes a somewhat different approach from, and is believed
to be more nearly complete than, previously published work. However,
this analysis is based on the assumption of a constant total flow {Q)
in the study reach. A similar, but somewhat more involved, analysis
can be done to account for the frequently encountered situation with Q
being a function of longitudinal distance. The first part of the dis-
cussion relates to obtaining the mixing coefficient ey » and then the
diffusion factor D_ is considered.

£
a. Mixing coefficient. From Eq. 4.7.34, the mass balance

equation for steady conditions, for m = 1 , and for a conservative

tracer can be written as

de 3 2 de
e sa h vxey 35) (7.3.1)

The steps in the derivation of the basic equation for the GCM-ST
analysis are as follows:

(1) Select an appropriate streamline about which to take
moments of the concentration distributions and call this streamline
q_ . In the analysis, q, is arbitrary, but might typically be taken

o
as the bank for a side injection or the injection streamline for a
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central injection., Note that qq is constant for all x , even if the
maximum concentration moves to another streamline (e.g. following a
central injection).

(2) Multiply Eq. 7.3.1 by qidq s Where 4; =4 -9, » and
integrate from 9, to qp > where qy, and qgp are the cumulative
discharge values at the left and right banks, respectively.

(3) On the left-hand side (LHS) of the equation, take q% into
the derivative. The additional term generated by this process is zero
since gq and x are independent variables and since-q0 is constant.

(4) Integrate the right~hand side (RHS) by parts. The
resulting term which is evaluated at 4y and dp is zero because of
the no~flux boundary condition at the banks.

(5) 1Interchange the order of integration and differentiation on
the LHS (Section 4.3.2). The two additional terms generated by this
process are zero since qL and qp are constant 1f Q is constant.

(6) Divide both sides by the longitudimal mass flux,

Q
QC =fcdq ' (7.3.2)

o

which is constant for a comservative tracer and thus can be taken
inside the derivative on thé LHS. The definition of C (the average
concentration) is obtained by dividing Eq. 7.3.2 by Q.

(7) Define

Q
1
l=?z" f q1d‘1 (7.3.3)
o}

Depending on the location of 9, relative to the concentration distri-
bution, U% may not be the variance since q, » from which 4 is
measured, may not be the centroid of the distribution. On the other
hand, when the maximum concentration and q, are both at the same

2 . .
bank, then o is the variance of the concentration distribution.

1
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(8) The resulting equation may be written as

2 Q
do
1.2 2 3¢
E};_ = chh vxey 39 qldq (7.3.4)
0

Since ¢ 1is in the numerator and C , which is constant for the
problem being considered, is in the denominator, the analysis is some-

times dome in terms of a dimensionless concentration which may be
defined as

(7.3.5)

=¥
ale

If it is assumed that ey does not vary across the channel
width as postulated by Holly (1975) and by Lau and Krishnappan (1981),
then ey can be taken out of the integral so that

2 Q
do 2e
S U 2, 3¢
o qc fh v 3q qldq (7.3.6)

An alternate form of this equation can be obtained by integrating the

RHS by parts. The terms which are evaluated at 9 and 9y are zero

if the depth and/or the velocity is zero at the banks. The result may
be written as

2 Q
d_°l=2_ez ¢ wm? Yd (7.3.7)
dx Qc 3q x11/94 T
[+
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Eqs. 7.3.6 and 7.3.7 are mathematically equivalent forms; in either
form, care must be exercised to use compatible values of ¢q and Q
and of ¢ and C for each cross section to be sure that Eq. 7.3.2 is

satisfied. Part of the RHS of Eqs. 7.3.6 and 7.3.7 is called f(x)

Q Q
1 1
f(x) = - —Q-Ef h Ve Sa Bq qldq = -Q—-f g— h V.4 )dq (7.3.8)
O 0

so that
dc%
T = 2eyf(x) (7.3.9)
or
da%
IF = 2ey (7.3.10)
where
x
F = ff(x)dx (7.3.11)
0

In an application, the evaluation of £(x) from either of the inte-—
grals in Eq. 7.3.8 can present difficulties because of the need to ob-
tain derivatives of either the ¢ or the hzvxq1 distributions; in
general, the distributions of the data are scattered, making the eval-
vation of derivatives difficult. Thus, two different approaches are
considered. First, if either the ¢ or the hzvxql distributions are
smooth enough that the required derivatives can be evaluated with rea-
sonable accuracy, then f may be evaluated directly from Eq. 7.3.8.
On the other hand, if the data are too scattered for the derivatives to
be evaluated, the integrands may be rewritten to eliminate the need to

obtain the derivatives. A similar procedure may be used with either of
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the forms in Eq. 7.3.8; the procedure is illustrated for the first form

and is based on

Q
3
fn 'a"g“ dq =f nde (7.3.12)
o] [s]

where n = hzvqu so that the second form in Eq. 7.3.12 is just the
area under a curve of n plotted versus c¢ . This curve is obtained
by selecting various q (or y) values, tinding the corresponding n
and c¢ values for each g (or y), and plotting these values versus
each other. A smooth curve can then be drawn through the scattered
data and the area obtained. Care must be used to assign the proper
signs to the area since the integral still must correspond to inte-
grating from lower to higher q . The appropriate procedure is illus-
trated schematically in Figure 57 for two types of concentration dis~
tributions. After f is obtained, it is integrated in accordance with
Eq. 7.3.11 to obtain a value of F for each cross section.

To eﬁaluate ey from the data, U% is calqulated from the mea-
sured distributions of concentration, depth, and velocity for each
measurement cross section. Then graphically or by some other means,
the rate of chaﬁge of 0% with F is obtained. If the measurement
cross sections are relatively close together and if the 0? data do
not have much scatter, it may be possible to fit a smooth curve through
the data and to obtain local values of the derivative and then of ey
(Sayre and Yeh 1973). 1In other cases, it may be possible to obtain
only an average ey for the entire study reach.

The method just described for calculating ey accounts for the
transverse and longitudinal variations of depth and velocity. Thus,
the resulting values of ey should be used in a model which includes
these same types of variations. Some considerations are presented
below for the case where it is desired to use the mixing coefficient in

a model with reach-averaged values of depth and velocity.
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If a rectangular channel is assumed with the depth, velocity,
and width constant and equal to their average values (H, V and B), then
dg = HVdy so that the integrals with respect to q may be converted to
integrals with respect to y . The key expressions corresponding to

the ones above are
B
2 1 2
Gr,l = Efcyldy (7.3.13)
o

where Vo2 Y12 Ypo» and yp are analogous to the corresponding
values of q , and sub r indicates quantities for a rectangular

channel approximation,

2

dcrr 1

T = 2eyfr(x) (7.3.14)

and
B (y,e), = (y,e)
Sl foe o 1 e Oy
fr(x) =-3 J(‘ay v, 9y = 5 [# c ] (7.3.15)
0

The first form for fr is the more difficult to evaluate because of
the integral, but it is also probably the more accurate for actual
application because the second form depends on the individual values of

¢, and ¢ Scatter and uncertainty of the data (e.g. Figure 68d)

R L°
cause possible inaccuracies in seeking to determine values of ¢ and
g {The terms involving = and cp in Eq. 7.3.15 result from the

integration by parts in going from the first form of fr to the second -
form; the corresponding terms are zero for the stream—tube representa-
tion in Eq. 7.3.8.)

The assumption of a rectangular channel in the calculations

effectively lumps into ey the influences of both the actual
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transverse mixing and the transverse spreading due to transverse

velocities. As a result, the variation of 02 with distance can be

very irregular. The assumption of a rectangui;; channel should be used
only to provide a rough indication of the value of r—:y and should be
used only for reaches that include several bends in a meandering river
or that are otherwise long enough to provide a reasonable average value
for other types of rivers.

b. Diffusion factor. Since the first introduction of a pre-

liminary form of the streamtube model (Yotsukura and Cobb 1972}, there
has been interest in the possibility of replacing hzvxey in Eq. 7.3.1
by a constant diffusion factor (Df) which is defined as

Fal ]

Df =

Q
2
fh vxeydq (7.3.16)
o

At least part of this interest has stemmed from the convenience of
being able to obtain analytical solutions with a constant diffusion
factor (Yotsukura and Cobb 1972, Yotsukura and Sayre 1976, and others).
The present evidence, although not complete, indicates that it is more
reasonable to assume a constant ey than a constant Df s at least for
situations where the concentration distributions are not mixed across
the channel widfh. Also, using the analyses given above to evaluate

ey by either the simulation or the change-of-moments method, it is no
more difficult (and perhaps more reasonable) to evaluate ey rather
than D, . Nevertheless, the following analysis is presented because

f

of the long-standing interest in D_. and because the assumption of a

constant Df does allow analyticalfsolutions to be obtained easily to
approximate the concentration distributions (Chapter 5)., For some
situations, the calculated concentrations near the bank when Df is
constant are much lower than the actual concentrations (Figure 58).

For other situations, a constant Df gives a reasonable representation
of the concentrations even near the banks (Figure 59)}. The conditions

under which a constant Df is an acceptable assumption have not been
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Figure 58, Comparison of measured and calculated transverse
distributions of concentration for Missouri River (after
Yotsukura and Sayre 1976)

well defined. WNevertheless, in general, a constant Df can be ex-—
pected to be a better assumption for injections and concentration dis-
tributions in the central parts of streams where the depths and veloci~
ties are more nearly constant than for the bank releases when the
majority of the comcentration distribution is in a region with strong
variations of depth and velocity. (Note that the use of a curvilinear
coordinate system that follows the streamlines 1s independent of any
assumption concerning the possible variation of eY or Df o)

The assumption of a constant Df can be included in the simula-
tion method mentioned above in order to evaluate Df . A comstant Df
can also be evaluated by a change-of-moments (Beltaos 1980), In de-
riving expressions for Df s previous analyses have effectively first

assumed that ey 1s constant and taken It out of the integral
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{Eq. 7.3.16) and, since Df then involves an integral of h2 and

v, » have defined a "shape factor" (¥) such that

_ 2
Df = ey(WH V) (7.3.17)
where
Q
Y = z—lf h2v dq (7.3.18)
H7vQ ) X

However, the previous change-of-moments analyses have apparently not
derived the appropriate analytical relationship between 0? and Df .
This relationship can be obtained by essentially the same steps as

given above for evaluating ey by first multiplying and dividing the
RHS of Eq. 7.3.1 by Df and then by taking Df

the integral in step 2. The result can be written as

in the numerator out of

a0’

et ZfoD(X) (7.3.19)
where

i
fD(X) = -'—'"2-'— f(x) (7.3.20)
YTV

Thus,

a0

a?D- = ZDf (7.3.21)
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where

X

F =ffD(x)dx (7.3.22)

(o}

The data analysis to determine Df now exactly parallels that pre-~
sented earlier to determine e .

Yotsukura (personal communication) estimated ¢ to have an
average or typical value of 1.5. He also considered the need to obtain

a longitudinal average of ¢ if D is taken as constant with respect

to x as well as y . In the presgnt analysis, the integration of
fD(x) to obtain FD(x) accomplishes the same objective if the longi-
tudinal variations of h and v, are included in Eq. 7.3.18 so that

¥ becomes a function of x . (It is also possible to include other
types of variations of ey or Df in the analysis (Holley 1971;
Holley, Siemons, and Abraham 1972).) Beltaos {(1980) used measured
distributions of depth and velocity to evaluate V¥ and found values in

the range 1.7-3.6.

7.4 TRANSVERSE MIXING COEFFICIENTS

(Much of this discussion on transverse mixing coefficients is
taken from Almquist and Holley 1985.)

7.4.1 Straight Channels

The experiments described in this section are divided into two
general categories: laboratory experiments and field experiments. In
a few instances (particularly for the field experiments), the designa-
tion of a channel as 'straight" does not imply an absolute geometric
condition but rather refers to the lack of any Influence of channel
curvature on the transport process., ''Straight" channels may show mild
curvature {(or the flow itself may meander within a geometrically
straight channel); however, this curvature is often so slight as to

prevent even a rough estimation of the radius of curvature.
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Section 7.5.1 provides an approximate quantitative criterion for
classifying channels as straight or meandering in terms of the effects
on transverse mixing.

a. Results from laboratory experiments. Only some general con-

clusions from laboratory experiments in straight channels are reviewed ;mmmmmm_m

here since reviews of most of the available experiments have been given
by others, including Ckoye (1970), Fischer (1973), and Lau and
Krishnappan (1977).

Assuming similarity between mass and momentum transport and
assuming that the primary shear involved in the production of turbu-
lence is associated with the vertical profile of longitudinal velocity
over the depth, Elder (1959) concluded that the vertical mixing coef-
ficient for wide, open-channel flow could be given by

e = 0.067UH (7.4.1)

He further reasoned that, since essentially all of the turbulence in
such a flow is generated by the shear due to the vertical profile of
longitudinal velocity, the lateral mixing coefficient should also be
proportional to UMH . His own experiments, after a correction de-
scribed by Sullivan (1968), gave a constant of proportionality o of
0.16, yielding

ey = oUH = 0.16UH (7.4.2)
It seems reasonable that ey is larger than the vertical coefficient
since there are effectively no lateral boundaries to restrict the
formation of larger-scale turbulence in the lateral direction in a
wide, open~channel flow., Okoye (1970), based on his own experiments in
rectangular channels and on experiments of others, concluded that o
increased with increasing B/H ; he found o values varying from
slightly less than 0.1 for B/H=5 to about 0,25 for B/H=65 . Lau
and Krishnappan (1977), using their own experiments and those of Miller

and Richardson (1974), found more scatter in a plot of o versus U H
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than did Okoye. They suggested that a more definitive correlation
could be obtained by considering ey/U;B rather than @ (= ey/U*H) to
be a function of B/H ; however assuming that & = 0.15 , which is the
average value for all the data considered, gives a correlation which is
essentially as good as theirs.

Lau and Krishnappan also suggested that the rate of lateral
mixing should depend on the friction factor, £ , reasoning that in-
creased relative bottom roughness results in higher turbulent intensi-
ties, increasing the mixing rate. However, turbulent intensity is pro-
portional to U, , so that much of this type of variation should al-
ready be included in the nondimensional coefficient based on UH .
Nevertheless, some of the data presented by Lau and Krishnappan support
their hypothesis, but no clear trends were evident,

Holley and Abraham (1973) conducted experiments with a straight
rectangular flume with and without groins, and in an undistorted fixed-
bed river model with groins; the model river had very slight curvature.
The objectives of their experiments included a study of the effects on
transverse mixing of variations in depth and width (river model) and of
the effects of extra side roughness, such as groins (rectangular flume).
In the rectangular channel (B/H = 8.0) without groins, they found
a = 0,16 , consistent with previous studies. When groins were placed
at the sides of the channel, with B/H still equal to 8.0, @
increased appreciably, ranging from 0.36 to 0.49 for different groin
lengths and injection positions. The increase was ascribed to addi-
tional, larger-scale lateral eddies associated with the separation
zones on the lee side of the groins. They also found that for other-
wise identical experiments, @ was 0.36 for a centerline injection and
0.48 for side injections, indicating that transverse variations of ey
(due to the separation zones at the sides) could have an effect on the
rate of spreading of a tracer plume.

The aspect ratio of the river model with groins was- B/H =
13.6 ; the cross-sectional shape was modeled from a river {and thus was
not rectangular nor prismatic), but there were no large bottom irreg-

ularities such as islands or sand dunes. The value of © obtained in
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this channel ranged from 0.45 to 0.77, depending on injection location.
Because those values were higher than for the rectangular flume and
because the chanmnel had only slight curvature, it seems likely that the
increased mixing was associated with the transverse bed slope.
Although experimental data are not available for precisely identifying
the mechanism involved, it may be hypothesized that a transverse bed
slope can give rise to lateral gradients of longitudinal velocity
which, in turn, generate turbulence with a relatively large horizontal
scale, It may be concluded from Holley and Abraham's (1973) results
that groins and transverse bed slopes can significantly increase lat-
eral mixing coefficients over those found in straight, smooth-walled
rectangular channels.

F. M. Holly (1975) performed experiments in a straight flume
with a triangular cross section, using two bottom roughnesses giving
friction factors of 0.041 and 0.02!. One objective of his study was to
determine if ey could be related to local parameters by an expression
such as e_ = ou,h , where u, and h are local values of shear veloc-—
ity and flow depth. Using both streamtube simulation and generalized
change-of-moments methods, Holly concluded that the best results were
obtained by using cross-sectionally averaged values, i.e., ey = oUH ,
and obtained o = 0.32 for the smooth flume experiments and o = 0.62
for the rough flume experiments. Both values are larger than would be
expected for rectangular flumes, again indicating that a transverse bed
slope can give rise to Increased lateral mixing. The apparent depen-
dence on bottom roughness is in qualitative agreement with Lau and
Krishnappan's (1977} hypothesis. Although there are not encugh data to
be.certain if, or why, the change in f in Holly's experiments should
cause such a change in o , it is possible that the increase in rough-
ness caused a more pronounced transverse gradient of velocity and
thereby generated more turbulence and increased o . On the other
hand, it may be that the apparent change in ¢ was due to the fact that
some of Holly's data exhibited considerable scatter.

The fact that better correlation was obtained by Holly using

depth-averaged rather than local values of shear velocity and flow
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depth was qualitatively explained by Yotsukura (1981), who stated that
"transverse mixing requires a certain time or distance to pass through
an initial advectlon-dominated period before it behaves like a diffu-
sion process. Therefore, [ey] cannot possibly be a local quantity,
and, moreover, is probably correlated with averaged values of H and

U, within a certain time or space."

*
b. Results from field experiments. Fischer (1967) performed

transverse mixing experiments in a straight reach of the Atrisco Feeder
Canal near Albuquerque, N. Mex., and determined that « = 0,24 for
both centerline and side injections. This value is somewhat higher
than that obtained in straight laboratory channels with comparable
width~to-depth ratios, possibly due to the slight variations of depth.
Another possibility is that the reported tendency of the flow to mean-
der within the essentially straight channel may have introduced a weak
secondary circulation, possibly causing additionmal lateral transport.

Yotsukura and Cobb (1972) performed experiments in a similar
canal (the Bernardo Conveyance Channel) and obtained an average o of
0.3. The fact that there was more variation of depth in this canal
than in the Atrisco Canal may have accounted for the larger value of
a .

Holley and Abraham (1973) calculated the transverse mixing coef-
ficient downstream of a cooling water discharge into the Waal River in
the Netherlands; There was almost no curvature of the channel and the
depth was fairly uniform over the test reach, with groins at the banks.
They obtained & = 0.36 ; as is typical for river experiments, the data
showed considerable scatter. Again, the value of o d1s higher than
observed in laboratory channels, which is probably due to the slight
depth variation and the presence of the groins on the river banks.

Beltaos (1980) measured transverse mixing on a fairly straight
reach of the Athabasca River in Canada, for both ice-covered and open-
water conditions. According to Beltaos' description, this reach of the
river has a very nonuniform cross-sectional geometry, with many alter-
nating bars of mud, sand, and weeds and several islands. For the open-

water condition (the case considered here), he found o = 0,75 . This
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value is higher than that obtained in the other fleld studies for
straight channels, A feature of the reach of river studied by Beltaos
is that many large-scale irregularities, such as islands and bars of
mud and sand with heights on the order of the flow depth, existed in
the channel. Such large-scale irregularities can be expected to cause
large-scale splitting and intertwining of the flow streamlines (in much
the same fashion as flow around grains in a porous medium, but on a
much larger scale) and may also cause additional turbulence due to sep-
aration zones. Such bottom irregularity (as opposed to transverse var-—
iations of depth mentioned earlier) would thus be expected to increase
the rate of lateral mixing, as was observed by Beltaos.,

Yotsukura et al. (1984) obtained an o of approximately 0.75
for the Chenango River mnear Binghamton, N.Y., in a reach with a highly

irregular geometry.

7.4.2 Meandering Channels

As in Section 7.4.1, the experiments described in this section
are divided into laboratory and field experiments, but first a classi-
fication scheme is given to provide a framework for understanding some
of the experimental results,

a. Clagsification of meandering channels. One conclusion to be

drawn from the experiments in straight channels is that the lateral
mixing coefficient, ey » depends on several factors, including bottom
shear velocity, water depth, channel width, bottom roughness, depth
variations, beﬂ irregularities and, to some extent, the lateral source
position, The studies in straight channels indicate that the strongest
influences on the nondimensional mixing coefficient o = ey/U*H are
the width-to-depth ratio (B/H), transverse bed slope, and bed
irregularity.

In a meandering channel, secondary circulation in the bends may
generate additional lateral transport (Figure 60), which may or may not
be of the gradient transport type. For bends that are long enough to
develop gradient-type transport, Fischer (1969; also Fischer et al.
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1979) developed a theoretical expression for the additional transverse

mixing coefficient (Ac) due to secondary circulation:

U*Rc

B = 25 ( Vi )2 (7.4.3)
where Rc is the radius of curvature. This expression should be ex-
pected to apply only after a "long enough" initial period after the
flow enters the bend. (See Figure 61, which is discussed later.)

Fq. 7.4.3 was derived for flow in a hypothetical infinitely wide chan-
nel. Therefore, there was no channel width in the analysis. Yotsukura
and Sayre (1976) and Sayre and Caro-Cordero (1979) found that a better
correlation was cobtained by including the width-to-depth ratio on the
RHS of Eq. 7.4.3., For field data, their analysis gave

2
~ B/ vH \ _ VB
@ =042 (U Rc) - 0.4(U Rc) (7.4.4)

based on the data in Figure 62, The coefficient in Eq. 7.4.4 was about
seven times smaller (0,06) for the laboratory data. A possible explana-
tion for this fact is presented in Section 7.6, after the data upon
which the relationship is based are discussed. The inclusion of B/H

in Eq. 7.4.4 has no theoretical basis. Nevertheless, the trend is the
general one shown by the field and laboratory data in Figure 62. No
correlations which are better than that given by Eq. 7.4.4 have been
proposed,

Starting with these analyses, Almquist and Holley (1985)
presented an approach to classifying transverse mixing in varicus types
of meandering channels based on the assumption that the parameter
(VH/U*RC)2 can be used to indicate whether the secondary currents in a
given bend are strong enough to induce additional transverse transport.
If &a computed by Eq. 7.4.3 is much less than a typical value for

straight chamnnels, then the secondary currents are probably too weak to
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induce additional mixing. If o for a straight channel is taken as
0.4 (Section 7.4.1b) and if a 10% increase in the mixing coefficient is
deemed to be significant, the secondary flow in a given bend may be
estimated to have the potential of a significant effect on the mixing
coefficient if

2
25 ( vH ) > (0.1)(0.4) or —l— > 0.04 (7.4.5)

U,R, TR

Inasmuch as the parameter (VH/U*RC) is an indicator of the potential
for additional mixing due to circulatory tramsport, it would be ex-
pected that--all other things being equal--larger values of this param-
eter should be associated with larger mixing coefficients. Other param-
eters may also be important, however, as discussed below.

If the flow in a given bend is such that the criterion of
Eq. 7.4.5 indicates potentially enhanced mixing due to secondary circu-
lation, the question may then be asked whether the bend is long enough
for this transport to be described by a gradient transport model, i.e.
whether there is enough flow time within the bend for the vertical con-
centration differences which are generated from the transverse displace-
ment due to the helical motion (Figure 60) to become essentially uni-
formly mixed over the depth. This time for vertical mixing over the
depth in order for gradient-type dispersion to result from the velocity
distribution associated with the helical motion is analogous to the
time for mixing over the width in the longitudinal dispersion process
(Sections 4.8.3 and 6.3.2). For flow through bends, Almquist and
Holley (1985) suggested

UL

A
T 14 (7.4.6)

as a minimum criterion for the gradient assumption to apply for the

transverse transport. Thus, if the criterion of Eq. 7.4.5 is met,
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Eq. 7.4.6 provides a criterion for judging whether or not the enhanced
transport will be of the gradient transport type.

On the other hand, even if Eq. 7.4.5 is satisfied, a bend may
be so short that no significant vertical mixing can take place while a
tracer plume passes through the bend., Then, if the secondary flow re-
verses 1tself in the next bend, no appreciable net mixing due to sec-
ondéry circulation takes place since the transverse advection associ-
ated with the first bend is just reversed in the second bend (for
identical bends). If it is assumed that a bend is too short for addi-
tional mixing to take place when the travel time through the bend is
less than one-tenth the time required for vertical diffusion over the

depth of flow, then Eq. 7.4.6 gives

UL

v < L4 (7.4.7)

as the criterion which indicates that the bend is too short for any net
additional mixing to take place through a series of bends, regardless
of the value of the secondary flow parameter (UH/U*RC), assuming that
the downstream bend essentially reverses the helical motion of the pre-
vious upstream bend.

The classification scheme described by Eqs. 7.4.5, 7.4.6, and
7.4.7 is summarized in Figure 61. Four regions describing different
transverse transport regimes are shown. These are: (I) bend too short
to cause additional mixing, regardless of the strength of the secondary
circulation; (I1) additional mixing caused by secondary circulation but
not of gradient transport type; (III) additional mixing caused by the
secondary circulations and of a gradient transport type; and (IV) sec-
ondary circulation too weak to cause additional mixing.

The classification scheme illustrated in Figure 61 does not,
however, include all the parameters which might affect transverse mix-
ing (and circulation-induced mixing in particular) in a river bend.

For example, the width-to-depth ratio may have an effect, as the dis-

cussion leading up to and following Eq. 7.4.4 demonstrates, (See next
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paragraph.,) Similarly, transverse gradients of depth and bed irregu-—-
larities may also have an effect on a in bends. The intent of Fig-
ure 61 is to determine if a given river bend may reasonably be expected
to have the potential for increased lateral mixing due to circulatory
transport, and whether or not that transport may be expected to be of a
gradient transport type. Because of the other factors which must be
involved, the simple fact that two sets of experiments lie near each
other in Figure 63 does not imply that they will exhibit the same rates
of transverse mixing, a fact which is illustrated in the following
discussion.

To consider & possible means of including the effect of channel
width on the classification scheme, the analysis leading to Eq. 7.4.5
could be started with Eq. 7.4.4 (which is an empirical scheme for the
total o ) instead of Eq. 7.4.3 (which is an analytical expression for
Ao, for a hypothetical infinitely wide channel). Then, the equivalent
of Eq. 7.4.5 for field experiments would be

TR

0.4( L )2 > 1.10.4) or - > 1 (7.4.8)
c

which could be used as an alternate basis for a classification scheme.

Nevertheless, the criterion of Eq. 7.4.5 is used in the remainder of

the discussion.

This discussion of possible classification schemes for trans-
verse mixing has been given to demonstrate that, even for meanders, the
processes are not fully understood nor fully quantified and to provide
an aid for classifying and interpreting mixing rates observed in exper-
iments. However, at present, the state-of-the-art is to use a gradient
mixing representation (i.e. a diffusion coefficient) for all bends,
even the ones in Regimes I and II of Figure 6l. Furthermore, the clas-
sification scheme itself, although apparently the only rational one yet
presented, should be viewed as a preliminary scheme until more data can

be obtained.
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Figure 63, Classification of laboratory and field
experiments in meandering channels (after Almquist
and Holley 1985)

b. Results from laboratory experiments. Pertinent parameters

for laboratory studies on transverse mixing in open-channel flows with
significant curvature are summarized by Almquist and Holley (1985), and
the data are plotted according to the classification scheme in Fig-

ure 63 and according to Yotsukura and Sayre's (1976) correlation shown
in Figure 62.

Fischer (1969) made measurements of transverse mixiﬁg in the
clrcular flume, not a meandering channel; nevertheless, the results are
closely related to the problem at hand. Assuming the bend length, L ,
to be equal to the distance from the point of injection to the last
measurement cross section, Figure 63 shows that Fischer's experiments
should exhibit additional mixing due to secondary circulation, but not
necessarily of the gradient tranmsport type. The a values did in-

crease with increasing values of VH/U*Rc s showing conclusively that
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rate of transverse mixing can indeed bhe significantly increased by the
secondary flow in a bend.

Chang (1971) performed experiments in two meandering flumes with
rectangular cross sections and with circular arcs connected by straight
tangent sections. The width-to-depth ratios ranged from 4.5 to 7.4;
these ratios are small compared to natural streams. Because of the
unusually small width-to depth ratio, experimental results from the
smaller of the two channels are not included here., Chang's analysis
allowed ey and o to be functions of longitudinal position. He thus
was able to quantify the variation in transverse mixing as a function
of position along a bend. A plot of the average value of o from six
runs as a function of position in the bend is given in Figure 64. The

results showed no clearly discernible trend as a function of lateral

4.0

30
O AVERAGE OF SIX INJECTION POSITIONS

20 |- oW

DIMENSIONLESS TRANSVERSE MIXING COEFFICIENT

Iy
WU,

STRAIGHT SECTION | BEND
b} .

LONGITUDINAL DHSTANGE

Figure 64, Variation of transverse mixing coefficient
through a bend in Chang's (1970) experiments
source position. In all of Chang's experiments, the maximum values for
o were observed near the exit of a bend, while minimum values were
observed about one-fourth to one-third of the way into a bend. Chang's
data clearly show the effect of meandering, as opposed to a single

curve, on the transverse mixing process. Since the secondary flow must

310



change its sense of rotation in going from one bend to the next, it
must diminish in strength and then reverse at some point during the
transition. At that point, circulatory transport should also diminish,
then increase as the secondary flow develops in the downstream bend.
The observed values of o are relatively large when compared to those
found in natural rivers (Section 7.5.3). Qualitatively, this behavior
can be explained by referring to Fig. 7.4.4; Chang's experiments are
seen to lie at a relatively large value of VH/U*Rc compared to the
field studies, indicating that secondary flow had a strong influence on
transverse mixing in his experiment.

Krishnappan and Lau (1977a, 1977b) performed experiments in rel-
atively small channels, with three plan-form geometries, all of which
were sine curves (not the sine-generated curves of Langbein and Leopold
1966) with relatively long, approximately straight sections connected
by rather sharp bends. The chamnel bottom was formed by allowing the
flow to shape a sand bottom, and then fixing the equilibrium bed form
with a hardening agent. Although the channel bottom was thus "shaped"
by the flow, the resulting bottom profiles did not seem to be typical
of natural streams. The thalweg always moved completely to the outside
bank, with the vertical flume walls meeting the bed below the water
surface at nearly right angles; at the crossovers, the flow was also
bounded by vertical walls. Only bend-averaged transverse mixing coef-
ficients (a = 0.075 to 0.225) were presented. These values are in the
same range as those for straight rectangular channels. The bends ‘in
Lau and Krishnappan's experiments were relatively short (Figure 63),
indicating that most of the effects of secondary circulation in one
bend may have been reversed in the next bend. Also, the channels typi-
cally had long, approximately straight sections connecting the bends,
so that the overall mixing may have been dominated by the turbulent
transport characteristics of straight channels. With the definitions
of L and Rc being used here, the experiments of Lau and Krishnappan
are in the same range of parameters for the other laboratory

experiments in Figure 63,

311



Almquist and Holley (1985) performed transverse mixing experi-
ments in a meandering laboratory chamnnel with circular arcs connected
by straight sections. The plan form of their channel was similar to
Chang's (1970); Almquist and Holley used both a rectangular cross sec-

tion and "natural' cross sections which were shaped to give the general

features of the natural depth variations found in meandering rivers.
They used four injection conditions, namely right and left bank injec-
tions at Station 2 (which was in a straight section before a bend to
the left), and at Station 6 (which contained the deepest point of the
thalweg in a bend to the left). Their experiments were aimed primarily
at quantifying and analyzing the various mechanisms contributing to
transverse mixing, but they also calculated o values which are shown
in Figure 65 for the four tests that are identified by the injection
locations as 2R, 2L, 6R, 6L. (Recall that only the average trend is
shown in Figure 64 for Chang's data.)

The « values observed by Almquist and Holley were of the same
magnitude as those obtained by Chang's experiments. The o values
typically peaked between 3.0 and 4.0, and reached a minimum of from
-0.2 to 0.4, The peaks typically occurred in the last one—third of a
bend, and the minimums occurred in the first one~third of a bend.

These general features parallel the trends shown in Figure 64. How-
ever, at essentially every point along the channels, o is smaller for
the natural channel than for the rectangular channel. The arithmetic

average © values for each run are

¢ Value
Test _ Rectangular Natural
2L 3.0 1.6
2R 1.9 1.1
6L 2.0 1.0
6R 1.8 1.1
Qverall
Average 2.2 1.2
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Figure 65. Variations of transverse mixing coefficient through
bends in Almquist and Holley's (1985) experiments
In summary, the laboratory experiments of Fischer (1969), Chang

(1970), and Almquist and Holley (1985) show conclusively that secondary
circulation in a bend can contribute to transverse mixing. Chang's and
Almquist and Holley's experiments show a direct connection between
transverse mixing and secondary circulation; those portioms of a bend
with high secondary circulation were associlated with large values of
o , and vice versa. Almquist and Holley's results show a smaller «
for a channel with "natural" cross sections than for a rectangular
channel with the same average hydraulic conditions. The experiments of
Lau and Krishnappan indicate that if the bends in a meandering channel
are too short or if the straight sections of a meandering channel are
relatively long, then very little additional transverse mixing due to

secondary circulation takes place.
c. Results from field experiments. Although several field

experiments for measuring rates of transverse mixing in rivers have
been performed, none has been designed specifically to investigate the

jnfluence of bends on the transverse mixing process. In fact, only one
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study (Sayre and Yeh 1973) even attempted to investigate the variation
in transverse mixing through a bend.

Almquist and Holley (1985) listed most of the meandering river
field experiments which have been reported in the general literature
and for which sufficient information on channel geometry and hydraulics
were reported to allow the data to be discussed in the framework of the
classification scheme in Figure 61. Some other experiments, with less
complete data, are also discussed below. The primary purpose in this
section is to discuss the o values; the rivers and experiments for
some of these tests are discussed in more detail in Sectiom 7.5.

The first study of transverse mixing in a meandering river was
reported by Glover (1964) who analyzed temperature distributions down-
stream of a heated water discharge from a power plant on the Columbia
River; Glover reported only that "the river makes a very gradual
S~curve'" in the reach analyzed. He found & = 0.72 . This value is
comparable to those found for straight rivers with transverse bed
slopes or irregular cross sections, as summarized in Section 7.4.1.,

One possible interpretation is that the bends on the river were not
sharp enough to induce additional lateral transport (i.e. that the flow
was in Region IV of Figure 61), an interpretation which is in quali-
tative agreement with the description of the bends as "gradual." With-
out additional data, a more conclusive interpretation is difficult.

Yotsukura, Fischer, and Sayre (1970) performed a dye experiment
in a stretch of the Missouri River containing an S-bend and obtained
@ = 0,6 , For the same data, Yotsukura and Cobb (1972) computed @ as a
function of position in the bends and found that o ranged from 0.34
to 0.65. The only discernible trend was for @ to increase somewhat
with increasing distance along the bends. Since the cross sections
apparently were not irregular, the values of o indicate that trans-
verse bed slopes may have made a significant contribution to the trans-
verse mixing. This conclusion is qualitatively supported by locating
the parameters for this study in Figure 63; it can then be seen that
the relative strength of the secondary flow for this reach was probably

not great enough to cause significant additional mixing.
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Sayre and Yeh (1973) performed a dye experiment on a reach of
the Missouri River with significant curvature. Their results yielded
an average o of 3.4, By the classification scheme of Figure 63, the
experiments were performed in a bend with sufficient circulation to
cause additional mixing and with sufficient length that the additional
mixing could be described by a gradient transport model, at least by
the end of the bend. The observed dimensionless dispersion coefficients
are the largest of the field data reviewed in this chapter. The data
of Sayre and Yeh do, however, follow the general trend of the field
data presented in Figure 62.

Holley and Abraham (1973) conducted separate experiments with
left-bank and right-bank injections in the IJssel River (The Nether-
lands). The average trend of the data yielded a = 0.5 . According to
the classification scheme of Figure 63, the IJssel River reach should
be similar in mixing properties to the reach of the Missouri River used
in the experiments of Sayre and Yeh. However, the nondimensional mix-
ing coefficient of o = 0.5 is smaller than that found by Sayre and
Yeh and is, in fact, more typical of a relatively straight river with
irregular geometry or with significant transverse bed slopes. One sig-
nificant difference between the two rivers is the width-to-depth ratio;
for the Missouri River B/H = 50 , whereas for the IJssel River,

B/H =~ 19 . When plotted in Figure 62, which takes the width~to-depth
ratio into account, the data of Holley and Abraham follow the general
trend of the field data.

Lau and Krishnappan (1981) conducted a dye experiment on the
Grand River (Ontario). The o values ranged from 0.18 to 0,39, with
an average of 0,.27. These values indicate that the effects of secon-
dary circulation on transverse mixing was small; this conclusion is
qualitatively supported by Figure 63, where it can be seen that the
relative strength of the secondary currents in this bend was probably
small. It also appears that there was a relatively small contribution
from transverse bed slopes or irregular cross sections since the aver-
age o 1is about the same as that found in artificial canals
(Section 7.4.1b).
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7.4.3 Synthesis and Summary

In straight unifofm channels, the primary transverse mixing
mechanism is turbulent diffusion; dimensional and theoretical consider-
ations show that ey can be related to hydraulic properties by |
ey = o UH . In laboratory experiments, o shows some increase with T
increasing width-to-depth (B/H) ratio, with « ranging from about 0.1
to 0.25. Field experiments on very straight canals with relatively
constant depths yield o values from about 0.2 to 0.3.

Field experiments in "straight" rivers (mot canals) and labora-
tory experiments in nonrectangular channels yield higher values of o L
ranging from 0.27 to 0.75., In such relatively straight channels, at
least three possible mechanisms for the increased lateral mixing can be
identified:

a. Groins or other large side—channel irrepgularities may gener-
ate large-scale turbulence (Holley and Abraham 1973).

b. The variation of depth with transverse position may generate
transverse gradients of longitudinal velocity, and these gradients may
increase the horizontal scale of turbulence. Such a mechanism may have
caused the Increased lateral mixing in, for instance, the IJssel River
model of Holley and Abraham (1973).

c. Large-scale bottom irregularities, such as sandbars or
islands, which may cause local splitting and intertwining of the flow,
causing additional net transverse spreading of a tracer in a manner
similar to that observed in dispersion in a porous medium. This
mechanism probably contributed to the relatively high mixing
coefficient observed by Beltaos (1980) in the Athabasca River.

In meandering channels, a fourth mechanism, namely the helical
secondary flow induced in a river bend can contribute to transverse
mixing. To accomplish this increase, the bend must be "curved enough"
to induce significant secondary currents and it must be "long enough™
for vertical mixing to interact with the secondary currents to produce
irreversible lateral mixing. "Curved enough” and "long enocugh" are

defined in Section 7.4.2a in conjunction with a classification scheme
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for meandering rivers. Even if the secondary currents can induce addi-
tional lateral mixing, a gradient transport model strictly applies only
after an initial period for shear dispersion in the bend (although, at
present, it is common practice to use a gradient or diffusive model for
all bends for engineering calculations). ;ﬂmmm_ﬂmmmmﬁ

Yotsukura and Sayre (1976) and Sayre and Caro-Cordero (1979)
reasoned that the width-to-~depth ratio should be an important parameter
for lateral dispersion, and included this parameter in an empirical
correlation which was based on Fischer's (1969) analysis. The correla-
tion that they found, extended by the inclusion of more recent data,
supports this hypothesis, although field and most laboratory data fol-
low different trends. A possible explanation for this fact lies in
Figure 63. All of the laboratory experiments were conducted in chan-
nels for which the relative bend lengths (VH/U,L) were less than about
12; on the other hand, the relative bend lengths for the river experi-
ments were all greater than 30, According to the classification scheme
(Figure 61), this indicates that the transverse mixing observed in the
field experiments may have been of the gradient transport type, whereas
that observed in the laboratory experiments probably was not. Thus,
the fundamental difference between the two sets of data in Figure 60
may not be a difference between laboratory and field, but rather a dif-
ference between small and large values of VH/U*L .

In the laboratory, Chang's (1971) and Almquist and Holley's
(1985) experiments provided details on transverse mixing in a meander-
ing channel capable of inducing lateral mixing due to secondary cur-
rents. They found that secondary currents increased overall mixing
considerably, with minimum rates of mixing being observed near the
entrance of a bend and maximum rates being observed near the exit, In
laboratory channels, typical measured local values of @& have ranged
from 0 to 5 for rectangular chammels and 0 to 3 for a channel with
"natural" cross sections.

Field data on transverse mixing is also sparse. Only Sayre and
Yeh (1973) investigated the variation of o along a bend. Their field

results were in qualitative agreement with the laboratory results. The
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average value they found for o was 3.4. Other experiments on river
reaches which included bends showed lower wvalues of & , ranging from
0.26 to 0.6; the lower values can generally be explained by the fact
that the secondary currents in the bends were probably not strong
enough to induce significant additionmal mixing,

All investigators have analyzed their data using gradient trans-
port models with o values being obtained using either a change-of-

moments analysis or a simulation method.

7.5 EXAMPLES OF FIELD EXPERIMENTS ON TRANSVERSE MIXING

In this section, some examples of field experiments are summa-
rized (in chronological order according to the dates of publication).
This summary is not intended to be an exhaustive coverage of previous
related field work. There 1s a more comprehensive summary of experi-
mental values of o in Section 7.4 for both laboratory and field ex-
periments. The purpose of this section is to give some examples of the
types of data that have been collected and the types of analyses that
have been performed. Although several field studies have been con-
ducted, many of them did not have data on both the hydraulics (includ-
ing slope or resistance coefficient) and the concentration at each
measurement cross section. Thus, it has not been possible to apply
some of the more recent techniques for data analysis to some of the

earlier data sets.

7.5.1 Missouri River (Yotsukura, Fischer, and Sayre 1970)

In 1967, Yotsukura, Fischer, and Sayre (1970) conducted a field
experiment in a 33,000-ft-long reach of the Missouri River about
85 miles downstream of Sioux City, lowa. As shown in Figure 66a, this
is a gently meandering reach. Hydraulic data were collected at only
two cross sections (Figure 66b), with one being in a bend and the other
one being near a crossover. The channel width was maintained at
500-800 ft by a system of dikes and jetties. The depth at the thalweg
was generally less than 25 ft. The flow rate was about 33,000 cfs,

with a Manning's n of about 0,020. According to the criteria of
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Almquist and Holley (1985), the bends in this reach are gentle enough
that the helical secondary motion probably did not contribute signifi~
cantly to the transverse mixing. Based on approximate values of

B =625 ft , H=10 ft , and n = 0.02 , the last measurement cross
section corresponds to X4 {Section 5.3.2) of 0,03,

The tracer (Rhodamine BA) was injected in the central region of
the river for about 4 hours using a 50-gal mariotte vessel. Concentra-
tion samples were collected at 10 cross sections, with the transverse
sampling locations being determined by triangulation from the shore
during sample ccllection. The recovery ratios (integrated tracer flux
divided by the mass injection rate) at the 10 cross sections were 1.34,
0.58, 0.58, 0.49, 0.65, 0,56, 0.66, 0.64, 0.60, 0.58, respectively, for
sectiong 1-10., The concentration distributions, after correction for
dye loss, are shown in Figure 66c. The data show that the maximum con-
centration migrated toward the left bank (which is on the right side of
the figure),

Even though it is not really desirable (as the authors pointed
out) to make the assumption of a rectangular cross section for a
natural channel, this assumption was used by Yotsukura, Fischer, and
Sayre (1970) for a preliminary analysis of the data using the method of
moments (Section 7.3.4). The variances obtained from the transverse
distributions of concentration are shown in Figure 66d. The primary
analysis was done using the simulation method (Section 7.3.3) with
20 streamtubes and with the assumption of a constant ey . The veloc~
ities, depths, and widths were estimated from the available measure-
ments. The initial conditions were taken from the measurements at
cross section 1. It was concluded that o = 0.6 gave the best agree-
ment between the measurements and the calculations, which are also
shown in Figure 66c. The degree of agreement between measurements and
calculations was undoubtedly affected by the need to estimate the hy-
draulic characteristics, by the fact that the measurements gave instan~
taneous rather than time-averaged concentrations, and by the assumption

of a constant a for the entire reach.
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7.5.2 1Jssel River (Holley and Abraham 1973)

In 1970, Holley and Abraham (1973) conducted two transverse mix-
ing tests on a 3900-meter-long reach of the IJssel River in the eastern
part of The Netherlands (Figure 67a). (More detailed information on
these tests and similar tests in other rivers is given by Holley 1971.)
The discharges were 282 m /sec during the first test (right-side injec—
tion) and 268 m /sec during the second test (left-—side injection). The
Chezy coefficient was 40 m 1/2 /sec. The average area and depth were
278 m2 and 4.0 m. The depth profiles for the measurement cross sec-
tions are shown in Figure 67b. The banks were protected by groins
(dikes) in the upstream part of the reach. In the new channel down-
stream of cross section 5, the banks were lined with stones. According
to the criteria of Almquist and Holley (1985), the bends in this reach
are gentle enough that the helical secondary motion probably did not
contribute significantly to the transverse mixing. The value of X4
for the last measurement cross section was about 0.13. (Holley 1971
reported more limited measurements to Xq = 0.26 for the left-~side
injection. See Figure 67e.)

The tracer (Rhodamine WT solution prepared from crystals) was
injected from a mariotte vessel, with the injection tubes being posi-
tioned at the end of a groin for both injections. The recovery ratios
could not be determined accurately because of recrystallization of the
dye due to cold weather and because of an apparent error in caleulation
of the injection rates. The integrated tracer flux for the left-side
injection did show a rather consistent decrease, with the value at the
end of the reach being approximately 70Z of that at the beginning of
the reach, Transverse distances were measured with an optical range
finder approximately 1 m long. The concentration measurements for the
right-side injection are shown in Figure 67c. As mentioned previously,
the concentration fluctuations decreased as the transverse gradients
decreased, The concentration distributions shown in Figure 67d repre-
sent the data trend determined from 2-minute averages of the concentra-

tion readings. Also, the concentrations have been scaled to give the
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same tracer flux for all cross sections for both injections. The dis-
tributions show the higher concentrations for the left injection due to
the smaller depths and velocities on the left side downstream of the
injection location., Also, the different rates of transverse spreading
can also be seen, particularly at cross sections 2, 3, and 4,

The data were analyzed by the generalized change-of-moments
method (GCM, Section 7.3.4). Even using the GCM method, the trends of
the variance versus distance curves (Figure 67f) showed a definite cor—
relation with the channel curvature, with the trends being concave
downward for the right-side injection and concave upwards for the left.
The two curves formed a loop; taking the average slope gave an average
a of 0,5.

7.5.3 Missouri River (Sayre and Yeh 1973)

In 1972, Sayre and Yeh (1973) conducted a transverse mixing test
that provided an extensive set of field data for a strongly meandering
river in which the helical motion contributed significantly to the
transverse mixing. The test reach, as shown in Figure 68a, was about
32,500 ft long. The channel width was maintained at 700 to 900 ft by
dikes and jetties. The average depths of the channel and thalweg were
about 13 ft and 22 ft, respectively. The discharge was 56,100 cfs.

The measured depth and velocity profiles are given in Figure 68b, with
the velocities having been measured 3 ft below the water surface. The
figure also shows relative values of the discharge per unit width;
these values can be integrated from one bank to any transverse position
(y) to obtain the value of the cumulative discharge (q) at that vy .
The average slope for the test reach was 0.00019, giving n = 0.018 ,
using an average width of 700 ft determined from the depth profiles in
Figure 68b. Using an average © of 3.3, the last measurement cross

d of 0.11.

The tracer (Rhodamine WT solution) was introduced into the cool-

section correspeonds to x

ing water from the power plant using two mariotte vessels made from
55-gallon drums. The injection continued for about 5.5 hours. The

cooling water flow, which was about 2,67 of the total river flow,
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entered at the right bank of the river with essentially no initial mix-
ing due to either momentum or buoyancy. Grab samples for concentration
distributions were collected at 10 cross sections. Transverse loca-
tions during the sampling were determined by triangulation using the
same methods reported by Yotsukura, Fischer, and Sayre (1970). For the
four cross sections (nos. 3, 5, 7, and 10) for which both hydraulic
data and concentration data were collected, the recovery ratios were
0.71, 0.91, 0.99, and 1.05, proceeding in the downstream direction.

The concentration distributions are shown in Figures 68c and 68d with
the concentrations plotted against both relative transverse distance
and cumulative discharge. The curves through the data points are the
ones drawn by Sayre and Yeh. Apparently, the concentrations in these
figures were not corrected for dye loss. The concentrations were also
used to construct isotherms, as shown in Figure 68e., These isotherms
demonstrate the influence of net transverse velocities on transverse
distributions. For example, between cross sections 6 and 8, a signif-
icant part of the flow moves from the left side of the channel to the
right side due to the changes in depth and velocity distributions asso-
ciated with the bends. The effects can be seen, for example, in the
0.5° F contour which moves toward the right bank between cross sections
6 and 8. Then, as the flow comes out of the second bend, the 0.5° F
contour starts moving back toward the left bank.

In addition to using the data to study the isotherms, transverse
mixing coefficients were determined using essentially the same simula-
tion approach as Yotsukura, Fischer, and Sayre (1970). The resulting
values of @ are shown in Figure 68g. This is the only known field
study (for a river with a significant influence from channel curvature)
where enough data were collected to allow investigation of the varia-—
tion of & through individual bends. Concerning the variation of «
shown in Figure 68g, Sayre and Yeh stated that "the two maxima occur
toward the downstream ends of the two bends, and that the minima occur
at about the beginning of the first bend and in the relatively straight
reach between the first and second bends. This is consistent with the

results obtained in Chang's (1971) laboratory flume experiments..."
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The results are also generally consistent with the laboratory experi-
ments of Almquist and Holley (1985), as discussed in Section 7.4.2b,
The value of o of 27 between sections 9 and 10 is the largest
reported in the literature, and perhaps should be viewed with caution
until additional data can be obtained for similar bends.

Sayre and Yeh also calculated the variances of the concentration
distributions with respect to q (Figure 68f). Even using q , they
found that the variances sometimes decreased in the downstream direc-
tion. The average slope of the variance versus distance curve was uged
as a preliminary guide for the selection of the values of ey to be
tried in the simulation.

7.5.4 Athabasca River (Beltaos 1980)

In 1974, Beltaos (1980) conducted a transverse mixing test in
the Athabasca River using a slug injection and the integrals of the
concentration versus time curves, as mentioned in Section 7.1.1. (The
data and figures used here were taken from Beltaos 1978, which served
as the basis for the 1980 reference.) The study reach, which is shown
in Figure 69a, was 37 km downstream of Fort Murray, Alberta, and was
17.6 km long. As the figure shows, this is a rather straight reach
with interspersed patches of mud, sand, and weeds giving an irregular
variation of the cross-sectional size and shape (Figure 69a). It
appears from Figure 69b that most of the measurement cross sections may
have been placed at relatively unobstructed locations. Velocity
profiles were measured at sections 0, B, C, D, and F, and were simu-
lated at the other cross sections using Yotsukura and Sayre's (1976)
power-law relation between discharge per unit width and local depth.
The discharge was 776 mglsec with an average area of 820 mz, a width of
373 m, a depth of 2.20 m, a velocity of 0.95 m/sec, a shear velocity of
0.056 m/sec, and a friction factor of 0,028.

The tracer (Rhodamine WT) was dumped 85 m from the left bank,
corresponding to a relative cumulative discharge of 0.5. Concentration
versus time distributions were measured at various longitudinal and

transverse positions. (A sample of such distributions is given in
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Figure 69¢, which is from an earlier preliminary test in the same reach
but for ice-covered conditions. The resulting distribution of the
zeroth moments 1s shown in Figure 6%d. The concentration versus time
curves were not given for the open-water test being discussed.) In a
similar manner, the areas under all of the curves for the open-water
tests were obtained to give the zeroth moments, which were distributed I
as shown In Figure 69%e., Somewhat surprisingly, the maximum zeroth
moment (concentration) apparently remained on the injection stream line
(relative cumulative discharge of 0.5) throughout the study reach.
Frequently, for a degree of mixing as great as that at the last cross
section for this study, the maximum concentration moves toward, or per-
haps even to, one of the banks (see Figure 66c). No values were given
for the recovery ratios for the data in Figure 6%e.

The data were analyzed using a generalized change-of-moments
method based on the streamtube model (Figure 69f and Section 7.3.4),
but in the derivation of the equations, it was effectively assumed at
the beginning of the analysis that the depth and veloecity were constant
so that the £(x) in this analysis was more nearly like the second
part of Eq. 7.3.15 than like Eq. 7.3.8. Also, an average value of ¥

f
Although the data have not been reanalyzed using

was used to obtain ey from D rather than including ¢ din the in-
tegral to obtain FD .
the more general form of f(x) , the results that were obtained for

¢ , namely o = 0.75 , are probably of the correct order of magnitude.

The length of the study reach corresponded to Xg = 0.012 ,

7.6 DATA ANALYSIS FOR UNSTEADY TRANSPORT

This section summarizes some of the primary considerations for
analysis of data from unsteady tracer tests conducted to determine the j
longitudinal mixing characteristics of a stream. The comments in Sec~ L
tions 7.3.1 and 7.3.2 apply for data analysis for unsteady mixing
problems as well as for the steady-state transverse mixing problems
considered previously. For the transverse mixing problem, a signifdi-
cant part of the mixing process can be represented by a single coeffic-

ient (ey), so much of the data analysis is directed at obtaining
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numerical values for this coefficient or for the dimensionless equiva-
lent (o). For unsteady transport, if one-dimensional conditions exist,
there is the analogous longitudinal dispersion coefficient (E) which
has been the object of many of the experimental studies., As is seen in
Section 7.7, there is even less reliability in generalized relation-
ships for E than for ey (and o ). For two-dimensional unsteady
transport problems, there is no single coefficient which can be used to
characterize the mixing process. For these cases, it is preferable to
include the velocity distribution and the transverse mixing in the
representation of the transport.

Since the transverse distributions of velocity are a major part
of the longitudinal spreading process, the approaches to data analysis
need to be categorized according to the hydraulics of the stream, and
of all of the possible cases, only a few have been studied explicitly
in enough detail that any general comments can be made. These few
include 2D situations in free-flowing streams with regular cross sec~
tions and 1D situations in various types of streams {(with the hydraulics
of the stream sometimes not being well described in the publications
presenting the data). Two-dimensional problems in rivers with highly
irregular geometries have not been studied in enough detail that gen-
eral comments can be made about them even though there is a large num-
ber of problems which fall into this category. Another problem which
has not been generalized is 2D tramsport in run-of-the-river reservoirs
where the transport may have significant influences from both the river
hydraulics and wind shear on the water surface.

7 The discussion in this section is presented in terms of analyses
based on various forms of the conservation equations containing mixing
coefficients. For 1D situations, similar analyses can be performed for

lumped-parameter representations (Section 6.3.5).

7.6.1 Two-Dimensional Situations

For 2D situations within the initial period or with the initial
period corresponding to a significant part of the total reach, there is

no single coefficient which characterizes the transport process in the
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same sense that ey does for transverse mixing and that E does for
ID problems. Thus, for 2D unsteady situations, data analysis fre-
quently must be done by testing a simulation scheme against the data.
Since the longitudinal transport and mixing are controlled primarily by
the transverse distribution of longitudinal velocity, by transverse

mixing, and by temporary storage if any is present (Sectioms 6.2.5b, f

6.3.4), the quality of the simulation generally increases in direct
proportion to the degree with which these mechanisms are accurately
represented in the simulation process; even a rather crude represen-
tation of these processes is generally better for 2D situations than
trying to use some sort of 1D mixing coefficient, even one which may
vary with longitudinal distance (Liu and Cheng 1980), in the opinion of
the authors (but such a comparison has not been documented).

Any of the methods discussed in Section 6,2 for calculating con-
centration distributions can be used for simulation. Since the random
walk is only currently being adapted for field situations and since the
pseudo two-dimensional representation is considered to be inferior to
the other methods (i.e. it seems inappropriate to use this degree of
simplification for any situation where the time and expense have been
expended to obtain field data), attention is focused on numerical
solutions of the mass balance equation and of the temporal moment
equations., The two methods are highly interrelated since the same
physical mechanisms must be represented by the mathematics in both
methods. In fact, even when the mass balance equation is being used to
calculate concentrations, it is sometimes helpful to compare the
moments of the calculated and measured concentration distributions.

4. Mass balance equation. Some numerical simulations of two-

dimensional transport problems seek first to calculate the hydrauliecs
(velocity distributions, water surface elevations, etc.) for the speci-
fied discharge, cross-sectional shapes, resistance coefficient, ete.,
and then to use this hydraulic information along with transverse mixing
coefficients to calculate the concentration distributions. A discus-
sion of this type of simulation is beyond the scope of this report. It

is assumed here that the hydraulic characteristics are known from
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measurements so that the objective is to develop numerical solutions of
a 2D mass balance equation to represent the transport and to be able to
reproduce measured concentration distributions.

Without going into the details of numerical solution techniques,
some general observations are as follows. Even with hydraulic measure-
ments, it is normally impractical to measure the depths and velocities
at enough cross sections to correspond to every computational step in
the model.. Thus, interpolation is needed to obtain the inputs required
for the numerical solution (Yotsukura, Fischer, and Sayre 1970; Bird
and Holley 1985). Also, care must be used in numerical solutions to
prevent excessive numerical dispersion from the advection terms
{Fischer 1981). Numerical solutions are somewhat easier if the stream-
tube model is used or if the longitudinal coordinates are along the
streamlines (as contrasted with using Cartesian coordinates) since only
one advection term is then needed in the solution.

Considerable attention has been given to the question of what
constitutes an acceptable numerical simulation of transport problems
(Fischer 1981), but not much of the attention has been focused on
transport in rivers. For this problem, there are at least four major
aspects of the simulation that should be considered. Unfortunately,
the last three aspects are interrelated so that trial-and-error ad-
justments may be needed (within the range of physically reasonable
values, of course).

(1) Mass conservation. Tt should be verified that the simula-

tion, without any distributed sources and sinks in thé numerical solu-—
tions, conserves mass within an acceptable tolerance for the entire
computational reach. Also, in comparing calculated and measured con-
centrations, any actual loss of mass during the tracer test should be
taken into account either by scaling up the measured concentrations or
by scaling down the calculated concentrations. Erroneous conclusions
can be drawn by comparing a calculated concentration distribution rep-
resenting one amount of mass with a measured distribution representing

another amount.
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(2) Time-of-travel. The time of travel, i.e. the time of

occurrence of the centroid (t) of the calculated and measured concen-
tration versus time curve, should match for the various longitudinal
and transverse measurement points. In 2D computations in the early
part to the initial period, the primary aspects affecting t are the
mean velocity along each stream line and temporary storage (dead
zones). Thus, if the centroids are wrong, the problem probably stems
from interpolated velocities not matching the actual ones, in terms of
mean velocities and/or velocity distributions, or from the effects of
temporary storage not being estimated properly. However, the time-of-
travel can also be affected by the transverse mixing coefficient (ey)
used in the simulations. For example, consider a tracer injection made
in the central, high-velocity part of a stream with no temporary stor-
age. If ey is too small, then the tracer in the computations stays
in the high-velocity region too long, so that once it does mix out to

another streamline, t is too small.

(3) Transverse mixing. Even though ey has some influence on
the time-of-travel, it has a primary influence on the transverse mass
distribution at each cross section. The value of ey should be
checked to ensure that it gives the correct distribution of the zeroth
moments of the measured concentration curves. However, at least in the
early part of the tramsport process, the velocity distribution also
influences the zeroth moment; the value of ey influences the amount
of mass on a given streamline, but the velocity influences the time
required for the mass to pass a given point and thereby influences the
zeroth moment.

(4) Longitudinal spreading, For a glven stream geometry, the

longitudinal spreading relative to the centroid is controlled by the
vertical and tramsverse distributions of velocity and by the vertical
and transverse mixing. In using a 2D model, the effects of the verti-
cal distribution of velocity and the vertical mixing can be represented
by using a longitudinal dispersion coefficient (ex ~ 6HU ). (In many
numerical schemes, the numerical dispersion may be larger than the

value of e - If this is the case, it will be difficult to accurately
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represent the transport in the early part of the process.) The effects
of spreading should be checked only after the zeroth moments and the
centroids of the calculated and measured concentration distributions
agree, even if either the calculated or measured distributions have to
be shifted slightly in time (for the centroids) and the concentrations
have to be scaled (for the zeroth moments). It can be a frustrating
and fruitless task to try to adjust velocity distributions to improve
agreement between data and calculations when the problem actually lies
in the mean velocities or in a decay of mass during the experiment.

There have been relatively few published detailed examples of
the use of 2D numerical simulations for rivers. Many times, 1D condi-
tions have been assumed without checking (either empirically or by
estimating the dimensionless longitudinal distances in comparison to
the initial period) to ascertain whether 1D conditions actually
existed.

b. Temporal moment equations. The objective of simulation of

the temporal moments is to develop a numerical solution that correctly
represents the moments of the measured concentration distributions.

The comparison is in terms of the moments (areas, centroids, and
variances, which represent the amount of longitudinal spreading),
rather than in terms of the concentrations themselves. Nevertheless,
the approach to simulation by temporal moments essentially parallels
the preceding discussion for the mass balance equation since the
directly calculated moments are influenced by essentially the same in-
puts as the analogous aspects in the solutions of the mass balance
equation. The skewnesses of measured distributions are frequently very
sensitive to relatively small errors or variations in the concentration
versus time curves, so that it may be difficult to obtain a good com-—
parison between calculated and empirical skewnesses. In general, as
the order (zeroth, first, etc.) of the moments increases, it becomes
progressively more difficult to obtain good agreement between calcula-

tions and data.
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One advantage of simulating the temporal moments rather than the
concentrations is that it is normally easier to obtain numerically ac-
curate solutions of the moment equatioms, yet they still represent the
significant aspects of the transport process and they avoid the primary
numerical problem with the mass balance equations, namely the numerical
dispersion arising from the advection term. The disadvantage with
using the moment equations is that the concentrations then have to be
obtained by the use of similarity functions (Sectiom 6.2.5g) rather
than by direct calculation. The use of temporal moments is a rela-
tively new approach and has not been extensively used. Nevertheless,
it appears to provide a relatively easy method for simulating the pri-
mary transport processes,

Holley and Tsai (1978) gave examples of comparisons of calcu-
lated and empirical temporal moments, including the effects of temp~-
orary storage. Tso (1982) and Bird and Holley (1985) used temporal
moments and similarity functions to compare calculations and measure-
ments for not only the moments but also for the concentration

distributions.

7.6.2 One-Dimensional Situations

2. Numerical simulations. When the initial period represents

only a small percentage of the total reach of interest, the entire
transport process can be simulated as being one dimensional. One of
the primary objectives of the data analysis is then the evaluation of
the longitudinal mixing coefficient (E). Trial values of E are used
in a numerical solution of Eq. 4.8,31 to determine the value which
gives the best agreement between calculated and measured concentra-
tions. The hydraulic inputs which are needed are the area (A) and the
velocity (V). If temporary storage is a significant mechanism, then
values are also needed for A and for K* . If V 1is obtained from
time-of-travel studies or other similar techniques using the speed of
movement of a tracer cloud, then the effects of temporary storage are
inherently included in V and should not be represented separately in

the advection term. As with 2D simulations, the area under the
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concentration versus time curves, the centroids, and the spread of the

distributions should be independently compared to each other with

adjustments being made in V and in the parameters for the storage

zones to get the centroids to agree, and in E to get the amount of

longitudinal spreading relative to the centroids to agree. Generally, EA—
agreement must be considered in some reach-averaged sense (especially :
if constant values are used for the entire reach for A, V , and

E ), but it still is essential that the amounts of longitudinal
spreading relative to the centroids be compared even if the centroids
do not match exactly. It is normally very difficult to achieve a high
level of agreement for each distribution unless the simulation is
adjusted by having V and E vary with longitudinal distance. Also,
it frequently is found that the 1D equation cannot adequately represent
changes in the concentration distribution between the release point and
the first measurement cross section, so that the first measurements are
taken as the initial condition for the calculations for the remaining
part of the reach to determine E (Fischer 1966a). While this is a
reasonable approach for evaluating E , it leaves still unanswered a
question concerning how the transport upstream of the first measurement
cross section should be represented in subsequent calculations to
predict concentration distributions. At present the answer apparently
lies either in using a 2D analysis including e to account for the
effects of the vertical velocity distribution, at least for the early
part of the transport, or in using site-specific analyses.

b. Change of moments. The objective of this type of amnalysis

is to determine E from the rate of growth of the variance of measured
C versus t distributions. Since it frequently is difficult to
obtain a good definition of the time at which the measured concentra-
tion reaches the background level on the falling limb of the distri-
butions and since small variatioms in the concentrations at the tail of
the distributions have a relatively large influence on the moments
because of the long moment arms relative to the centroid, it is common
practice to use the variances of the C versus t curves above some

small percentage (typically 1% or 2%) of the maximum concentration for
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each curve. The variances can be plotted versus longitudinal distance,
and the slope of a straight line through the points is used to evaluate
Aﬁi/ﬂx and then E since

¥ Ao
E =0 g (7.6.1)

The calculated value of E is very sensitive to the value of V since
V3 is in the calculation. The dependence of the calculated E on V

can be reduced to V2 1f 02 is plotted versus t instead of x since

E=-— —= (7.6.2)

There generally is considerable scatter of the plotted points, so that
again E must be considered as a reach-averaged value corresponding to
a best straight-line approximation to the plotted points (Section 7.8),
Although it would probably be possible to develop a 1D generalized
change of moments to account for variations of hydraulic character-
istics through the study reach, this has not been done; it is common to
assume constant values of A, V , and E in the change-of-moments

analysis.

7.7 ONE-DIMENSIONAL LONGITUDINAL DISPERSION COEFFICIENTS

7.7.1 Significance of Dispersion Coefficients

As discussed in Section 6.3, longitudinal dispersion coeffic-
ients (E) should be expected to represent the transport process only
after an initial period, i.e. only when the concentration distributions
are one dimensional. When it is appropriate to use dispersion coeffic-
ients, they embody the combined effects of differential advection asso-
ciated with the transverse distribution of velocity and transverse mix-
ing. Attempts to find generalized expressions for E have been made

primarily for free-flowing streams since they have some degree of
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consistency in the velocity distributions (as contrasted to streams
with highly irregular cross-sectional geometries or pool—and—riffie
streams). In principle, the effects of temporary storage can be rep-
resented by using separate mass balance equations for the main flow
channel and for the storage zones. Sometimes, this has not been done,
so the longitudinal spreading due to the coupling between the main
channel and the storage zones may be a third mechanism contributing to
the magnitude of a gross dispersion coefficient. For pool—~and-riffle
gtreams and streams with highly irregular cross-sectional shapes, E

is a bulk coefficient which must represent all of the longitudinal
spreading processes. Even a brief comsideration of the extremely wide
possible variations of the details and degrees of the contributing
mechanisms, even in free-flowing rivers with fairly regular geometries,
gives an insight into the reason that it has not yet been possible to
find widely applicable, accurate means of predicting dispersion coef-
ficients from bulk hydraulic parameters of streams. With the present
knowledge of the transport processes in rivers, it seems apparent that
any future efforts at obtaining general prediction equations should
consider a categorization of rivers according to the characteristics of
the primary mechanisms contributing to the dispersion process (includ-
ing whether any effects of temporary storage are to be included directly
in E or are to be modeled by using separate equations for the main
channel and the storage zones) and should use only data that do in fact
come from the 1D dispersive period following the initial period. This
philosophy has not been followed in some of the published attempts at
generalizing expressions for dispersion coefficients, with the result
that the available values have a large scatter relative to the predic-

tion equations for E .

7.7.2 Analytical Predictions of Dispersion Coefficients

The expressions which are given in this section for E are
intended to apply only for free-flowing streams with regular and sys-
tematic variations in cross-sectional shapes along the length of the

stream. Equivalent expressions are not available for other cases.
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a. Uniform flow. For steady, uniform flow, Fischer et al.

(1979) showed that E can be calculated from

E=1 X (7.7.1)

where B = channel width, ey = transverse diffusion coefficient,

v; = vx -V, i,e. the deviation of v from the cross-section

average V , véz = mean squared variation of LA The ceoefficient I
represents the combined effects of the differential advection and

transverse mixing in dimensionless terms and is given by

1

I = = c—ae

—
AB2v 2
X

' if 7 -
vthh vxhdy dy | dy (7.7.2)

B y y
o] O (o]

Even though these expressions may look unwieldy, they are definitely
manageable; Fischer et al. (1979) showed the results of calculations
for E using these equations.

Jain (1976) rewrote Eq. 7.7.1 as

(7.7.3)

and evaluated BJ from an expression similar to Eq. 7.7.2 for uniform
flow in generalized quadralateral cross sections using synthesized
velocity distributions based on Yotsukura and Sayre's (1976) power-law
relationship between depth and velocity. Jain's calculated results are
shown in Figure 70,

At least as important as the numerical values which can be cal-

culated for E from Eqs. 7.7.1 and 7.7.2 is the fact that these
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equations demonstrate how E depends on hydraulic characteristics of
the flow. Eqs. 7.7.1 and 7.7.2 are written in the forms shown because
I is dimensionless and therefore is independent of the absolute size
of the river; I depends only on the relative distributions of Vo
and h , if ey is taken as a constant. (The original form of the
equations includes the possibility of having ey be variable across
the width of the stream.) Thus, Eq. 7.7.1 shows the general way in
which E wvaries with the width of the river, with the amount of
variation of velocity within the cross section, and with the magnitude
of the transverse mixing coefficient. Nevertheless, since natural
streams are not prismatic channels with uniform flow, Egqs. 7.7.1 and
7.7.2 are more useful for understanding the makeup of E than for
direct practical application. The applications which Fischer et al.
(1979} developed from these equations for natural streams are presented
in the following paragraphs and in Section 7.7.3.

b. Meandering streams. For uniform flow, the velocity along

any streamline is the same at all cross sections. Even though mass is
being continually redistributed transversely by mixing, whatever mass
is on a specific streamline at any instant always moves downstream with
the same velocity, which is either faster than, or slower than, the
average velocity. With this type of differential advection, the dis-
persion coefficient associated with a particular velocity distribution
is as given above. In a meandering channel, the velocity on a given
streamline may be larger than the average when that streamline is on
the outside of a bend and then lower than the average farther down-
stream when the streamline is on the inside of a bend. This variation
of velocity along a streamline, as contrasted to a constant velocity
for each streamline for uniform flow, has the potential for reducing
the amount of differential advection and thus reducing the longitudinal
gspreading. As Fischer (1969) and Fischer et al. (1979) showed, the
dimensionless length (L') of the bend determines whether E 1is smaller
than it would be for a uniform flow with the same velocity distribution

as exists in a bend. The dimensionless length is defined as
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e WY ¥ | (7.7.4)

2
B /e BV
/ Yy

where L' is the ratio of the flow time through a bend of length L
to the characteristic time for transverse mixing over the width B ,
and is thus a measure of the amount of transverse mixing that can take
place while the flow is moving through the bend. The dimensionless
length can be interpreted as an indication of whether the flow time
though the bend is longer than the period needed for the velocity dis-
tribution within the bend to fully develop its dispersive potential
(Fischer et al. 1979). From very limited results (two cases), Fischer
et al. concluded that if L' > 0.04 , a bend is long enocugh that E
can be calculated from Eqs. 7.7.1 and 7.7.2 using velocity distribu-
tions measured within the bend. (The distributions used in their
examples were specified (Fischer 1969), but no general guidelines were
given concerning where in a bend the velocities should be measured.)
For another example with L' = 0,008 , E was found from experimental
results and by numerical simulation to be about eight times smaller

than that given by Egqs. 7.7.1 and 7.7.2.

7.7.3 Empirical Approaches

There have been many methods presented in the literature for
estimating dispersion coefficients or other dispersion-related param-
eters from stream hydraulics. Only three of the methods are summarized
here. Other than the statement by Fischer et al. (paragraph 7.7.3a)
that the effects of storage zones were not included in their equation,
no mention was made by the various authors of any attempt to categorize
the rivers according to the major mechanisms contributing to the longi-
tudinal dispersion process. All of the methods in the literature are
based on subsets of the available data, and there has been almost no
independent verification or evaluation of the methods by disinterested

persons.
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a. Fischer et al. (1979) used results from measured velocity

distributions and from transverse mixing tests to obtain representative

values of v;2/V2 and ey (0.2 and 0.6HU,, respectively) which could
be substituted into Eqs. 7.7.1 and 7.7.2 to give

VB

i (7.7.5)

E = 0.011

They stated that this expression is intended only as a rough estimate
and that it does not include the effects of storage zones on longi-
tudinal spreading. Also, it could be concluded that the equation per-
haps should not be used in highly meandering streams because of the
value of ey incorporated into the equation and because no considera-
tion was given to the possible reduction of E due to small L'
(Eq. 7.7.4). Fischer et al. compared Eq. 7.7.5 with 16 measured values
of E and found the agreement to be within a factor of about 4. In
one sense, this is a very large amount of variation; nevertheless, it
ig relatively good when compared with other prediction equations.
Fischer et al. also pointed out that the amount of longitudinal spread
of concentration distributions is proportional to the square root of
E , so that overall errors in the concentration distributions are gen-
erally less than errors in E .

b. Liu (1977) used 15 measured values of E, with some of the
experiments being different from the ones used by Fischer et al.
(1979), to obtain

E=28 +B_ (7.7.6)

where
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3/2
U*
B.= 0.18 (T) (7.7.7)

This prediction method agreed with the empirical values of E to
within a factor of about 6. On the basis of physical reasoning,

Christiansen (1977) concluded that the exponent in Eq. 7.7.7 should be
2. From fitting his equation to Liu's data, he suggested that B

L
should be given by

%)
By = 0.4\ (7.7.8)

This equation differed from the experimental values of E by as much
as a factor of 10,

Liu and Cheng (1980) extended Liu's approach in an effort to
account for the variation of the effective dispersion coefficient (i.e.
the slope of the 02 versus distance curve, e.g. Figure 76e) during

the initial period. Their analysis gave

t
E' =EA{1l - EE 1 - exp (—

nln

) (7.7.9)

(o}

where E' 1s a dispersion coefficient which varies with time during
the transport process and E is the dispersion coefficient for large
times. The expression which Liu and Cheng gave for E and t, can be

written as

E =10.5 3 (7.7.10)

and
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t o= 2.5 — (7.7.11)

' U
B' = 0.5 (—i) (7.7.12)

Liu and Cheng concluded that this approach predicted the ob-
served dispersion coefficients from 32 of 33 cases within a factor of
2.5, the lone exception being the Missouri data summarized in Sec-
tion 7.8.3. (This conclusion apparently applies only to the values of
E for large times since some of the individual points for E' in
their Fig. 6 differ from their equation by a factor of 4.) They also
reported that this approach materially improved the representation of
the variation of Cmax and of the concentration distributions compared
to previous approaches. They recommended using a Pearson Type III
concentration distribution rather than a Gaussian distribution. (See
Section ¢ below.)

While Liu and Cheng's approach takes into account some of the
aspects of transport during the initial period, their approach is in-
herently one dimensional while the transport process within the initial
period is two dimensional. Thus, the dependence of the concentrations
on transverse position within the channel cannot be represented by this
approach.

¢. MWeaver and Holley (1985) analyzed the measured concentration

distributions at 225 cross sections from 54 experiments in 24 streams.
Rather than seeking to represent the results in terms of dispersion
coefficients, they presented nondimensionalized graphs of the data so

that the results can be used directly for predictive purposes.
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The dimensionless variance is shown in Figure 71 as a function
of dimensionless downstream distance for all of the tests, with each
experiment being indicated by a different symbol. The dimensionless

variables were defined as

X /e 2 2 e d
12 _ y do y
o]

and

X e e x
xc'1 =fl§ dx or—L2 (7.7.14)
o VB VB

The first (integral) form of each equation was used together with the
available information on the variation of hydraulic parameters with
flow distance; the second form can be used when only average depths,
velocities, etc., are available. These dimensionless variables are
similar to those used by Holley and Tsai (1978) and by others, with the
exception of using the integrals to account for the variations of the
various parameters with distance.

The general trend of the data is clear although there are cer-
tainly some individual experiments which do not agree with the general
trend either in terms of the numerical values or in terms of the trend.
Although the data trend should not be expected to be a straight line in
this type of graph (Holley and Tsai 1978), the best-fit straight line
is shown on the graph for simplicity. The coefficient of variation of
the data about the line is 5.2, so that a variance estimated from this
graph should be expected to be within a factor of 5.2, on the average,

compared to the actual variance. Since the height {i.e. Cmax ) and
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width of the concentration distribution are proportional to the stan-
dard deviation (square root of the variance of the concentration dis-
tribution), these features of the distributions can be estimated within
a factor of 2.3 on the average. (Note that these values are given in
terms of a measure of the average error while the possible errors for
the prediction equations for E were given in the preceding sections
in terms of the total range, as originally reported by the authors who
presented the equations for E .)

It was found that the shapes of most of the concentration dis-
tributions were very similar to each other when properly nondimension-
alized. If the highly spiked distributions for small dimensionless
distances (e.g., as shown in Figures 75c and 76b) are excluded, the
average shape for all of the remaining distributions is as shown in
Figure 72, which also gives some of the statistics of the spread of the
measured concentrations about the average. The dimensionless variables

in Figure 72 are

(7.7.15)

and

¢t = =S¢ (7.7.16)

[ e
0

The average distribution in Figure 72 has a mean of zero, a standard
deviation of unity, and a coefficient of skew of 0.90. These param-
eters were used to superimpose a Pearson Type III distribution _
(Eq. 6.2.14) on the figure; the averages of the measured distributions
and the Pearson Type IIT distribution are essentially the same.

For this analysis, a highly spiked distribution was defined as

one having a dimensionless maximum concentration greater than 0.6; this
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criterion was obtained simply by inspection of the shapes of the con-

centration distribution curves.

Figure 73 shows the actual dimension-

less maximum concentrations (C'max) as a function of dimensionless dis-

tance {(x').

From this figure, it can be concluded that the distribution

in Figure 72 should be a reasonable representation for dimensionless

longitudinal distances greater than about 0.1 or 0.2,

DIMENSIONLESS MAXIMUM CONCENTRATION
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Figure 73. Dimensionless maximum concentrations for longitudinal

mixing problem (including all distributions)

one-dimensional analysis, it is reasonable to expect that it may not

accurately represent the behavior for all cases at small distances.,

For comparison, Figure 74 shows the average concentration distribution

when all measurements were included in the analysis.

In order to use this information in a predictive mode, it is

necegsary to know average or representative values of B, V, Q,

and

For the selected values of x

e

for the stream and M for the released mass of pollutant.

for which the concentration
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distributions are desired, calculate x' , estimate 0'2 from
Figure 71, and use the values of e.y and B to calculate o . Use
x/V as an estimate for t . Read C' versus t' wvalues from Fig-

ure 72 and obtain the estimated concentration distribution from

t
=5 (7.7.17)

and

£t + ot! (7.7.18)
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7.8 EXAMPLES OF FIELD EXPERIMENTS ON LONGITUDINAL MIXING

In this section, some experiments on longitudinal mixing are
summarized in chronological order. (Nordin and Sabol (1974) presented
the results from 51 longitudinal mixing tests in 24 rivers.) This sec-
tion parallels Section 7.5 on transverse mixing, and many of the gen-
eral comments in the introductory paragraph of that section apply to

the experiments on longitudinal mixing also.

7.8.1 Copper Creek (Godfrey and Frederick 1963)

From 1959 to 1961, Godfrey and Frederick (1963, 1970) conducted
11 longitudinal mixing tests in six different reaches of three rivers
and one canal. That series of studies still is the most complete, well
documented, published set of experiments on longitudinal mixing. In
all of the studies, the hydraulics (distributions of both depth and
velocity) were measured first, with the injections being made and the
concentrations measured on subsequent days. Unfortunately, for most of
the studies, the river flow changed between collecting the hydraulic
data and conducting the dye tests. For four of the tests, the flow
changes were from 19%Z to 40%. TFor the others, the changes were 117 or
less. The types of data collected and the analyses of the data
were essentially the same for all of the tests. From the studies with
the smaller flow changes, the Copper Creek study (Test 3-59 in Godfrey
and Frederick (1963) and Test 3 in Godfrey and Frederick (1970)) was
selected arbitrarily as a study in a small, meandering creek.

The general alignment of the study reach, which was 27,550 ft
long, is shown in Figure 75a, The depth profiles and the depth-~
averaged velocities for the six measurement Cross sections are given in
Figure 75b. From the hydraulic measurements, average values were
obtained as Q = 35 c¢fs , B =56 ft , H=1.3 ft , and n = 0.21 .,
The average of the measured velocities was 0.53 fps; using the
centroids of the concentrations distributions for a time-of-travel
study gave a velocity of (.64 fps. The dimensionless distances (xd)

for the measurement cross sections were 1.4, 3,0, 4.4, 5.6, 7.4, and

362



INJECTION SECTION

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SCALE

) 1000 2000 3000 4000 5000 FT
| | 1 i L ]

a, Test reach
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9.1 using x/V =1t , U, = 0.49 fps , and o = 1.0 which is strictly
an estimated value of o .

The tracer injection consisted of 0,064 curies of Au 198 re-
leased between 9:49,5 and 9:50.5 on June 18, 1959 as a line source
across most of the width of the stream (except immediately adjacent to
the banks). The measured concentration distributions are shown in
Figure 75c. The next part of the figure shows the longitudinal distri-
butions of the inverse of the maximum concentration (cmax) as presented
by Godfrey and Frederick; Cmax would be expected to decrease in pro-
portion to the inverse square root of flow time (as represented by the
centroid) or distance since the transport process should be one dimen-
sional for the dimensionless distances at which these measurements were
made. This type of variation would give a linear increase of 1/C
with tl/2 . The centroids (t) are shown as given by the authors ?gig-
ure 75e). The inverse of the slope of the line through the centroids
gives the average cloud velocity. Figure 75f shows the variances (02)
both as calculated directly from the concentration distributions by the
writers and as given by the authors from a method which was based on
the assumption that the concentration distributions fit a Pearson
Type I1II distribution so that o could be obtained from the widths of
the distributions at heights corresponding to various percentages of
the maximum concentrations. Also, Godfrey and Frederick converted the
temporal variances to spatial variances before presenting them; the
values shown in Figure 75f have been converted back to temporal var-
iances, The growth of the variances is approximately linear, as would
be expected for these values of dimensionless distances, The large
values of 02 obtained from the concentration distributions for the
last two cross sections may be due to the fact that the entire tail of
the distributions was used in the calculations, (See the discussion of
the calculation of variances in Section 7.8.3.) The slope of the line
shown in Fig. 75f corresponds to E 80 ftZ/sec and E/HU, 120 . The
calculated value of E 1is very sensitive to the value of V since V3

is in the calculation:

367



(V%)
N

=1

]
N|<t
>
|

(7.8.1)

>
"

The dependence of the calculated E on V can be reduced to V2 if

02 is plotted versus ¢t instead of x since
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7.8.2 Coachella Canal (Godfrey and Frederick 1963)

This study was done in a man-made canal with a relatively
straight alignment and relatively uniform cross section. The total
reach was 63,750 ft (12,1 mi) long. The depth profiles and the depth-
averaged velocities for the measurement cross sections are given in
Figure 76a. From the hydraulic measurements, average values were ob-
tained as Q = 900 c¢fs , B =81 ft , H= 5.1 ft , and n = 0.02 .

The average of the measured velocities was 2.2 fps; using the centroids
of the concentrations distributions for a time-of-travel study gave a
velocity of 2.3 fps. Tracer tests were conducted on 2 consecutive days
with measurements being made at a total of seven cross sections. The
hydraulic data just given are for the first day; on the second day, the
discharge increased by only 6% so there should be only small changes in
the hydraulic variables. The dimensionless distances (xd) for the mea-
surement cross sections were .02, 0,05, 0,11, 0,17, 0.25, 0.35, and
1.18 using x/V =1t , U, = 0.14 fps , and @ = 0.4 which is based on
the straight alignment of the channel. These values of Xy indicate
that part of the reach was within the initial period where 2D} concen-
tration distributions should be expected to exist,

On the first day, the tracer injection consisted of 1.58 curies
of Au 198 released between 11:01 and 11:02 on May 11, 1960 as a line
source across most of the width of the stream (except immediately
adjacent to the banks). On the second day, a similar injection of I1.21

curies was made from 9:06 to 9:07. The measured concentration
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distributions are shown in Figure 76b in terms of time since release
and with the concentrations for the second test multiplied by the ratio
1.58/1.21 to account for the different injection strengths. Fig-

ures 76e, d, and e show the longitudinal distributions of the maximum
concentrations (Cmax)’ centroids (t), and variances (02) in a manner
similar to those in Figure 75. The two sets of values for the vari-
ances are as calculated by the writers and by the authors, as was the
case for the Copper Creek data in the previous section. The increase
in the centroids is approximately linear as would be expected in a
relatively uniform channel. The influence of the 2D transport in the
initial period can be seen in the variation of both Cmax and 02 .
Initially, Cmax decreases more rapidly {or 1/Cmax increases more
rapidly) than for ID transport and the variance increases less rapidly.
Since some of the data were collected in the 2D initial region, the
transverse location of the sampling point would be an important part of
the data, but the exact sampling position was not given. It was stated
that the concentrations were measured at or near the centerlime of each
stream,

The value of E was calculated from the slope of the curve
through the last data points; however, as the values of Xd on the
figure indicate, these cross sections may not have been far enough
downstream of the injection location to be certain that they were
within the dispersive period. Also, this calculation may be subject to
large errors since only two data peints were used to define the
straight line. The value of E was found to be approximately
90 ftzlsec giving E/HU* 120 , As stated above, these values should

be viewed with caution.

7.8.3 Missouri River (Yotsukura, Fischer, and Sayre 1970)

In 1967, Yotsukura, Fischer, and Sayre (1970) conducted a longi-
tudinal transport and mixing experiment in l4l-mile long reach of the
Missouri River between Sioux City, Iowa, and Plattsmouth, Neb. (Fig-
ure 77a)., The tabulated discharges for the study reach varied from

31,200 cofs to 34,100 efs. It was stated that the Platte River was the
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only significant tributary entering the study reach, but the discharge
data do not show a significant increase at the Plattsmouth Highway
Bridge. The channel width was maintained at 500 ft to 800 ft by dikes
and jetties, The depth of the thalweg was generally less than 25 ft.
At the time of the test, the bed form was primarily flat or plane bed
with a Manning's n of 0.015. The corresponding slope of the energy
grade line was 0.0002. One of the tables shows that the average depth
and shear velocity were 9.7 ft and 0.25 fps; the average of the depths
for seven cross sections in another table is 10,6 ft, The measured
velocities varied from 3.9 fps at the upstream end of the reach to 6.0
at the downstream end; the time~of-travel analysis of the data indi-
cated an average velocity of 5.34 fps (Figure 77¢). No depth profiles
or velocity distributions were given.

The dye release consisted of 600 1b of 20% solution of Rhodamine
W, which was released as a line source across the middle of the chan-
nel just downstream of the Combination Bridge at Sioux City. Concen-
trations were measured at the Decatur Highway Bridge, the Blair Highway
Bridge, the Ar-sar-ben Bridge, and the Plattsmouth Bridge corresponding
to flow distances of 40.8, 83.5, 116.0, and 141.3 miles or dimension-
less distances (xd) of 2,4, 4.7, 6.2, and 7.4 based on o = 0.6 ,

B =640 ft , and =x/V = t from the tracer measurements. At the Deca-
tur Bridge, measurements were made at five transverse positions in the
channel; at the other stations, three transverse locations were used.
Only the cross-sectional average concentrations were reported, but the
values of X4 indicate that the concentrations should have been
relatively uniform across the channel width for all of the measurement
stations.

The concentration distributions are shown in Figure 77b with the
corresponding centroids (t) in Figure 77c and the variances (02) in
Figure 77d based on truncating the distributions at both 1% and 3% of
the maximum concentrations, as given by the authors. As the figure
shows, the amount of truncation can have a significant effect on the
calculated values of 02 and therefore on the calculated value of E .

The line shown on the figure is the one originally drawn by the authors
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and gives an E of 15,000 ftzlsec. Because of the sensitivity of 02
and E to the tails of the distributions, the authors recommended
using a routing procedure (or simulation, Section 7.6.2) starting with
the first measured distribution. They demonstrated that the values of
E obtained with this procedure were not very sensitive to truncation
of the tails of the distributions; for various subreaches, the E
values changed by -17% to +147 when the distributions were truncated.
The difference in the slopes of lines through the two sets of data
points in Figure 77d is on the order of 30%, but that is a comparison
of 17 and 3% truncation, not a comparison of truncation and no trunca-
tion as was done for the routing procedure. Based on the routing pro-
cedure, the authors concluded that E was approximately 16,000 ftzlsec,
corresponding to E/HU, = 6,600 . This is the largest non-dimensional
longitudinal dispersion coefficient that is known to the writers; there
has been no subsequent explanation of this value in comparison to the
more frequently encountered range of dimensionless values of 100 to

1000 (Fischer et al. 1979).

7.8.4 Lower Mississippi River (McQuivey and Keefer 1976b)

In 1974, McQuivey and Keefer (1976b) performed a longitudinal
dispersion experiment in 179-mile-long reach of the Mississippi River
below Baton Rouge, La. (Figure 78a). The flow rate was 792,000 cfs
at Baton Rouge at the time of the release and 798,000 cfs at
Belle Chase, 152 miles downstream of the injection site, when the
tracer arrived there. The hydraulic parameters for this reach of the
river were given (McQuivey and Keefer 1976a) as hydraulic radius =
55.0 ft, U, = 0.19 fps , B = 2845 ft , and V = 4.85 fps . The move-
ment of the peak concentration indicates a velocity of 4.6 fps. No
cross—-sectional profiles or velocity distributions were given. For the
width-to-depth ratio which existed, the average depth would be approx-
imately equal to the hydraulic radius.

At 9 a.m. on April 24, 1974, a dye release consisting of
4,000 1b of 20% solution of Rhodamine WT was made near the center of

the channel at river mile 228 near Baton Rouge, La. Concentrations
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were measured at nine downstream locations corresponding to dimension-
less distances (xd) of 0.004, 0.008, 0.014, 0.018, 0,053, 0.080, 0,11,
0.13, and 0,16, using the hydraulic parameters given above and an
assumed o of 0.6. These values of X4 indicate that much, it not
all, of the study reach was in the initial period and that the dye
cloud would not be expected to fill the channel width at the upstream
stations. At the first three stations, samples were collected near the
surface and at a depth of 50 ft to determine the degree of vertical
mixing and across the surface to determine the degree of lateral
mixing.

Figure 78b shows the outline of the dye cloud as obtained from
aerial photographs during the early period while the cloud was visible.
The cloud is seen to move toward the right bank as it enters the bend,
as would be expected because of the larger depths and velocities on the
outside of the bend. Also, it seems apparent that much of the early
longitudinal stretching of the cloud must have been associated with the
vertical distribution of velocity since the amount of transverse varia-
tion of velocity within the cloud probably was not great enough to
cause the observed amount of elongation.

At Addis ( x3 =1,1 , where Xq igs the nondimensional distance
based on the depth for 3D transport), the concentrations near the sur-
face were observed to be about twice those at 50-ft depth. The ana-
lysis of Section 5.2.7 indicates that vertical uniformity should have
been achieved at this value of Xy oo Since details of the measurements
were not given, it is difficult to provide a definite explanation con-
cerning why vertical uniformity did not exist, but one possibility is
that the helical motion of the flow entering the bend was distorting
the cloud and the measurements were made in a part of the cloud with
higher surface concentrations. (See Figure 61.)} Vertical uniformity
was found at Longwood and the downstream stations. Some of the mea-
sured transverse distributions are shown in Figure 78c. These distri-
butions were apparently obtained as the peak concentration passed the

measurement stations.
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Figure 78d gives the distributions of cross-sectionally averaged
concentrations as measured at the six downstream stations. No informa-
tion was given on the sampling points within the cross sections or on
the method of obtaining the cross-sectional average. The centroilds and
variances of the distributions were not given. The longitudinal dis-
persion coefficient was obtained by McQuivey and Keefer as approxi-
mately 7,500 ftZ/sec or 900 HU, by a method similar to the 1D simula-
tion procedure (Section 7.6.2a). Figure 78e (Martené et al. 1974)
shows a correlation of the variation of the maximum concentration from
four tracer tests iIn the same reach of the river but with different
discharges., The correlation of all of the tests was obtained by mul-
tiplying the observed maximum concentrations times the river flow rate,
dividing by the weight of the tracer, and plotting the results versus
travel time (not distance). This particular curve is applicable to
only this reach of the Mississippi River; the same type of correlation

was discussed by Hubbard et al. (1982) in a more general context.

7.8.5 Susquehanna River (Environmental Laboratory, WES)

In 1981, personnel of the Envirommental Laboratory of the Water-
ways Experiment Station conducted longitudinal dispersion experiments
in the West Branch of the Susquehanna River immediately upstream of
Williamsport, Pa. The flow rate was 4,200 cfs. The average hydraulic
parameters were approximately V = 0.6 fps , B =700 ft , H = 10 ft ,
and n = 0,035 . This section of the river was essentially straight
with the depths increasing gradually in the downstream direction due to
a low dam.

At 11:45 a.,m. on October 12, 198!, a release of Rhodamine WT dye
was made by navigating a boat directly across the river and releasing
the dye continucusly across the width. Even if the release rate were
constant, this method of injection gives higher initial concentrations
in the regions of lower depths and velocities. Concentrations were
measured at downstream cross sections with a submersible pump and a
flow-through fluorometer on a boat which continuously traversed back

and forth across the river. The resulting measurements were used to
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produce 3D graphs giving the variation of concentration with distance
across the river and time, An example is shown in Figure 79 for a
longitudinal distance of 13,100 ft or X4 of about 0,01.

As far as the writers know, these are the only available data
that simultaneously illustrate the effects of the vertical and trans-
verse variations of velocity for the early part of the longitudinal
spreading process in a river. The effects of the transverse distribu-
tion of velocity can be seen in the fact that the cloud, for this rela-
tively small value of Xy s becomes distorted in the general shape of
the velocity distribution with the dye arriving first in the central
part of the river and later along the sides. Thus, it can be seen that %
the primary effect of the transverse distribution of velocity was to |
provide differential advection of the different parts of the cloud but
that transverse mixing had not yet had sufficient time to mix the dye
cloud across the width of the river. Thus, the transverse distribution
of velocity was contributing to an elongation of the cloud, but not to
the mixing or dispersiom. Nevertheless, at each transverse position
across the width, the cloud has been dispersed longitudinally as indi-
cated by the time required for the cloud to pass that transverse posi~-
tion (e.g., about 0.5 hr at a transverse position of 400 ft). This
dispersion must have been due primarily to the dispersion caused by the
combined effects of the vertical distribution of velocity and the ver-
tical mixing.

Analysis and publication of these data have not been completed;
therefore, the information on the hydraulic parameters must be taken as
being approximate. Nevertheless, this brief description of one of the

tests and Figure 79 are included because of the uniqueness of the data.
7.8.6 Comment

While there are many general comments that could be made from
these and other examples of field studies, the only one which will be

made concerns the dimensionless distance variable x Regardless of

4"
the absolute size of a river, from the small Copper Creek to the lower

Mississippi River, this variable gives a general indication of the
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Figure 79, Data from Susquehanna River study
on longitudinal mixing

degree of transverse uniformity of concentration distributions to be
expected and therefore also an indication of the regions in which to

expect 1D behavior of the transport process.
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CHAPTER 8. APPLICATIONS

8.1 INTRODUCTION

In this chapter some calculated examples are given for both

initial mixing and ambient transport to illustrate the application of R

the principles discussed in the previous chapters. It must be empha-
sized that it would definitely be a mistake to try to use these illu-
strative examples as the primary source of information for making cal-
culations for transport problems. The extensive discussion in the
preceding chapters is intended to show the bases, assumptions, limi-~
tations, etc., for the various types of analyses; as in any type of
problem, it is inappropriate to try to apply the calculation methods

without thoroughly understanding them.

8.2 SUMMARY OF PROCEDURES

There are so many types of discharges, types of rivers, and ob-
jectives of analysis that it is essentially impossible to summarize in
a concise form all of the information that is needed and all of the
steps that should be taken for any general type of analysis. Recogniz-
ing this Ilimitation, Table 9 presents some of the major types of infor-
mation and decisions that are needed in many situations to calculate
the location and magnitude of concentrations which result from a
discharge.

There are at least two types of situations missing in Table 9
and in the earlier parts of this manual (because the literature does
not contain well-defined means of addressing these situations). First,
there is not a clear definition of how to define the transition point
between initial mixing and ambient transport. The types of analyses
normally done for these two parts of a problem are fundamentally dif-
ferent. In the initial mixing analysis, there is no consideration of
the turbulence in the ambient flow or the receiving water, and the
analysis is based on the integral of the fluxes while the ambient
transport analysis deals directly with the continuous distributions of

concentration, veloeity, depth, ete. Thus, it is not possible to have
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a smooth transition from the initial mixing analysis to the ambient
transport analysis; rather, the first must just be stopped at some
point and the second begun. It is still largely a matter of case-by-
case evaluation and judgment in picking a reasonable point at which to
change from one to the other. For example, if there is a discharge
normal to the axis of a river so that the discharge behaves as a jet in
a crossflow, the slope of the bent-over trajectory might be used to
select the point at which to end the initial mixing analysis. When the
slope becomes 1 (across the river) to 5 (longitudinal) or 1 to 10, the
cross—channel momentum is probably so low that the initial mixing
analysis could be stopped. In any case, it is usually advisable to do
a sensitivity analysis to determine whether the results that are needed
are very sensitive to the assumed end of the initial mixing region., If
there is a high and unacceptable sensitivity, then a different type of
analysis may be needed. Two possibilities would be a physical model
study or a calculation based on a higher-level turbulence closure
scheme (e.g., Rodi 1980).

A second item that is missing is an analysis for vertically
stratified flow conditions which might exist downstream of a buoyant
discharge if the effects of the initial momentum of the discharge
become unimportant (due to a vertical or cross-channel discharge, for
example) before the initial density difference is totally mixed with
the ambient water. While there have been many analyses of vertically
stratified flows, there has not been a general application and inter-~

pretation of these analyses for riverine situations.

8.3 EXAMPLES OF INITIAL MIXING ANALYSIS

The following three examples illustrate the use of the predic-—
tive equations and diagrams that were presented in Chapters 2 and 3.
Some variability in the ambient conditions is assumed in order to
demonstrate the solution sensitivity. Note, in particular, that the
examination of discharge stability is a common step in all cases in
order to ascertain whether "deep-water" or "shallow-water" conditions

prevail at the discharge site and to select the appropriate model.
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8.3.1 Vertical Single-Port Discharge

An industrial effluent is discharged by means of a vertical
single~port pipe of diameter D = 0.5 m at the bottom of a run-of-the-
river reservoir. The discharge has a flow rate Q0 = 0.6'm3/sec ’
giving U0 = 3.06 m/sec , and is lighter than the ambient water with a
relative density difference (pa—po)/pa = 0,01 giving a buoyant accel-
eration gé = 0,098 m/sec2 . The initial concentration of a pollutant
is 200 ppm. The reservoir is unstratified with a water depth H = 8 m
at the discharge site and the ambient velocities vary between u, = 0
to 0.5 m/sec due to variable river flow and reservoir operation.

a. Stagnant conditions. A vertical buoyant jet will result,

characterized by the Froude number (Table 5)

F = = 13.38

and the momentum length scale (Table 6)

MgM (UOQ0)3/4
RIM = Jl/z = . Ql/z = 6-5 m
0 go [¢]

First, the discharge stability is checked by computing the ratio

2

m—
T~ 0.81 < 4.3

This comparison to Eq. 3.1.8 indicates that the discharge is operating
well in the deep-water regime, and a well-defined jet will result with
a surface impingement zone of thickness hi =0.08 8 =0.6m (Sec-
tion 3.1.4c). Hence, the effective level up to which entrainment takes

place is z, = 8.0 - 0.6 = 7.4m .
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The centerline dilution Sc at the level z; is found from
Eq. 3.1.3 or Figure 5, These indicate that at the level zi/(DFo)

= 1,30 corresponding to z, = 7.4 m , the centerline dilution is

Thus, the maximum pollutant concentration that can be found in the

"boil" region at the free surface is

Observe also from Figure 5 that the buoyant jet operates, for the
largest part, in the pure jet regime and only commences its transition
to the plume at the level of impingement.

b, Crossflow conditions. The applicable parameters are the

crossflow ratio (Table 5)

the jet-crossflow length scale (Eq. 2.10.1)

1/2 1/2
w2 w o
o 00
2{ - = =2.7m
Mu u u
a a

and the plume-crossflow length scale (Eq. 2.10.2)

J g'Q
=2 .20 _
EJu =3 3 0.47 m
u u
a a

Since RM/QMU > 1 the buoyant jet deflection and dilution will

392



initially be governed by the pure jet laws (two phases, z ~ xl/2 and

x1/3) as depicted in Figure 8. However, as the buoyant jet has

2/3)

7
some buoyancy, there is a possibility that the final phase (z ~ x
of the pure plume (Figure 9) will be entered. This possibility is ex-

amined below. ;mm“m_mmmvm

The jet trajectory as determined from Figure 8 is plotted in
dimensional form in Figure 80a. It shows the initial and the final
phases of pure jet deflection. Also shown in the figure is the final
phase of the pure plume deflection (as obtained from Figure 9) and its
intersection with the pure jet trajectory. This intersection occurs at
a vertical distance of z = 15 m , which is higher than the actual
water depth H = 8 m . Thus, for the present example, the conclusion
is that the deflection of the buoyant jet within the available water
column and for the ambilent velocity of u, = 0.5 m/seec is governed
solely by pure jet conditions,

The jet trajectory in a linear coordinate system is shown in
Figure 80b, indicating that surface impingement occurs at a downstream
distance of about 9 m. Center-line dilutions are shown in Figure 80a.

At the surface impingement point,

5§ =10
c

giving a maximum pollutant concentration

Comparison to the stagnant result (cc = 57 ppm) demonstrates the

significant mixing action induced by an ambient crossflow.

8.3.2 Co-flowing Submerged Multiport Diffuser

A multiport diffuser discharges waste heat from a thermoelectric
power plant into an adjacent river. The discharge flow is Qd

= 15 m3/sec at a temperature rise ATO = 20° C . The river is well
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channelized with a width of 300 m. The river depth and velocity vary

from H=3m and u = 0.6 m/sec for average flow conditioms (river

flow rate QR = 540 ms/sec ) down to H =2 m and u, = 0.3 m/sec for

low-flow conditions (QR = 180 m3/sec). The ambient water temperature

is T, = 15° C . The diffuser pipe length is L, = 100 m commencing L

d
at one bank of the river and extending across one third of the width.

There are 20 attached ports (spacing L = 5 m, diameter D = 0.4 m)
pointing in the downstream direction, thereby forming a co-flowing
unidirectional multiport diffuser (Figure 18).

a. Low-flow conditions. The discharge velocity through each
port is U0 = Qd/(ZODzv/é) = 6.0 m/sec . The relative density differ-

ence corresponding to the temperature rise is (pa--po)/pa = 0.0047 and
the buoyant gravitational acceleration is g; = 0,046 m/sec2 . The
mementum flux and discharge per unit length from the diffuser are m
MO/L = Uon/Ld = 0.90 m /sec (Eq. 3.2.3) and q, = Qd/Ld

0.15 m"/see , respectively. The diffuser parameters are the

It

equivalent slot with (Eq. 3.2.4)

and the slot densimetric Froude number

. (4_L)”2 _ D (4_L.)”2= 176
s o \Dn T Dr
VgOD

413 _ 24,6 m (Table 6). The discharge

stability can be evaluated from the criterion (Eq. 3.2.5, even neglect~

The momentum length is £m = BFS

ing the effect of ambient velocity)

=0.12 < 1.84 (1 + cos2 90)2 = 7.36

plm

m
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since for the horizontal discharge 90 = 0 deg . Thus, the diffuser
operates in the unstable shallow~water domain. This fact would be
emphasized even more if the additional destabilization due to ambient
momentum {criterion of Eq. 3.2.7) were consulted. Unstable conditions
are quite typical for cooling water diffusers.

The characteristics of the fully mixed diffuser plume are pre-
dicted by the bulk dilutions S (Eq. 3.2.14). The ambient volume flux
parameter is V = uaH/(Qd/Ld) = 4,0, giving

S = 8.6

and a contraction coefficient Cc = 0,65 (Eq. 3.2.16), so that the
downstream width of the fully mixed plume is Cch = 65 m . The aver-

age excess temperature downstream will be

AT
s

= 92 = °
AT = S 2.3° C

Note that excess temperature acts exactly like a tracer or pollutant
concentration ¢ . The total ambient flow drawn over the diffuser line
is

(S——I)Qd = 114 m3/sec

or 63% of the river flow (QR = 180 m3/sec). Thus, there is no recircu-
lation tendency, which might arise, however, if the riverflow were even
lower than this Iow-flow condition.

b. Normal-flow conditions. With an increased volume flux

parameter V = uaH/(Qd/Ld) = 12,0 , the bulk dilution is now
(Eq. 3.2.14)

S = 15.8
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and the contraction is less severe, Cc = 0,85 (Eq. 3.2.16). The

mixed temperature rise is lower

AT

AT = *E— 1.3

Only (S—I)Qd = 41% or 222 m /sec of the river flow (QR
540 m /sec) participates in the mixing that is now much more influenced

by the river flow.

8.3.3 Surface Buoyant Jet

Blowdown water from an industrial cooling process enters a run-

of-the-river reservoir in the form of a surface channel of width 2bo
=2 m and depth h = 0.5 m . The total discharge flow rate is

1.5 m /sec giving a velocity U =1, 5 m/sec . The relative density
difference is 0.0025 (g = 0,025 m/sec )}, and the concentration of a
discharged radicactive substance is ¢, = 5 uCi/cm + The topography
of the river channel drops rapidly to a relatively constant water depth
of H=14m . The ambient velocities are weak varying from essentially
stagnant, u, = 0 , to mild crossflow conditions, u, = 0.10 m/sec .

a. Stagnant conditions. The relevant parameters are the length

scale (Eq. 3.3.1)

L0 = ‘\/hobo = 0.7l m

the aspect ratio (Eq. 3.3.2), and the Froude number (Eq, 3.3.3)

h U,
A=b—°-=0.5, F! = = 11,3
o VgOLO

giving the momentum length scale (Eq. 3.3.4)

L = 21/4

' =
M LoFo 9.5 m
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The maximum jet penetration depth (Eq. 3.3.5) is

h =0.,35 4, = 3.3 m
max M

occurring at a distance X ax = 4.6 RM = 44 m (Eg. 3.3.6) from the

shoreline. Thus, considering the criterion, Eq. 3.3.9,

h
max

= 0.83 > 0.75

the discharge is affected by shallow-water conditions. Therefore, the f
centerline dilution predictions (Figure 20 or Eq. 3.3.8) must be ad-

justed by the dilution reduction factor rg = 0.93 (Eq. 3.3.11). This

gives the stable dilution (from Eq. 3.3.8)

= ) "y o
rSScs (0.92)(1.0 Fo) 10.5

This means that the radioactivity level after mixing is
_ 3
c = c0/10.3 = 0,5 pCi/em
which is attained after a distance (Eq. 3.3.7)

xt =13 RM =124 m

Unless the reservoir is significantly wider than this, the jet would be

affected by the opposite bank.

b. Crossflow conditions. Even under these weak crossflow

conditions (Table 5),

R=u /U = 0,067
a o
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The criterion of Eq. 3.3.12 indicates

h 3/2
R ~E§§ = 0.8 > 0.05

so that the buoyant jet becomes shoreline-attached. This is quite a
common occurrence for buoyant surface discharges into rivers.

As mentioned in Section 3.3.2, the prediction for surface jets
in crossflow is difficult, in particular under shoreline-attached con-
ditions. For a first, conservative approximation, one may take the
dilution as 507 of the non-attached or stagnant case, giving S = 5 in
this case and c¢ = co/S = luCi/cm3 . The initial width of the recire-
ulating zone is of order (Eq. 3.3.13)

g, =u/2
0

Mu /ua =15m

These initial dilutiom and width estimates may be starting points for

far-field calculations,

8.4 EXAMPLES OF STEADY AMBIENT TRANSPORT ANALYSIS

8.4.1 Point Source

A 3-ft-diam pipe discharges 10.6 cfs of water with a loading
rate (ﬁ) of a conservative pollutant of 150 g/sec at river mile (RM)
531.5 of the Missouri River (in the reach shown in Figure 68)., For
this stage of the river, the end of the outfall pipe is 150 ft from the
left bank of the river. It is desired to determine the concentration
distribution at RM 526.11. The river flow is 56,100 cfs, and the aver-
age depth and width are approximately 13 ft and 700 ft, giving an aver-
age river flow velocity of 6.2 fps.

For this situation, enough data are available on the alignment
of the river and on the depth and velocity profiles that the most de-
sirable approach would be to obtain the concentration distribution by

using a numerical solution of Eq. 4.7,33 with interpolated values of h
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and Vo for each computational grid point and with ey cbtained from
Figure 62 for each computational cross section. Nevertheless, in this
example, the concentration distribution is estimated from the analyti-
cal solutions given in Eq. 5.3.6 or 5.3.7. These solutions are based
on the assumption of a constant diffusion factor (Df). For reaches

containing many bends, a value of D_. might be selected based on an

average or typical bend. For the prisent example, it would be expected
that the diffusion coefficients and therefore the diffusion factors
might be significantly different in the two bends between the ocutfall
and BRM 526.11. The analysis below includes an illustration of the
appropriate means of obtaining an average Df for reaches such as this
one,

The effects of initial mixing should be negligible for this
problem (if there is no significant temperature difference between the
effluent and the river)., The discharge velocity 1s about 1.5 fps while
the river flow velocity is about 6.2 fps. Thus, the discharge momentum
would not be sufficient to cause any significant penetration of the
effluent across the river. Also, there is only a negligible increase
in the effluent density associated with the pollutant load. As a rule-
of-thumb, the density increase can be estimated as being 60% of the
concentration. The initial concentration is c, = 1;1/Qo = 150 g/sec
divided by 10.6 cfs (with the appropriate conversion factors) =
500 mg/t. The density increase is rhus approximately 300 mg/% (or
300 mg per 1000 g of water) or 0.03Z.

From Section 7.5.3 the slope (S) is 0.00019, and for this width-
to-depth ratio, it is reasonable to estimate the hydraulic radius (RH)

as being equal to the depth. The shear velocity is then
1/2
U, = (gRHS) = 0.28 fps

Based on the planform geometry (Figure 68a), the reach is schematized
as four subreaches consisting of a bend to the right, a straight sec-

tion, a bend to the left, and another straight section, as follows:
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R, VB °y D¢
Reach RM Ax, ft ft U*Rc o ft2/sec ft5/sec2
1 531.5-529.9 8450 5200 3.0 3.6 13.1 20,600
2 529,9-528.8 5800 - - 0.6 2.2 3,500
3 528,8-526.5 12150 3500 4.4 7.7 28.0 44,000
4 526,5-526.1 2100 — - 0.6 2.2 3,500

For the straight reaches, o is assumed to be 0.6. For the bends, «a
is obtained from Figure 62. Since the values of o for field condi-
tions in Figure 62 were obtained by a method which accounted for the
effects of the variation of h and v, s these effects must also be
included in the use of these values of o« for predictive purposes. This
can be accomplished in an approximate way by the inclusion of ¢ in
the definition of Df (Eq. 7.3.17). For the present calculation,
is assumed to be equal to 1.5 for all subreaches.

The appropriate means for obtaining an average D_ can be ob-

£

tained from the concept that each value of D_ is representative of

f
the rate of transverse spreading in each subreach and that the total
amount of spreading at any cross section is the accumulated effect of
all upstream subreaches. This leads to the conclusion that the average

diffusion factor should be taken as

£ = Lhx

The mathematical basis for this expression can be seen starting with
Eq. 4.7.34 and replacing mxhzvxey with a diffusion factor that is

function of x but not of q or ¥ so that

azc
=Dx) —

8x 3q
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Nondimensionalization would give

X
xd Q2 X
O

rather than the expression in Eq. 5.3.1, but with this new definition

of Xq 9 the analytical solutions of Egs. 5.3.6-5.3.9 would still be
applicable. If an average Df is defined for a given reach, then the

value should be such that

£
X, = 5

d 2

Pl

A comparison of these last two expressions leads to the conclusion that

Df =

-

b4
~/~Df dx
o]

and discretization of this integral leads to the expression given above

for ﬁf . Application to the tabulated values of D

25,800 ft5/sec2 . The value of X3

28,500 ft is then 0.,23. Thus, it can be anticipated that the concen~

r 8ives Df =

for the total reach length of

tration distribution will be relatively uniform across the channel
width (Fig. 42a) with the values being on the order of completely-mixed
concentration which is mw/Q = 94 ug/f .

In determining the concentration distributions, the value is

required for

Y1

a = [ vy

s}
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This integral can be evaluated from the distribution of hvx in Fig-
ure 68b using (Vxh)avg = Q/B = 80.1 ftzlsec ; the result is

q; = 20,900 cfs for q = 0 at the left bank. The definitions of the
dimensionless variables in Eq. 5.3.1 can be substituted into Eq. 5.3.6
or 5.3.7 (using ﬁf ) to obtain an expression for the concentration in
terms of the original dimensional variables. Evaluation of this

expression gives:

q (cfs) 0 10,000 20,000 30,000 40,000 50,000 56,100
y (ft) 0 185 310 425 515 610 750
c (ug/) 102 101 98 94 90 88 87

The conversion between q and y is accomplished in a manner similar to

the evaluation of 9y since
y
g =f hvxdy
0

8.4.2 Line Source

For the low-flow situation for the multiport diffuser discussed
in Section 8.3.2, it is desired to determine if a temperature rise of
1° C will exist at any point along the left bank (assuming that the
diffuser extends outward from the right bank of the river), and if so,
to identify the region where the specified temperature rise exists.
For this purpose, the temperature distribution which exists at the end
of the initial mixing region downstream of the diffuser can be approxi-
mated as a line source across part of the width of the stream.

The temperatures along the left bank are estimated using the
analytical solution (Eq. 5.3.8 or 5.3.9) based on the streamtube model
with a constant diffusion factor. From Section 8.3.2, some of the hy-
draulic parameters are H =2 m and Q = 195 m3/sec {180 m3/sec up-
stream of the diffuser and 15 m3/sec from the diffuser). The river is
relatively straight, so a (Eq. 7.4.2) is taken as 0.5 and ¢
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(Eq. 7.3.17) is taken as 1.5. The river slope is 10-5. For the large
width-to-depth ratio the hydraulic radius is approximately equal to the

mean depth so that the shear velocity can be calculated from

U, = (gHS) = 0,014 m/sec
The diffusion factor (Eq. 7.3.17) is then

D, = wH2Ve& = wHZV(aHU*) - 0.025 m°/sec

The conversions from dimensionless distances and temperatures (concen-—

trations) to dimensional values using Eq. 5.3.1 are

2
de

Dg

x(km} =

= 1,520xd

AT (°C) = Cdl;l exp (— VE/Q) = l.54ccI exP(— %ﬁ)

where m represents the temperature (heat) flux given by the product
of the initial AT (20° C) and the diffuser discharge (15 m3/sec) and
the exponential deca& term accounts for the surface heat transfer
(Section 5.3.2). The first-order reaction rate coefficient (K) for
surface heat transfer for this river is 5 x 10—6 sec:_1 or 0.43 day_l.
Using Eq. 5.3.8 or 5.3.9 with 44,1 = 0 and 44,2 = 0.66 (since the
calculation in Section 8.3.2 shows that 66% of the riverflow [{(114 +
15)/195] was in the mixed diffuser flow), the calculated temperatures

for the left bank (qd = 1) and the right bank (qd = 0) are

AT (°C) at Locations x (in kilometers downstream of diffuser)
Bank 20 40 60 20 100 120 140 160 180 200 220 240
Left 0.08 0.27 0.41 0.49 0.53 0.55 0.55 0.54 0.32 0.50 0.48 0.45
Right 2.14 1.96 1.77 1.59 1.42 1.26 1,13 1.00 0,90 0.80 0.72 0.65
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(The temperatures are given with two decimal places to show the varia-
tion in the calculations, since there is very little change in the
temperature over a large distaﬁce along the left bank.) Even though
66Z of the river flow has an excess temperature of 2.3° C due to the
diffuser action, the slow transverse mixing, coupled with the surface
heat transfer, produces a maximum temperature of 0.55° C along the left
bank, with the calculated maximum being 130 km downstream of the dif-
fuser. Along the right bank, the temperature rise drops to 1° C at
160 km. (These distances are so large that the length of the initial
mixing region can be neglected. Also, over these distances, changes in
the hydraulics, such as tributary inflow and changes in Df caused by
changes in depth and velocity, may be significant.)

Since the temperature along the left bank is also the minimum
temperature at each cross section, the temperature distributions along

the left bank for various values of x., could be estimated by obtain-

d

ing cd,max from Figure 40b and then cd,mln

done in the calculations above, these values of cd would have to be

from Figure 41b. As was

converted to dimensional values and then reduced to account for

surface heat loss.

8.5 EXAMPLES OF UNSTEADY AMBIENT TRANSPORT ANALYSIS

8.5.1 One-Dimensional Conditions

There is an accidental spill of 200 1b of a substance in a
river. It is desired to estimate the concentration distribution at a
point 20 miles downstream with a river flow rate (Q) of 1,440 cfs. For
the purpose of this calculation, the substance is assumed to be con-
servative (no decay or reaction). For this reach of the river and for
this Q , the average hydraulic characteristics are H = 6 ft ,

B= 200 ft , and S = 10_4 . Mamning's n is estimated to be 0.04 giv-

ing an average V of 1.2 fps. The shear velocity, U, = (gRHS)l/2 N
is then 0.14 fps. The alignment of the channel and the bed form and
materials are such that the effects of temporary storage are probably

negligible ( A < 0.05 , Section 6.2.4) so that the average flow
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velocity should also be the average cloud velocity (i.e. the average
speed with which the pollutant cloud moves downstream).

First calculate the value of xé (Eq. 7.7.14) for x = 20 miles to
determine whether the concentration distribution will be one dimen-
sional or two dimensional with significant transverse variations. The
river is gently meandering; an investigation of several typical bends
in the river shows that they fall in Region IV of Figure 62, so that
the meandering does not contribute significantly to the transverse mix-—
ing process. Since this is a free~-flowing river with well-defined
cross sections, the value of o is estimated to be 0.6 giving
ey = oHU, = 0.50 ftzlsec and xé
tration distribution will be one dimensional. (Since a one-dimensional

= eyx/VB2 = 1.1 so that the concen-

analysis is to be used, the transverse location of the spill is not
needed.)

The empirical correlation of Weaver and Holley (Section 7.7.3¢)
is used to estimate the concentration distribution. In order to con-
vert the C' versus t' distribution of Figure 72 into a C versus

t distribution, values are needed for ¢ and t . For xé =1.1,

Figure 71 gives 0'2 = 8.1 x 10—3 (with a * one standard deviation range

d
from 1.6 x 10_3 to 4.3 x 10~2)_ The value of o is

2 1/2 BZ
g = (U' ) = 7,150 sec (range: 3,180-16,460 sec)

d
¥y
and t can be estimated as
t = % = 88,000 sec

Starting with C' and t' from Figure 72, the concentration dis-

tribution is obtained using

]

'M

C = 66_
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and

t =t + ot

The resulting distributions are shown in Figure 80 with the solid curve
corresponding to the average o and the two dashed curves showing the
possible variation associated with the range of o values (i.e. due to
the uncertainty in the value of ¢ from Figure 72). Uncertainty in
the hydraulic parameters, in ey » etc., would give additional possible
variation in the calculated concentrations. The possible range of con-
centrations shown in Figure 80 is typical of uncertainty to be expected
in problems of this type.

The concentration distribution can also be estimated by using
Eq. 6.3.3 with E from one of the expressions in Section 7.7.3a or b.
For illustrative purposes, Eq. 7.7.5 is used, giving E = 750 ftz/sec .
(Note that this expression should be used only when ey is approx-
imately 0.6HU, .} The concentration distribution obtained from
Eq. 6.3.3 is shown as the dotted curve in Figure 81. The possible var-
iation in E (Section 7.7.3a) could be used to obtain other curves to
demonstrate the uncertainty in C by this method also, but this is not
done in order to keep the figure from becoming too cluttered. The
range in C values based on the range of E values would be smaller
than that of Weaver and Holley's analysis; this result is probably due
to the fact that Eq. 7.7.5 for E was based on a selected set of data
(14 tests) whereas Figure 71 includes many more tests with no criteria
having been applied to select or eliminate any of the data that were
available for the correlation. Also, the relative shape of the C
versus t curve from Figure 72 normally is more realistic than the

one from Eq. 6.3.3.

8.5.2 Two~Dimensional Calculation

Due to an accident on a bridge, 5 curies of a radiocactive liquid
are spilled near the center of a river whose alignment is shown in Fig-

ure 82a. The concentrations need to be known for the central part of
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Figure 8l. Estimated one-dimensional concentration distributions for
unsteady conditions
the river at a point 5,500 ft downstream {(cross section 2 on the
figure). The river flow rate is 150 cfs, The average width is 110 ft
and the average depth is 2.8 ft, giving a velocity of 0.5 fps. The
slope is 3.2 * 10"4 so that the shear velocity U, = (gRHS)l/2 is
0.17 fps. For an approximate calculation, « is estimated to be 1.0
because of meandering of the stream. (An average value of & could be
obtained by first getting © for each bend using Figure 60 and then
averaging the values, with each value being weighted by the flow length
for which it applies, as was done to obtain an average D in Sec-

f
tion 8.4.1). The value of x, at 5,500 ft i1s 0.4, Even though the

concentration distribution isdprobably essentially one dimensional at
this cross section (Figure 42), a significant part of the reach is in
the initial period where the concentration distributions are two
dimensional. Thus, a 2D calculation is needed.

Temporal moments will be used, with the concentration being
estimated using a Pearson Type III distribution (Section 6.2.4). TFrom

prior measurements in the stream, the depth profile and velocity
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distribution at Section 1 in Figure 82a are known to be as shown in
Figure 82b. Since this is the only information available on depth and
velocity distributions, the calculations will be made assuming a pris-
matic channel. However, the measured distributions are from a cross-
over region between bends and the differences in depths and velocities
within the cross section are not as large as they would be in the
bends. Thus, the calculated lomgitudinal spreading may be somewhat
smaller than would be the actual case. The 2D calculations give the
following results for the center line of the stream: =zeroth moment

- 1,180 pe-sec/% , T = 10,981 sec = 3.05 hr, o> = 976,000 sec’ or

o = 988 sec = 0.27 hr , and S (skew coefficient) = !.03 . Substitu-
tion of these values into Eq. 6.2.14 allows the concentration distribu-
tion for the centerline of the stream to be calculated as shown in Fig-
ure 82c., As with the previous example, these calculations must be
viewed as being a general approximation. In particular, even if the
average velocity is correct, the elapsed time to the first arrival of
the cloud may be as much as 20% smaller than indicated, since the
velocity distributions in the bends (where there are larger differences
of velocity within the cross section) are not represented in the

calculations.
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