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FOREWORD

The experimental investigation reported herein was jointly spon-
sored by the U. 8. Army Engineer District, Huntington; the U. S. Army
Engineer District, Louisville (ID); and the U. S. Army Engineer Division,
Ohio River (ORD). The studies were conducted in the Hydraulics Labora-
tory of the Waterways Experiment Station (WES), Vicksburg, Mississippi,
during the period December 1971 to April 1972, under the direction of
Messrs., H., B. Simmons, Chief of the Hydraulics Laboratory, and T. E.
Murphy, Chief of the Structures Branch. The investigation was conducted
by Mr. J. P. Bohan and PFC T. L. Gloriod, under the supervision of
_Mr. J. L. Grace, Jdr., Chief of the Spillways and Channels Section. This
report was prepared by Mr. Bohan. -

Mr. G. R. Drummond of the ORD and Mr. Summerville of the ID
visited the WES during the investigative phase of the study to observe
the testing and discuss preliminary results.

COL Ernest D. Peixotto, CE, and Mr. F. R. Brown were the Director
and Technical Director, respectively, of the WES during the conduct of

the investigation and the preparation and publication of this report.
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NOTATION

Area of the orifice opening, sgq £t

2
Acceleration due to gravity, ft/sec _
Vertical distance of overlap of the velocity profiles, ft

‘Distance from the lower 1limit to the upper limit of the zone

of withdrawal, f%

Vertical distance between orifice f's, f%
Discharge, cfs

Time, sec

Local velocity in the zone of withdrawal at a distance yl
below the elevation of maximum velocity V , fps

Local velocity in the zone of withdrawal at a distance yé
above the elevation of maximum velocity V , fps

Maximum veloecity in the zone of withdrawal, fps

Average velocity in the zone of overlap of either the upper or
lower withdrawal layer, fps ’

Average velocity through the orifice, fps

Vertical distance from the elevation of the maximum velocity
V ©o the corresponding local velocity vy 4

Vertical distance from the elevation of the maximum velocity
V to the corresponding local velocity Vg s ft

Vertical distance from the elevation of the maximum velocity
V to the lower limit of the zone of withdrawal, £t

Vertical distance from the elevation of the maximum velocity
V to the upper limit of the zone of withdrawal, ft

Vertical distance from the elevation of the orifice g to the
lower limit of the zone of withdrawal, £t

Vertical distance from the elevation of the orifice g to the
upper limit of the zone of withdrawal, ft

Head differential on the orifice, ft
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Lp
Ap

T
Apl

Apé

Vertical shift of withdrawal limit, £t

Density difference of fluid between the elevations of the maxi-
mum velocity V and the corresponding local wvelocity vl ’ g/cc

Density difference of fluid between the elevations of the maxi-
mum velocity V and the corresponding local velocity Vg s g/cc

Density difference of fluid between the elevations of the ori-
fice ¢ and the lower limit of the zome of withdrawal, g/cc

Density difference of fluid between the elevations of the ori-
fice £ and the upper limit of the zone of withdrawal, g/cc

Density difference of fluid between the elevations of the maxi-
mum veloeity V and the lower limit of the zone of withdrawal,
a/cc

Density difference of fiuid between the elevations of the maxi-
mum velocity V and the upper limit of the zone of withdrawal,
g/cc

Density difference of fluid between the elevations of the orig-
inal withdrawal limit and the shifted withdrawal limit, g/ecc

Fluid density at the elevation of the orifice g, g/ce

Density of fluid at the elevation of the original withdrawal
limit, g/ce
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to

metric units as follows:

Multiply By To Obtain [
inches 2.5k centimeters
feet 0.3048 meters
sguare feet 0.092003 square meters
cubic feet per second 0.0283168 cubic meters per second
feet per second 0.3048 meters per second
feet per gecond per second 0.3048 meters per second per second
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SUMMARY

Laboratory research was conducted at the U. S. Army Engineer
Waterways Experiment Station (WES) to determine the characteristics of
the withdrawal zone resulting from the simultaneous release of flows
from a randomly stratified impoundment through outlets located at dif-
ferent elevations. Stratification was generated in experimental facil-
ities by creating differentials in both temperature and dissolved salt.
The density profile was determined by measuring the temperature and
conductivity profiles and combining the effects on density of these two
factors. The velocity distributions were cobtained by filming the dis-
placement of a dye streak in the flow.

Superimposing the separate and distinct velocity profiles for each
of the outlets based on single-outlet operation (as used in a previous
WES investigation) to obtain the composite velocity profile, due to si-
multaneous release through two outlets, did not yield completely satis-

factory compariscns between predicted and observed results. Further
~ analyses were made to develop a generalized technique, which involved a
controlled shift of the withdrawal limits in the zone of overlap prior
to superimposing the two separate and distinet velcclity profiles. This
technique yielded good agreement befween observed and predicted, selec-
tive withdrawal characteristics.

When the composite velocity profile in the reservoir has been
determined by the recommended method, a welghted-average technigue can
be applied to determine the value of any water-quality parameter in the
outflow for which a vertical distribution within the reservoir is known.
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SIMULTANEQUS, MULTTPLE-LEVEL, RELEASE FROM
STRATIFIED RESERVOIRS

Hydraulic Laboratory Investigation

PART I: INTRODUCTION
Background

1. The recent attacks on pollution and the desire to enhance.the
guality of our water resources have greatly increased the demands on
multipurpose reservoir plamning, design, and operation. The desire to-
meet the objectives with regard to downstream quality, as well as quan-
tity, has made it necessary to develop technigues to improve the quality
of reservoir releases. One of the techniques which hag been developed to
attain a higher release gquality is selective withdrawal, whereby outlet
ports are placed at various levels in a reservoir in order to withdraw
water of a desired quality. The problem then becomes one of determining
the vertical extent of the withdrawal layer created in the reservoir and
the velocity distribution therein. Research regarding this problem
began in 1966 at the U. §. Army Engineer Waterways Experiment Station
and resulted in a technique for predicting the extent of the withdrawal
zone and the velocity distribution for flow through a singie orifice -
and over a submerged welr. The results of these investigationsg are

reported in references 1 and 2.

Purpose and Scope of Study

2. The study reported herein was conducted to. determine whether
gsuperimposing the predicted velocity profiles for individual outlet
ports at different elevations, based on results reported in reference 1,
would be an adequate description of the velcocities in the withdrawal
current created in a stratified reservoir for the simultaneous releasge
of flows through multiple-level outlet ports. A limited number of

tests were conducted using two outlet ports to cbtain results for




different vertical spacings and various flow distributions between out-
lets, When it was decided that the simple superpesitioning principle
mentioned above would not be adequate, further analysis of the data was
conducted in order to develop a predictive technigue that would give

better agreement between the observed and predicted veloecity profiles.




PART TI: EXPERIMENTAL FACTLITIES

3. The experimental facilities (fig. 1) contained four l-in.¥-
diam. outlet ports, each at a different elevation, at the end of a
3-ft-wide by 2-ft-deep channel. The channel was approximately 8 ft long
with clear plastic sidewalls for ease of observation. The channel side-
walls were extended 16 ft into a 32-ft-long by 16-ft-wide by L-ft-deep
headbay, which was used to provide a relatively large reservoir supply
of salt water and to allow the tests to be conducted with a falling head.
Stratification was generated by means of differentials in both tempera-
ture and dissolved salts. Fresh water was supplied by & pipe and weir
box that extended across the full width of the headbay. The welr box
was supported by screw jacks, in order that the base or 1ip of the box
could be set at the desired interface or surface of the saline water.
The lower, dense stratun was generated by filling the headbay and chan-

nel to a predetermined level with fresh water and then mixing in salt to
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Fig. 1. Experimental facilities

* A table of factors for converting British units of measurement to
metric units is presented on page ix.



give the desired density. The weir box was placed at the surface of the
saline water, and fresh water was slowly introduced through the box and
over the broad-crested weir and saline water, in order to establish the
upper stratum. Valves were provided at each of the four outlets, and
the flow rate from any one outlet was obtained by measuring the volume
released with respect to time. All of the tests were conducted with
no inflow. This condition was allowable because of the short duration
of the test and the large volume of water available in the headbay.

4, The density distribution was determined in place from measure-
ments of conductivity and temperature using a thermistor, a conductivity

probe, and the appropriate indicators (fig. 2). The actual density of
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Fig. 2. Instrumentation used in experimental facilities

the fresh and saline waters used in the facilities for calibration pur-
poses was determined using a hydrometer or gravimetric balance. Ini-

tially, a very distinct two-layer stratification existed; however, the




variable temperature of the atmosphere generally heated or cooled the
upper stratum during the day and night %o the extent that it was neces-
sary to monitor temperatures as well as salinity in order to determine
an accurate measure of the densities in the experimental facilities.
Velocity distributions were obtained by dropping dye particles into the

flow and filming the displacement of the resulting streaks with movie
cameras.




PART III: TESTS AND RESULIS

Test Procedure

5, After stratification had been generated, the test was initi-
ated by withdrawing water through two preselected outlet ports. The
currents created by initiating flow were allowed to stabilize prior to
continuing the tests. The temperature and conductivity profiles were
obtained in the test section, which was located approximately 6 ft up-
stream of the outiet ports. The flow rate from each port was then mea-
sured, and a dye streak was filmed. Prior tests indicated that there |
was very little difference in the withdrawal current ai varying dis-
tances upstream of the outlet port and at various locatlons across the
channel. For these reasons, one dye streak was filmed at a location
6 ft upstream of the outlet port in the center of the 3-ft-wide flume.
This procedure was followed for different combinations of vertical spac-
ing of the outlet ports and relative rate of discharge through the two
outlet ports.

Basic Data

6. Movies of the dye streaks and grid system painted on the plas-
tic side of the channel were run and then stopped at the frames in which
the streaks reached the bottom of the channel; the streaks in these
frames were traced and used as the reference time t = 0 . The filmwas
again run and stopped three other times so that the dye streaks could
be traced. The error due to distortion and refraction was taken into
account at this point. A typical set of traced dye streaks is shown
in fig. 3. The time between the streaks was determined by calculations
based upon the known speed of the camera and the number of frames be-
tween the traced stfeaks. The velocity at every 0.05 ft of depth was
calculated by dividing the scaled horizontal distance between the traced

streaks by the increment of time elapsed. Thus, three velocity
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Fig. 3. Typicel traced dye streaks and density profile

distributions were obtained, and these were averaged to yleld one repre-

sentative distribution.
7. Temperature and conductivity readings were converted to deter-

mine densities at various depths and were plotted to determine the den-
sity profile. The velocity and density profiles are presented in.

plates 1-6.

Data Analysis

8. The test results were used to predict the extent of and the
velocity distribution within the withdrawal current created in the res-
ervoir by flow through each individual outlet port, using the procedure
presented in reference 1. These computed withdrawal currents were then
superimposed to create a composite velocity profile for each test.
These computed profiles were then compared with the observed velocity

profiles (see plates 1-6).




9. The variables involved in the withdrawal current for single-

orifice withdrawal are shown in fig. 4. Plate 7 shows the densimetric
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Fig. 4. Definition sketch of variables

Froude number relationship used to determine the upper and lower

withdrawal-zone limits. The equation of the line shown in plate 7 is

v 2
-2 - Z_. (1)
Ap' Ao
(%)%
0
or 1 .
Q=2° (é';) &7 (2)
Po
where

V_ = average velocity through the orifice, fps

Ap' = density difference of fluid between the elevation of the
orifice center line (g) and the upper or lower withdrawal
zone limit, g/cc

p = fluid density at the elevation of the orifice g, g/ecc
g = acceleration due to gravity, ft/secg

7 = vertical distance from the orifice g to the upper or
lower withdrawal zone limit, £t

A_ = area of the orifice, sg %

Q = orifice discharge, cfs




The elevation of the maximum velocity within the withdrawal zone can
then be determined from the equation

2
Y Z
T% = [sin (5.57 3%)] (3)

where
Yl = vertical distance from the elevation of maximum veloecity
to the lower limit of the withdrawal zone, f%
H = total thickness of the withdrawal zone, ft
Zl = vertical distance from the elevation of the orifice Q_to the

lower limit of the withdrawal zone, ft

Plate 8 can also be used to determine the elevation of maximum velocity.
When the withdrawal-zone limits and the elevation of maximum velccity
have been determined, the velocity distribution can be obtained from the
relationships shown in plate 9 (if the withdrawal zone has not been in-
fluenced by the water surface or bottom boundary) or from those shown in
plate 10 (if the boundaries have affected the withdrawal limits).

10. Comparison of the observed and predicted velocity profiles,
based on simple superpositioning, indicated a consistent deviation in
2}l of the tests. The obserfed velocities appeared greater than the
predicted in the zone where the profiles overlapped, and, in most cases,
the predicted maximum velocities in each of the withdrawal zones were
greater than the observed. For this reason, the data were further ana;
lyzed in order to develop a technique for predicting a composite veloc-
ity profile that weould result in better agreement between the cbserved
and predicted profiles.

11. In the zone where the wvelocity profiles overlapped, based on
simple superpositioning, it was reasonable to assume that The velocities
of one of the profiles would influence those of the other by reducing
the shear force in any horizontal layer. The result of this influence
was an increasge in velocities of both withdrawal layers within this
zone. Shifting the inner withdrawal limits to increase the depths
of both zones caused the velocitles in the zone of overlap to increase.
In order to maintain continuity, a decrease Iin the maximm velocity of

each withdrawal zone would have to occur. Shifting the inner withdrawal
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limits would therefore provide both adjustments necessary to reduce the
discrepancy in the simple superpositioning technique.

12. CGood agreement between the observed and predicted velocity
profiles, based on simple superpositioning, occurred in the region be-
tween the elevation of maximum velocity and the upper withdrawal limit,
for the upper withdrawal zone, and in the region between the elevation
of maximum velocity and the lower withdrawal 1limit, for the lower with-
drawal zone. TFor this reason, it was assumed that the area between the
orifice g’s was the zone of influence, and so the inner withdrawal
limits were extended to the opposite orifice g. This extension did not
result in good agreement for all of the profiles. An attempt was then -
made to shift the inner withdrawel limits to the elevation of maximum
velocity of the opposite withdrawal zone. But this shift was not satis-
factory for all of the tests,

13. Further reasoning indicated that the amount of shift of the
inner withdrawal limits should be a function of the amount of overlap of
the velocity profiles, based on single-outlet operation, the vertical
spacing between the outlets, and the density profile in the reservoir.

A large density gradient would tend to inhibit a shift of a withdrawal
1imit while a small gradient would allow a greater shift. This tendency
led to the development of & technique for shifting the inner withdrawal
limits by an amount determined from the above variables. This reasoning
is similar to thet used to develop the techniques for predicting the
withdrawal limits for flow through an orifice and over a submerged welr.
1L, The controlled-shift technique consisis of a densimetric
Froude number approach. Figure 5 1s a definition sketech showing the
terms used in the analysis. The first approach taken to develop this
technigue was to détermine some commen critical value of a densimetric
Froude number for the withdrawal limit shifts in all of the tests. It
was evident from the results that a common densimetric Froude number
could not be obtained. The finel approach taken was to relate the crit-
ical value of a densimetric Froude number for each test to the value of

h/HO , which is a measure of the amount of overlap of the two withdrawal

10
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zones. This relationship, as shown in plate 11, is expressed as

v 1.25
—B -7 (%—) (t)
' o
(Aps) g7,
p
where s
V, = average velocity in the zone of overlap of either the upper

or lower withdrawal layer, fps

Ap = density difference of fluid between the elevations of the
original withdrawal 1imit and the shifted withdrawal limit,

g/cc

p_ = density of fluid at the elevation of the original withdrawal
limit, g/cc

g = acceleration due to gravity, ft/sec2
A7 = vertical shift of withdrawal limit, ft

h = vertical distance of overlap of the velocity profiles, ft
Ho

= vertical distance between orifice g's, ft

11



Since h/HO is constant for any one test, the value of the densimetric
Froude number for the shift of both of the inner withdrawal limits for
any one test will be the same, The value of the densimetric Froude
number for each test was arrived at by adjusting the inner withdrawal
Llimits until good agreement was obtained between the observed and pre-
dicted velocity profiles and until the value of the densimetric Troude
number was the same for the shift of both of the inner withdrawal
limits. A comparison of the observed and predicted velocity profiles

based on this controlled-shift technique is shown in plates 1-6,

Recommended Procedure

15. The recommended procedure for obtaining the composite veloc-
ity profiles will be explained under the assumption that two outlets
are discharging at different elevations and that the density profile in
the reservoir and the outlet-port elevations and discharges are known.
The following procedures should be followed for obtaining the profiles:

a. Calculate the upper and lower withdrawal limits for both
withdrawal zones, using equation 2 or plate 7.

b, Calculate the elevation of maximum velocity within the
two withdrawal zones, using equation 3 or plate 8.

Calculate the velocity distribution within the two with-

o

drawal zoneg using the discharge, the width of the reser-
voir, and the normalized velocity profile, based on the
results shown in plate 9 (if the withdrawal 1limit does
not extend to either the water surface or the bottom
‘boundary) or those shown in plate 10 (if the withdrawal
1imit does extend %o one or both of the boundaries).

Determine whether the withdrawal zones overlap.

I

If the withdrawal zones do not overlap, the analysis is

|

complete. If they do overlap, continue to step £.
Determine a measure of the extent of overlap of the two
withdrawal zones, h/HO

)

i2




loa

I

fr-

oy

Using the value of thO , calculate the value of

v, /(Aps/ps)gﬁz using equation 4 or plate 11.

Evaluate the average velocities in the zone of overlap
of the lower (Vhl) and upper (VhE) withdrawal zones.
Since Aps and 2AZ are unknown, & trial and error pro-
cedure must be used to evaluate the amount of shift (AZ)
of the two inner withdrawal limits. an is used in
determining the shift of the lower limit of the upper
withdrawal zone AZl , and Vh2
the shift of the upper limit of the lower withdrawal zone
azg .

When the inner withdrawal 1limits have been shifted, a new

is used in determining

elevation of maximum velocity is evaluated for the two
withdrawal zones, and the velocity distributions are
recomputed.

The recomputed velocity profiles are superimposed to give
the final composite profile for flow through the two outb-
let ports.

13



PART IV: DISCUSSION OF RESULTS

16. The results reported herein offer a technique for evaluating
the composite, vertical velocity profile created in a randomly strati-
fied reservoir by the simultaneous release of flow through any number
of outlets located at different elevations. This evaluation may ineclude
orifice withdrawal as well as free or submerged welr withdrawal, using
the results reported in reference 2, to obtain the velocity profiles for
the weir flow. From the composite velocity profile and the elevation-
width relationship in the reservoir just upstream of the outlet, the
relative contribution from any horizontal layer to the total outflow
can be determined. A weighted-average technique can then be applied
to determine the value of any Water-quality parameter in the outflow
for which a profile in the reservoir is known. This. technique can be
used in conjunction with a reservoir water-quality monitoring program
to determine operating procedures at a reservoir with an existing multi-
level inbake structure or to evaluate the effectiveness of a proposed
milti-level intake structure at an existing or proposed water resources
project. The technique recommended for single-orifice withdrawal has
been used on several prototype impoundments and has provided excellent
agreement between observed and predicted oubflow quality.3’LL

17. This investigation and those reported in references 1 and 2
were conducted in flumes with rectangular cross sections. The effect
of geometry in the vieinity of an intake structure has been observed %o
be significant, based on the results of specific model studies. TFor
example, in tests of the 1:20-scale three-dimensional model of the
structure proposed for New Hope Reservoir, the model indicated that an
inlet located on the upstream face would permit releases approximately
double those permitted through a side inlet, without initiating with-
drawal below the interface of the thermocline. Stratified flow patterns
obgerved in the 1:40-scale, three-dimensional model of the outlet works
proposed for Meramec Park Reservoir, which reproduced approximately 400
to ‘500 £+ of the reservolr topography and a curved, narrow approach

channel upstream of a fixed-level intake, also indicated local geometry

1k




to be of importance. The narrow approach channel and shallow depth of
the reservoir created shear along the interface, which, during high
flows, caused considersble mixing and turbulence along the interface.

18. Considerably greater mixing anq/or blending of the warm and
cold waters should be anticipated with an intake structure located in
a relatively shallow, narrow section of a reservoir. The interface
tends to be elevated and lowered, respectively, along the inner and
outer portions of a curved approach channel. These observations indi-
cate that the geometry of multiple- and/or fixed-level intakes and the
geometry adjacent to the intakes may have a significant effect upon
the withdrawal characteristics.

19. It is believed that the use of hydraulic medels to evaluate
the effectiveness of specific proposed structures should be eﬁcouraged
to ensure reasonably adequate and accurate performance of proposed
water resources projects as well as to gain additional knowledge con-

cerning the mechanics of stratified flow.

15
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