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EVALUATING CHANGES IN DIKE FIELD FISHES WITH
COMMUNITY INFORMATION INDICES

PART 1: INTRODUCTION

The General Problem

1. Researchers characterizing and comparing ecological communi-
ties are often faced with the problem of selecting an index or measure
that is a reliable estimate of community composition. Histofically,
species diversity measures have been employed to collapse large species
lists into single numerical expressions. Species diversity is usually
defined as a function of the number of species (i.e. species richness)
and the distribution of individuals with respect to the total number of
species (i.e. species evenness or equitability) in a sample (Margalef
1958, Lloyd and Ghelardi 1964, Pielou 1969). The primary motivation
for calculating species diversity indices based on richness or abundance
is twofold: (a) the observation that samples containing equal numbers
of species and individuals are seldom if ever identical and (b) the need
to produce a single number that can characterize a large and diverse set
of ecological data for comparative purposes (Hurlbert 1971).

2. Since the species diversity concepl was conceived by Fisher,
Corbett, and Williams (1943), diversity indices have been utilized to
explain and interpret patterns of species abundance in both theoretical
and applied ecological studies. A host of investigators has promoted
the concept of species diversity by postulating that diversity was an
intrinsic property in ecological processes and an important factor in
defining ecosystem structure and function (McArthur 1955, Pimentel 1961).
The concept was further popularized by the introduction of information
and entropy-based mathematical functions to approximate.community struc-
ture (Margalef 1958, Pielou 1969). As a result of these endeavors, the

theoretical application of diversity indices to explain patterns of

species abundance became widespread during the 1960's. Diversity




measures were used to summarize community information for a wide variety
of taxonomic groups (e.g., birds (McArthur 1955), insects (Menhinick
1964), forests (Pielou 1966), macroinvertebrates (Wilhm 1968), fish
(Sheldon 1968), and reptiles (Pianka 1966)).

3. In applied ecological studies, diversity measures have been
utilized to express causal relationships between community composition
and environmental degradation (Wilhm and Dorris 1968). 1In light of this,
many contemporary ecologists have used diversity measures to compare
community structure in pollution-altered environments (e.g;, pesticides,
Barrett 196&; aquatic effluents, Wilhm and Dorris 1968, Moore 1979,
Mason 1977, and Godfrey 1978). However, correlations between species
diversity and envirommental quality do not suggest that relatively higher
environmental quality will always reflect higher species diversity. 1In
fact, several studies have shown that diversity indices are not robust
indicators of environmental quality. A number of aquatic studies, for
example, have shown that polluted systems do not possess lower species
diversity than unaltered or reference systems (Archibald 1972 and Living-
ston 1975).

4. The use of diversity measures in both theoretical and applied
research has certain limitations imposed by the available information,
data type, and sampling design employed to collect the information. Di-
versity indices based on species richness, species abundance, or combina-
tions of these components have specific underlying assumptions that must
be addressed to ensure valid community comparisons. The species rich~
ness component of diversity is primarily dependent.on sample size. When
richness measures are employed in studies having equal sample effort,
direct comparisons of species counts are a reliable measure of species
richness (Peet 1974). Conversely, when sampling is unequal, direct
comparisons of species richness across communities may not be valid be-
cause increased sampling effort may in itself increase the number of spe-
cies. To circumvent these biases, a number of authors have supported
species richness measures which purport to be independent of sample
size. However, two important assumptions underlie these applications:

(a) a priori knowledge of the expected number of species and -(b) the



actual number of individuals in a sample (Fisher et al. 1943). Both
assumptions are virtually untestable in most applications.

5. A fundamental problem with diversity measures that combine
richness and evenness is the lack of an unequivocal definition of the
weights that the richness or evenness components contribute to the index
(Hurlbert 1971); another criticism of these indices questions the degree
of bias that a few abundant species may have on the diversity estimate.
In addition, many of these measures are dependent on absolute to maximum
diversity ratios; for example, h'/h max , where h' = Shannon function
and h max = log of the total number of species . Ratios such as these
may be subject to bias with especially small sample sizes (Dejong 1975).

6. Despite the many problems associated with using community in-
formation indices, applied ecologists persist in deriving diversity in-
dices to facilitate comparisons of community structure. These efforts
continue in spite of studies that indicate that diversity indices are
not necessarily consistent indicators of the complexity of community
structure‘(Green 1979). Furthermore, the use of species diversity in-
dices is not the only methodology available for empirically comparing
and contrasting ecological communities. Alternative measures such as
species overlap and ordinatidn techniques developed for taxonomic clas-
sification can be used by applied ecologists to contrast community struc-
ture (Sokal and Sneath 1963, VWhittaker 1972). In particular, alter-
native methods for examining community structure that incorporate either
binary, continuous, or meristic data are available. These methods in~
clude (a) similarity coefficients, (b) Euclidian Distance, and () multi-
variate analyses (Boesch 1977). 7

7. Many of the qualitative methods based on binary data have been
ignored by contemporary ecologists because the use of quantitative data
(i.e. species abundance) is thought to be superior to species presence/
absence data for comparing ecological processes. A number of authors
have argued that presence/absence data may be more meaningful and eco-
logically interpretable than species abundance data, which is often
highly variable (Green 1979, Peterson 1976, Allen 1971).

8. Any classification methodology designed to collapse




compunity information into a single expression is destined to lose
information. The exclusive use of diversity indices to characterize
community structure is often fraught with additional problems related

to unrealistic a priori sampling assumptions, index bias, and highly
variable data. In spite of these problems, ecologists persist in deriv-
ing diversity indices when alternative classification measures are avail-

able, especially those based on species presence/absence.

Objectives

9. The general purpose of this study was to contrast fish commu-
nities associated with dike field structures in the Mississippi River
over hydrologic seasons defined by water temperature and flow velocity.
The specific objectives of this study were as follows: (a) to evaluate
the relative performance of binary similarity coefficients, dissimilar-
ity measures, and species diversity indices in detecting changes in the
fish communities associated with two Mississippi River dike fields dur-
ing five discrete sampling periods (i.e., interdike field tomparisons),
(b} to evaluate the sensitivity of the three classification method-
ologies in detecting seasonal change in the fish communities within a
dike field (i.e., intradike field comparisons), (c) to evaluate the
relationship between measures of community composition based on a single
sampling gear and measures based on all sampling methods combined, and
(d) to relate the spatial and temporal changes measured in dike field

fish communities to localized physical attributes of the river.



PART 1I: METHODS

Study Area

10. In the study area, dikes are constructed of stone material
positioned perpendicular from the streambank into the main river chan-
nel. A dike field is a series of dikes placed to maintain channel width .
and depth as an aid to navigation. The dike fields being compared in
this study, Leota ‘and Cracraft, differ in dimensions, current, stream

channel topography, and position within the mainstream river (Figure 1).
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Figure 1. Study site on the Lower Mississippi River




11. Annual riverflow and water temperature regimes were used to
define four sets of environmental conditions during which fish sampling
was conducted. The four seasons vary, but are typically: summer
‘low flow, warmwater season; fall increasing flow, decreasing water
temperature season; winter/spring high flow, coldwater season; and
spring decreasing flow, rising water temperature season. - During the
study period of April 1979 to September 1980, there were five sampling
efforts in each dike field (Figure 2) corresponding to the river seasons

described above.
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Figure 2. Hydrograph of the Mississippi River at the Vicks-
burg, Mississippi, gaging station, 1979 and 1980 (sampling
periods are indicated as blocks on the hydrograph)

12. Interdike field comparisons of fish communities were made at
each of the five hydrologic periods sampled; intradike field evaluations
of community structure for each dike field were‘aléo made at each sam-
pling pericd. '

13. Intra- and interdike field eéaluations of gear type used to
sample fish communities were also made. Data derived from sampling dike
field fish communities were evaluated for three gear‘types: {a) electro-
shocking, (b) hoop nets;‘and (c) seines. Variability in the physical
conditions within the dike field, however, precluded the use of these

gears at all river stéges. Dike fields were compared across all river



'stages using electroshocking data, across all river stages but Septem-
ber 1980 for hoop net data, and across all river stages but April 1979
for seine information. | L
14. Fish communities in three pools of each dike field were also

compared (Figures 3 and 4). The surface areas of the pools varied con-
siderably due to fluctuations in river height. Gear usage was restricted
to the best available gear‘for the conditiens présent. Hence, consistent
gear usage was difficult to maintain, making comparisons by gear type of
fish communities in the pools impossible. No data were collected in the
upper pool of either field during September 1980; all remaiﬁing combina-

tions of pools and river stages were evaluatéd'for each dike field.

Analytical Procedures

15. Estimates of community structure based'on.traditional summari-
zation techniques were contrasted with othef numeric indices to test
the sensitivity of each in evaluating changes in dike field fish commu-
pities. The traditional measures included tqtél'number of species and
total number of individﬁals. Other numerié classification estimates
included similarity coefficients, dissimilarity coefficients, and diver-
sity indices (Table 1); l

Similarity coefficients

16. Binary similarity coefficients can best be explained with
a 2-by-2 contingency table (Figure 5) where the categorical cell
frequencies (i.e., A, B, C, and D) represent the number of species in
common between locations (A), the number unique to a location (B and C),
and the number of species not found in either location (D). Indices are
developed using either empirical or theoretical relationéhips-among the
four cell frequencies. When only two samples are contrasted, the cell
frequency of D is zero (i.e., there are no cojoint absences), in which
case binary measures which incorporate D aré undefined. However, when
comparing multiple samples for any pairwise contrast, cell frequency D
is defined and is usually greater than zero. ,Essentially, D represents
those species not in common against a reference list of species found

at all samples.
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Figure 5. A 2-by-2 contingency table used to obtain the
values of A, B, C, and D for calculating binary similar-
ity coefficients (after Boesch (1977))

Dissimilarity coefficients

17. Quantitative dissimilarity coefficients are based on differ-
ences in the numbers of individuals for any pairwise comparison. These
measures can be overtly biased because the dissimilarity estimate can be
affected by a single large difference in the frequency of a given
species. That is, any single large species count is incorporated into
the index as an absolute value and increases the denominator of the
estimate, which is essentially a ‘sum of all jndividuals of all species
over both locations (Clifford and Stephenson 1975).

Diversity indices

18. Diversity measures express results that are dependent on
species and/or individuals. When the number of species sampled is
relatively high, species richness measures produce greater values.
Conversely, when the proportion of individuals is equally distributed,

evenness measures produce higher values.

11




19. Correlations were performed to investigate the relationship
between species composition data and diversity, dissimilarity, and simi-
larity values in light of identified changes in the fish communities.
Correlations were also used to evaluate the relationship between binary
similarity coefficients that include cell frequency D and binary indices
that did not include cell D.

20. The Statistical Analysis System (SAS) (Helwig and Council
1979) was used to compute the community information measures. A pro-
gram was developed to generate community information indices for'both
temporal and spatial variables using Epecies information (Polovino et al.
1981). Community information measurés were also calculated for each
sampling gear. The data base was managed with methods developed by
Farrell, Magoun, and.Daniéls (1979), farrell et al. (1980), Farrell
(1981}, Polovino et al. (1981), and Strand and Farrell {1980).

12




PART III: RESULTS

21. Species composition data were calculated for the Leota and
Cracraftidike fields based on a total of 8802 fish and.52 different spe-
cies. For both dike fields, the greatest number of species collected
occurred in June 1979 (for Cracraft, 39 and for Leota, 38). The lowest
number of species sampled occurred in Apfil 1979 (Cracraft, 12 and Leota,
12). Higher numbers of individuals were collected in the Cracraft dike

field, over all river stages (Figure 6). Species diversity indices
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Figure 6. Total numbers of species and individuals
obtained in Leota and Cracraft dike fields plotted
by river stage

e

genérall& showed higher valués at river stages where the numbers of spe-
' cies and individuals sampled were relatively high (i.e., in June 1979,
November 1979, September 1979, and September 1980) (Figure 7). In the
analysis of fish communities by sample gear, both the number of species
and the number of individuals collected varied from the frequencies ob-
tained for combined gears. The greatest numbers of species and individ-
uals were collected with seineé and electroshocking equipment; hoop nets

accounted for the least number of species and individuals (Figure 8).
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Figure 9 shows the species diversity values derived when diversity in-
dices were applied. Diversity values for electroshocking data showed
low diversity in April 1979; diversity was also lower for the Cra-
craft dike field in November 1979. Hoop net and seine information

revealed equivalent diversity values, with the former showing increased
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diversity during June 1979 and November 1979 and the latter, during

June 1979. _
22. 1In the intradike field pool analysis, least numbers of

species and individuals were obtained in the upper pools (Figure 10).

':;: As Figure 11 shows, diversity was generally higher in the middle and

lower pools of the Leota dike field; this was not true for Cracraft,

m::fi especially in June 1979 when higher diversity values were evident in the
‘ upper pool.
|
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Figure 10. Total numbers of species and individuals for Leota and
Cracraft dike fields and dike field pools plotted by river stage
(no upper pool data were collected in September 1980)
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Interdike Field Comparisons

23. The majority of binary similarity measures revealed highest

values of similarity betheen dike fields in June 1979 and lowest values

of similarity in April 1979 (Figure 12). Similarity was approximately
equal for September 1979 and September 1980 and slightly lower in Noven-

‘ber 1979. However, three of the ten coefficients revealed inconsistent
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Figure 12. Interdike field binary similarity measures
plotted for five river stages (see Table 1 for explana-
tion of coefficient abbreviations)
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or opposite trends in similarity. The Kulczynski Second showed higher

similarity values in November 1979 and approximately equal values for

the four other river étages. Both the Williams and Binary Euclidian Dis-

tance measures varied only slightly across all river stage comparisons.
24, Binary Euclidian Distance and Bray-Curtis measures revealed

the highest dissimilarity at the lower river stages (Figure 13); lower

values were exhibited for these indices in April 1979 and June 1979.

The Canberra coefficient showed an opposite trend, revealing highest

dissimilarity at April 1979 and lower but approximately equal dissimilar-

ity at the remaining river stages.
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Figure 13. Interdike field dissimilarity

values plotted for five river stages (see

Table 1 for explanation of coefficient
abbreviations)
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Intradike Field Comparisons

25. Since intradike field comparisons involve ten specific
contrasts, ten binary similarity measures which incorporate cojoint
absences (cell frequency D, see Table 1) were included in this
analysis.

26. In both dike fields the majority of binary similarity coeffi-
cients, both D-inclusive and non-D, had the highest similarity among
river stage comparisons involving November 1979, September 1979, Sep-
tember 1980, and June 1979. Figure 14 shows that again, as in the in-
terdike field analysis, the Williams, Binary Euclidian Distance, and
Kulczynski Second coefficients did not exhibit this general pattern.
The Williams and Binary Euclidian Distance measures showed opposite
trends in similarity (i.e., higher values) when contrasting April 1979;
the Kulczynski Second value remained constant for all river stage com-
parisons. All binary indices which included cell frequency D (see Fig-
ure 15) revealed the séme trends as non-D measures: values of similar-
ity were positive and greater for pairwise comparisons that did not
include Aéril 1979. The only notable exception was relatively lower
similarity for June 1979 versus September 1980.

27. TFigure 16 demonstrates that in both dike fields the Euclidiar
Distance measure was greatest, indicating highest dissimilarity, for atll
combinations with river stage September 1980, except fdr April 1979-
September 1980. The Bray-Curtis index of dissimilarity was greatest
when comparing April 1979 and Septémber 1979 in both dike fields. The
Canberra measure was greatest in Cracraft for the April 1979-September
1980 contrast, in Leota for the April 1979-June 1979 comparison, and in
both dike fields for -April 1979-N0vamber 19?9 and June 1979-November
1979 comparisons. The pattern of agreement among the three dissimilax-
ity measures was generally the same for both dike fields: agreement
was greatest when comparing April 1979 with September 1980 and June
1979 with September 1979; agreement was least for April 1979-September
1979 and for September 1979-September 1980 comparisons.
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21



I T | T I 1 I
TS5 4 CHIS | YULE CRACRAFT

VALUE

VALUE

CONTRAST

Figure 15. Intradike field values of binary similarity
coefficients that include all cell frequencies (A, B, C,
and D) for Leota and Cracraft dike fields for all com-
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’ of coefficient abbreviations) '
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Interdike Field Comparisons by Gear

28. Leota and Cracraft dike fields were compared by gear type
for the five sampling periods. For electroshocking information, binary

similarity values (see Figure 17) were lowest in April 1979 and Novem-

‘ber 1979. The remaining river stages showed equivalent values of simi-

larity. Hoop net data showed low similarity in April 1979 and consis-
tently higher similarity in June 1979, September 1979, and November
1979. Seine information showed consistent values of similarity for the
four sampling periods when this gear was utilized.

29. Figure 18 shows that dissimilarity values for electroshock-
ing data produced high Vélues for the BrayFCurtis and Euclidian Distance
measures during November 1979. The Canberra coefficient varied little
over all sampling period comparisons. Hoop net data showed higher dis-
similarity during April 1979 for the Bray-Curtis and Canberra measures,
while Euclidian Distance was lowest during this period. Seine infor-

mation yielded higher values for Euclidian Distance and Canberra coeffi-

‘cients during September 1980. The Bray-Curtis measure varied little foz

all sampling periods except September 1979, which was relatively low.

Intradike Field Evaluations by Gear

30. Binary indices, which exclude cell D, for electroshocking amnc
hoop net gear types showed lower values of similarity for any pairwise
comparison involving April 1979. The exception to this trend of reduce«
similarity was found in the hoop net data for the September 1979~
November 1979 contrast for both dike fields. Electroshocking data for
the Cracraft dike field did not reveal marked changes in similarity for
the high-water comparisons. Similarity measures based on seine data
varied little over all sampling period comparisons. In Cracraft dike
field, similarity was greatest for the November 1979-September 1980 con
trast; in Leota, similafity was greatesf for the September 1979-Septemb:
1980 contrast. For the most part, binary measures which include B show

trends of incfeasing similarity for comparisons involving June 1979
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and November 1979. The lowest values of similarity were obtained for
the April 1979¥September 1979 contrast.

31. In Cracraft dike field electroshocking data exhibited trends
that suggest decreasing dissimilarity when comparing high water, April
1979, and lower water (i.e., June 1979 and September 1979) stages.

Intradike Field Pool Analysis

32. TFigure 19 demonstrates that non-D binary similarity measures
were generallf highest when comparing the middle and lower pools during
low-water periods, i.e., for September 1980, For comparisons of the
upper and lower pools, similarity was usually highest during April 1979
and June 1979 in both dike fields. Comparisons of the . upper and middle
pools show high similarity during June 1979 and September 1979. 1In
November 1979, similarity was low for Leota but relatively high for Cra-
craft. Binary measures that include D show varied trends in éimilarity
(see Figure 20). TFor the most part, equivalent values of similarity
were obtained for both families of binary indices, the most notable
difference being varied similarity in November 1979 for both dike
fields. Negative values of binary similarity for both D and non-D
indices reflect relatively lower similarity.

33. For Cracraft, the Bray-Curtis and Euclidian Distance indices
showed Iower values of dissimilarity for comparisons of the middle and
lower pools in November 1979 and September 1980 (see Figure 21). In
Leota this trend was exhibited for June 1979. The Canberra coefficient
revealed higher dissimilarity values for these same pools in June 1979,
September 1979, and November 1979. Dissimilarity values obtained for
both dike fields using the Bran-Curtis and Canberra indices were con-
sistently higher than the wvalues derived with the Binary Euclidian

Distance measure.

Index Relationships

34, Significant correlations between members of the three
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September 1980; see Table 1 for explanation of
coefficient abbreviations)

No significant correlations within the various families of

29

measures {e.g., Canberra to Bray-Curtis) were found.

10

Quantitative dissimilarity values for

families of indices were evident for species evenness and binary simi-
lafity (Kulczynski First); for Fuclidian Distance and Shannon's, Simp-
son's, Margalef's, and species information; and for species information
and Margalef's (Table 2).

isted for the Canberra coefficient and both Kulczynski First and species

Additionally, significant correlations ex-



35. Correlations between D and non-D binary similarity measures

(Table 3) were also evident for the intradike field comparison. In

fact, only the Kulczynski Second coefficient showed any nonsignificant

:;‘ [ correlations. Intradike field comparisons of these indices by gear

J] . type showed a high incidence of significant correlations for all three

gear types (Tables 4, 5, and 6).




PART IV: DISCUSSION

36. When comparing the performance of community information in-
dices- in detecting changes in the fish communities of both dike fields,
all measures consistently indicate differences in community structure
for combinations of high water (April 1979) and all other river stages.

"37. The majority of binary similarity measures had higher values
of similarity when species overlap (i.e., cell A, or cojoint presences)
was high, the summation of the mismatches (i.e., cells B and C, or re-
ciprocal absences) was minimal, and the number of species not in common
for any comparison (i.e., cell D, or cojoint absences) was low. Most
binary similarity coefficients are regulated by cojoint presences oOr ab-
sences (see Table 1). Binary similarity measures that exclude D, have
singlelexpressions of A in the numerator and some function of the mis-
matches in the denominator; because of this relationship, these indices
are usually correlated to the degree of species overlap and inversely
related to the sum of the mismatches. The Williams, Binary Euclidian
Distance, and Kulczynski Second coefficients are not dependent on spe-
cies overlap and do not follow the general trend of increasing similar-
ity with'greater species overlap (the Kulczynski Second minimizes phe
impact of cojoint presences by including two inverse functions with A
in the denominator and by multiplying the entire expression by one half
the value of A; both the Binary Euclidian Distance and Williams coeffi-
cients do not include A in computation of the index).

38. The results from this study indicated that Kulczynski First
may be the simplest and most comsistent indicator of computational
change in dike field fish cqmmunities; The Kulczynski First is a ratio
of cojoint presence to the sum of reciprocal absences [A/(B + c)]. In
a biological sense, this index is intuitively interpretable as a simple
expression of the total number of species in common to the total number
of species unique for any comparisomn. As the number of cojoint absences
or unique species approaches the number of cojoint occurrences, the
value of similarity decreases. The Kulczynski First proved to be an ex-

cellent measure for both inter- and intradike field investigations. For
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interdike field comparisons, cojoint occurrences fluctuated greatly
while cells B and C remained relatively constant. Conversely, in the
intradike field comparison, cells B and C varied markedly and cojoint
occurrences remained relatively constant. In both cases this measure
was sensitive to change in the mismatches and cojoint oCCUrrences, and
it recorded values of similarity accordingly. While this study shows
that the Kulczynski First may be a more appropriate index, Boesch (1977)
supports the Jaccard, Dice, or Ochiai coefficients of binary similarity.
However, each of these indices is constrained between 0 and 1 and can be
intuitively difficult to interpret because of the 1imited range of pos-
sible values (Clifford and Stephenson 1975). Conversely, the Kulczynski
First ranges from 0 to infinity, making differences in similarity much
easier to characterize.

39, Two measures that did not reveal trends that were consistent
with the majority of binary measures, the Williams and Binary Euclidian
Distance, might be considered better indicators of binary dissimilarity
rather than of gimilarity. Green (1979) states that little information
is contained in cojoint presences and absences; therefore, the important
criterion for similarity is dependent on reciprocal absences. 1f the
reciprocal absences (célls B and C) are large relative to the cojoint
presences (cell A), binary measures which include A show lower similar-
ity. The Williams and Binary Euciidian Distance measures do not in-
clude A (see Table 1) and show higher similarity when B and C are large.
The problem with considering indices of this type w@ich contain only one
group of cell valﬁes is that in most cases the indices are only meaning-
ful when the relationship between groups (e.g., A to B and C) is known.
For example, when comparing two- locations ovVer time where the values of
species overlap at Time One were A= 2, g=2,and C= 2 and at
Time Tvwo were A = 20 , B=2,and C= 2 , the values of similarity
for Williams and Binary Fuclidian Distance would be jdentical. In actu-
ality, similarity might be greater at Time Two because of a tenfold in-
crease in the aumber of species in common.

40. The Bray-Curtis and Euclidian Distance dissimilarity meas

sures reflect differences in the number of individuals for any pairwise
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comparison. In fact, large differences in the numbers of dominant spe-
cies are prevalent for both dike fields in November 1979 and September
1980. Additionally, certain gear comparisons also reflect higher values
of dissimilarity at different river stages. For example, the large
value of Euclidian Distance at November 1979 for dike fields contrasted
for electroshocking data can be attributed to a skewed frequency of the
most dominant species and a lack of additional species with appreciable
numbers. However, the Canberra coefficient differs from the Bray-
Curtis and Euclidian Distance indices in being a grand summation of a
geries of fractions involving the differences (numerator) and summation
(denominator) of species in common for any pairwise comparison (see
Table 1). Unlike other dissimilarity measures, the Canberra is not

biased by large differences in individuals because the 1ndlv1duals are

treated as fractioms, thus tempering the estimate. The Canberra measure’

also includes an inverse function that represents the total number of
species being compared and therefore reduces the value of dissimilarity
when the number of individuals being compared is high.

41. 1In order to compare the relative performance of different
community information indices, species composition data and diversity
measures must be expressed as single pumeric values that characterize
the differences between samples and not the relationship within a sam-
ple. A series of diversity values for a contrast contains little infor-
mation other than a simple comparison in value between the locations and
dates. Changes in diversity values for a particular contrast expressed
as a percentage change may contain valuable information about the dif-
ferences in species composition for that contrast. The interdike field -
analysis provided a means for comparing species diversity indices and
species composition data as single numeric expressions with coefficients
of similarity and dissimilarity. The consistency in correlations be-
tween the Euclidian Distance index of dissimilarity and most of the per-
cent changes in diversity suggests that the expression'of diversity as
a percent change is, in fact, analogous to a measure of dissimilarity
between the two dike fields. This hypothesis is further supported by

the inverse relationship exhibited between binary similarity and the
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Canberra coefficient on the one hand and specieés evenness on the other:
when the percent change in diversity increases, dissimilarity increases
and binary similarity decreases,

42. The lower incidence of significant correlations involving
binary similarity and the lack of significant correlation among diver-
sity, species composition, and dissimilarity suggest that no single
numeric classification technique measures change in fish communities
in an equivalent way. A typical paradoxial situation is evident when
comparing both dike fields in April 1979. Binary similarity is low for
this comparison because there were fewer common species than unique
species in each dike field. However, the species and individuals which

-comprise 90 percent of the communities by number, in each dike field,
are identical. Invariably, rare species were obtained in each dike
field, which served to lower binary similarity by increasing the values
of the mismatches. Conversely, diversity measures were very similar at
this river stage due to similar proportions of abundant species; how-
ever, only 41 percent of the species in either dike field were in com-
mon. Whether rare species are a product of sampling effort or do,
in fact, delineate lower similarity at this river stage cannot be
ascertained.

43. Relationships between index values calculated for different
gear types compared to the same indices calculated for combined gears
were also of comsiderable importance. Consistency in index values for
binary similarity measures were found for electroshocking and hoop net
data. Dissimilarity and diversity indices were also similar for elec-
troshocking information compared to combined gear values. Electrofish-
ing data appear to parallel combined gear data in a consistent fashion
exhibiting equivalent values of binary similarity, dissimilarity,
and diversity. In this study electroshocking was the single most
representative gear type in comparison to combined gear-evaluations.
Pennington et al. {1982) have suggested that in riverine systems elec-
troshocking is the most suitable gear because of its adaptability
to fluctuating water conditions. Perhaps of greater importance is

the observation that binary similarity measures represent a better
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Pielou's Evenness in dike field Leota) may indicate that a greater num-

- ber of fish species utilize the pools during low water. Fish species

may be selectively vacating dike fields at high water, or many species
may be using the pools in lieu of natural back- or low-water habitats
during falling river stages.

46. Increasing interest in regibnal fish community structure
mandates the use of empirical classification methodologies as tools for
environmental management and decisionmaking. Levenson and Stearns
(1980), suggest using diversity indices under conditions outlined by
Whittaker (1972) for regional assessment of community structure. They
recommend the use of classical diversity measures to characterize total
diversity in a large geographic area, a method for defining regional
diversity which is subject to errors and biases. Total (gamma) diver-
sity in any geographic area is a function of both inter- (alpha) and
intra- (beta) habitat diversity. Alpha diversity is measured using
indices of diversity, which are simply proportional trends in species
and individuals within a given sample and contain no information on
differences in species composition. Beta diversity is measured using
coefficients of similarity, which are based on species presence/absence
and abundance and represent differences in species composition between
sites but contain little information about community structure. Infer-
ring total diversity from intra- and interhabitat diversities is there-
fore inappropriate. In addition, limitations and biases inherent in
diversity indices calculated for single areas (i.e., alpha diversity)
are not circumvented when these single-area indices are used to generate
an index of diversity for a region} Thirdly, compiling data on species |
information on a regional scale entails collating data from a variety
of studies with different objectives, raticnales, and research algo-
rithms into a single index; hence, data pertaining to species abundance
collapsed from a regional scale are extremely suspect. Furthermore, as
Levenson and Stearns (1980) themselves point out, regional ecological
data often consist of species lists generated from single-survey studies.
For all these reasons, binary similarity coefficients may indeed be more

representative and robust measures for determining changes in community

36




structure. A recent study by Winner et al. (1975) supports measures
.bgsgd on species or species presence/absence which are sensitive to
change in community structure. Specifically, Hocutt et al. (1974) found
that the Jaccard coefficient offered a more critical analysis of change
in fish communities than diversity indices for biological assessments

of water quality.

47. Another finding from this study is that binary similarity
measures which include cell frequency D reflect the same patterns of
gimilarity as non-D indices. Realistically, a regional or time-series
investigation of community similarity might incorporate more than two
locations and/or sample dates. In these cases, binary measures which
inciude cell frequency D might be considered preferable. Essentially,
these measures are carried out as follows: (a) a master list of species
is developed that represents all species found in a location for various
sampling dates; (B) comparisons made for any pair of locations summarize
the similarity of the locations in light of the total number of species
that could conceivably be present; {c) these comparisons theoretically
delineate higher similarity when species overlap (A) is large and the
mismatches (B and C), as well as the species not in common (D),-are
minimal. On the other hand, the significance of the high correlations
among D and non-D similarity coefficients might suggest that pairwise
comparisons need not be performed on a master list of species. In other
words, these data suggest that evaluations of dike field fish communi-
ties at specific river stages, in reference to the total number of spe-
cies obtained for all river stages, are simply mot necessary.

48. 1In summary, bimary similarity indices appear to be an atitrac-

tive alternative method for comparing change in fish communities. The
use of these coefficients has a number of practical benefits for fish-
eries studies. First, these measures are very simple to compute since
only four elements of species overlap are used. Second, they are not
influenced by unbalanced sampling designs, although a representative
species list is assumed for the communities being compared. Third,
binary measures are host attractive for regional assessments of species

composition data where very different sampling methods are utilized. 1In
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addition, the consistency in values for different gear types and the
high correlations found when comparing D and non-D measures further sup-
port the use of these measures. Finally, binary similarity indices do
pot involve quantitative data and are therefore exempt from bias evident
in dissimilarity and diversity measures. In fisheries assessments,
large differences in the frequency and numbers of dominant species are

a criterion on which diversity and dissimilarity measures fluctuate.
Whether these differences suggest greater dissimilarity is not clear.
This is especially evident when the respective assemblages of dominant
species are equivalent but the total numbers of individuals differ.

49. Binary similarity coefficients should not be considered a
venre-all" for assessing change in community structure. Under certain
conditions, e.g., when only a few species constitute the community,
these measures are clearly inappropriate. As Levenson and Stearns
‘(1980) point out, index values should rarely be the sole criterion on
which environmental judgements are based. Rather, the components of
the indices or other trends in the data should also be considered in

the decisionmaking process.
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PART V: CONCLUSIONS

The following conclusions were derived from this study:

a.

i~

In

tf="

| b

I+

Binary similarity coefficients are successful indicators
of change in fish commumities. However, some coeffi-
cients are better than others, and this study indicates
that the Kulczynsk1 First may be the simplest and most
consistent indicator of computational change in dike
field fish communities.

Both D and non-D binary measures revealed consistent re-
sults, indicating that regional assessments of fish com-
munities can be made in reference to the total number of
species of a community over a given interval of time.

Diversity measures expressed as absolute values for any
two locations being compared can probably be used as in-
dices of dissimilarity. Although the Williams and Binary
Euclidian Distance are measures of similarity, theoreti-
cally they are appropriate indicators of binary
dissimilarity.

Dissimilarity and diversity measures are probably the
least desirable methodologies available for detecting
change in fish communities for single ecological survey
studies.

Fish seem to exhibit a preference for dike field habi- -
tats at low water levels because these structures in-
crease the heterogeneity of the river system by providing
a variety of habitats such as sandbars and riffle areas.

Based on community information measures, electroshocking

- data proved to be the most representative in comparison

with indices generated for hoop net and seine informa- _
tion, making electroshocking the single most representa-
tive gear type.
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Table 1
Summary of Rumeric Classification Estimates for C_omparing Ecological Community

Structure, with Principal Secondary References Cited

Abbre-
Coefficient Formula viation Reference
1. Binary Similarity Coefficients
A
Jaccard TTPFC Jace Boesch (1977)
. 2(A
Dice TR +( % e DICE Boesch {1977)
Kulczynski First i-%——c KUL1 Boesch (1977)
Kulczynski Second (ﬂ)(i—}—-x—!—) XUL2 Boesch (1977)
2 + B/AA+ C
Ochiai A OCHL  Boesch (1977)
\I(A + B)(A+C) .
A 1
Fager - FAGR Boesch (1977}
V(A +B)(A+C) V2(a + B)
Russell and Rao KT'B_i—C_-ri RUSS Clifford and Stephenson (1975)
Rodgers and Tanimote T3 i ; g__'_ i) RODG Clifford and Stephenson (1975)
Chi Square 4D - BCA(A + B + C +D) CHIS  Clifford and Steph (1975)
qual A+ BY(C + DI(A+ CI(E + D) ifford and Stephenson
Mean Square Contingenc . CHIE __ _ MEAN Clifford and Stephenson (1975)
q geacy E¥B+C*D . 4
Binary Euclidian Distance \‘B + L BIEC Clifford and Stephenson (1973)
Williams [2(B + CH{(Log(2)} WILL Williams et al. (1966)
2(A + D)
Unnamed 1 TATD) * B+ O UNN1 Sokal and Sneath (1963)
A .
Unnamed 2 AT2E T C UNN2Z Sokal and Sneath {1963)
A+D '
Unnamed 3 tTE UNN3 Sokal and Sneath (1963)
2(a + D)
Sokal, MAFD+TBIC SOKL Sokal and Sneath (1963)
Mct i 42 - B MCCN  Clifford and Stephenson (1975)
cConnaughy SRR P
AD - BC .
Yule I+ BC YULE clifford and Stephenson (1975)
Pearson AD - BC ' PEAR  Clifford and Stephenson (1975)
A +B)(C+ D){A + T)(B + D)

(Continued)




Table 1 (Concluded)

Abbre- ‘
Coefficient ) -Formula : viation Reference
II. Dbissimilarity Coefficients
' o 1z
Euclidian Distance D= (3 (X -X,) EUCD  Clifford and Stephenson (1975)
1

vwhere
Xl, Xz = succession scores for
the nth attribute

n
)1:)‘1. xz.)
Bray-Curtis D= BRAY Clifford and Stephenson (1975)

n (Xl + XZ )
I\ 4

. 1 .

where
n = total number of
attributes

Xl', X2 = values for j total
j J  attributes for any
pair of entities

(?1..' Xz.)

- CANA ‘Clifford and Stephenson (1975)
(Xl + XZ )
J i

: : =1
Canberra D= 2

III. Diversity Indices

1 = .;,S'l . ’ ‘
Margalef's Richness . . D= Tog n _ MARG Odum (1971)

where
) ‘total number of species
totzl number of individuals

Shannon-Weaver H™ = -Zpi x log Pi SHAN Odum (1971)

where
Pi

it

propertion of individuals
of species -i in the
population

5
1- 3 i)? SIMP  Odum (1971)

Simpsons D

Pielou's Evenness E= EVEN Odum (1971}

where
H” = Sharnon-Weaver diversity
index
s log §

Hma .
total number of species

X
8

Community Richness ) R oMM Odum (1971)

_ 1
T 5 - Log(W}
where

total number of species
total number of individuals

=wm
0
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Table 3
Correlation Matrix of Binary Similarity Measures for Cracraft and Leota Dike Fields

and Ten Combinations of Five River Stages (indices which include cell

frequency D are listed vertically)

JACC* — DICE  FAGR  WIiL MCCN_ OCHI BIEC N2 KULd KUL.2
RODG 0.96%%  0.94%%  0.94%%  -0.99%¢  0.94%t .95tk g ggan 0.97%%  0.98% 0,45t
RUSS 0.98%F  0.98%k  0.98%k -0, 90%% g g74s 0.98%%  -0.BB¥*  0.97% 0.92%% .02
SOKL 0.96%%  0.95%%  0.95%% -0.99%% 0,94t q.g5%  -qggw 0.96%%  0.95% 0,41
YULE 0.57%%  0.54f  0.53t  -0.71% 0.62%0% Q.574%  -q.y35k 0.60%% 0.67%% (g4
FEAR 0.67%k  0.64%  0.63%k  -0.70%  0.70%%  0.g6%  -0.gok 0.70%F  0.77%% 0,794
CHIS 0.64%%  0.62¢%  0.61%%  ~0.76%  0.66%%  0.64%% -0, 794k 0.68%%  0,76%% 0, 75%%
MEAN 0.65%%  0.62%%  0.61%*  ~0.76%% 0.67% 0.64t%  _o. 79w 0.69%%  0.77%%  (,75%%
UNN1 0.96%% 0.95%% g gsis 0.99%F  0.94%%  0.95%%  -0.00%%  0.96%%  0.95%% .41
0.71%  -0.14

UNN3  0.74%%  0.74%%  , 78%% -0.69%%  p.68%F 0 72%% g ggiw- 0.74%%

% Bee Table 1 for explanation of abbreviations.
= P < 0.01.
T P <0.05.
Table 4
Correlation Matrix Derived from Electroshocking Data of Binary Similarity Measures
for Cracraft and Leota Dike Fields and Ten Combinations of Five River Stages
(indices which include cell frequency I are listed vertically)

- JACCH DICE -FAGR WILL MCCN OCHI BIEC UNN2 KUL1 KuL2

RODG 0.56%* 0 56%% 0.487% =G.97%%  0.45 0.52% -0.97%%  0.56** 0,55% -1

Q

RUSS 0.92%%  0.91% 0.95% -0.20  0.gg%% .01%F  -g.24 0.93%  0.92%% ¢
SOKL 0.58%%  0.58%F 0.48f  -0.98% 0.46t  0.53f  -0.98%% g.58%% g.574% o
YULE 0.575  0.50%%  0.49F  -0.85%  0.60%  0.60% -0 g5k 0.56%%  0.53f  0.88%%
FEAR 0.60%  0.61%F  0.51f  -0.87%% 0.61% 0.62%% -0.88%  0.50%  o.574% o gow
CHIS 0.45 0.46%  0.39 -0.70%F  0.49F  0.48%  -0.73%%  0.46  0.42 0

MEAN 0.47f  0.48T  0.42  -0.77%%  0.51f  0.50t  -0.75%  0.461  0.461  0.pe
TNNL0.58%%  0.58%  0.487 © -0.98%%  0.46F  0.54F  -0.98%  0.58%%F  0.574% g gyae
KNN3 0.59%%  0.50%F  0.67%  -0.11  0.48t  0.567  -0.11  0.50% o.5g% -0.13

. 89%%

Table 1 for explanation of abbreviations.
0.01.
0.05.
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Table 5

Correlation Matrix Derived from Hoop Net Data of Binary Similarity Measures for

Cracraft and Leota Dike Fields and Six Combinations of River Stages (indices

which include cell fregquency D are listed vertically)

JACC* DICE FAGR WILL MCCN | OCHI BIEC UNNZ KUL1 KUL2
RODG 0.73%*  0.71%% 0 ,68%% g 9gw 0.6717 0.69% =0.99%F  0.74% 0 74wk g yank
RUSS 0.94%%  0.95%%  ggin -0.61% 0.89%%  0.93% -0.61% 0.97%%  0.95% 0 59%
SOKL 0.72%* 0.71%%  0.,68% ~0.98% 0 g7t 0.70%%  -0.97%F 0.72%% g,71% 0. 74%=
YULE 0.607 0.63% .61t -0.78%  0.75%% p.got -0.77%*%  0.57 0¢.52 0.90%*
PEAR 0.63% 0.66% .64t -0.81%%  -0.76%% 0,728k g Bpa 0.60% 0.56 0.90%*
. .
[
0
0

0
0
CHIS O0.61t 0.57 0.58 ~0.53 627 0.60% -0.57 0.631 0.67¢ 0.52
MEAN 0.61%1 0.57 6.57 -6.53 .62% 0.60% -0.57 0.637 0.671 0.52
UNN1 0.72%  0.71%%  0.¢8% 0. 99%* 671 0.70%%  -0,97%% o_72%%  @.71% 0.74%%
Q .57 0.641 -0.47 0.76%  0.77%F  0.25

UNN3 0.74%%  0.69%F 0.74%%  -g.46

* See Table 1 for explanation of abbreviations.
** P < 0.01.

t P2 o.05.

Table 6
Correlation Matrix Derived from Seine Data of Binary Similarity Measures for
Cracraft and Leota Dike Fields and Six Combinations of River Stages
(indices which include cell frequency D are listed vertically)
Jacc DICE FAGR WILL HMCCN OCHI BIEC UNN2 KUL1 KUL2

RODG 0.96*% 0, 96%% 0.94%% -0.99%% 0, 06%% 0,64t -0.99%%  0.95%% 0, g9¥F  Q gowx
RUSS 0.66% 0.67% 0.68% -0.43 0.62t1 0.91%% - -0.45 0.64%1 ¢.607 0.35
SOKL 0.91%% 0.93%x 0.92%  -0.98%%  0.94% Q.54+ ~0.96%F  0.887% 0,79%* (0, g5%*
YULE 0.81%%  0,84%* =0.84%% . 94*x g grx 0.65% =0.90%% 0.77%% 0, 66F 0.90%%
PEAR 0.90%* (.91 0.89%* -0.98%%  (,93% 0,731  -0.96% 0.87%% 0,807 (.96
CHIS 0.88%% 0, g%+ 0.85 -0.86%  0.87% 0.60% -0.90%  0.89%% @,88%% (., g3%*
MEAN 0.88%% (. 84%* 0.85%* .0.86%F (.88%* (.70% =0.91%  0.90%*  0.90%* 0.03%%
UNN1 0.91% 0, 93#%* 0.92%% ~Q.g9%% g gfr 0;71T ~0.97%%  0.88%  0.79%%  (_g5%x
UNN3 0.11 0.16 0.30 -0.09 0.21 0.43 -0.05 -0.06 ~0.04 0.07

* See Table 1 for explanation of abbreviations.

*= P <0.01,

T P <0.05.




