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PREFACE

The study reported herein was conducted by personnel of the
Hydraulics Laboratory (HL), U. S. Army Engineer Waterways Experiment
Station (WES), during the period March-July 1974, under the direction of
Mr. H. B. Simmons, Chief of HL, and Mr. J. L. Grace, Jr., Chief of the
Structures Division. The investigation was sponsored by the U. S. Army
Engineer District, Savannah.

The numerical simulations were conducted by Messrs. B. Loftis and
D. G. Fontane, under the direct supervisicn of Mr. J. P. Bohan, Chief of
the Spillways and Channels Branch. The report was prepared by
Messrs. Loftis and Fontane, with assistance from Mr; P. E. Saunders.

Director of WES during this study and the preparation and publi-

cation of this report was COL G. H. Hilt, CE. Technical Director was

Mr. F. R. Brown.
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CONVERSION FACTORS, U. S. CUSTOMARY TC METRIC (ST)

UNITS OF MEASUREMENT

U. 3. customary units of measurement used in this report can be conver-

ted to metric (SI) units as follows:

Multiply By
inches 2.54
feet 0.3048
miles (U. S. statute) 1.60934k
square feet 0.0929030L
square miles (U. S. statute) 2.589988
acre-feet 1233.L482
cubic feet per second 0.02831685
Btu (International Table) 1055.056
Fahrenheit degrees 5/9

To Obtain

centimetres
metres

kilometres

sguare metres
square kilometres
cubic metres

cubic metres per
second

Joules

Celsius degrees or
Kelving¥*

¥ To obtain Celsius (C) temperature readings from Fahrenheit (F) read-
ings, use the following formula: ¢ = (5/9)(F - 32).

{K) readings, use:

K = (5/9){F - 32} + 273.15.

To obtain Kelvin



FALLS LAKE WATER-QUALITY STUDY

PART I: INTRODUCTION

Purpose

1. This study was conducted to predict the thermal and dissolved
oxygen (D.0.)¥* structures of the proposed impoundment and to determine
the adequacy of the proposed multilevel intake structure to satisfy
downstream temperature and D.0. obJectives. The downstream temperature
objective is the natural stream temperature before impoundment; the

downstream D.0. objective is a minimum release of 5 mg/2.

Project Description

2. The proposed Falls Lake project will be located on the Neuse
River approximately 17 miles**® east-southeast of Durham, North Carolina,
and 10 miles north of Raleigh, North Carolina, just northwest of the
village of Falls, Neorth Carolina. The damsite is in the upper part of
the Neuse River Basin, 226 miles above the mouth. The drainage area at
the site is 760 square miles and represents approximately 13 percent of
the total Neuse River Basin. A 2000-ft-long earthfill dam will impound
water for flood control, municipal and industrial water supply, general
recregtion, and fish and wildlife comnservation.

3. The lake will have a flood-control capacity of 243,000 acre-
Teet, a conservation storage capacity of 115,000 acre-feet, and sedimen-
tation storage capacity of 30,000 acre-feet. The maximum pcol depth at
the top of consgervation pool will be 50C.1 ft. A multilevel intake
tower will be located in the upstream face of the dam to provide quality

contrel and release of low fliows.

# TUnusual abbreviations and symbols used in this report are listed and
defined in the Notation (Appendix A). '

#%¥ A table for converting U. S. customary units of measurement to
metric (SI) units is given on page 3.
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4. The outlet works will include an intake structure with pro-
visions for multilevel releases up Lo T50 c¢fs and floocd releases up to
8000 efs. An unccntrolled emergency spillway will pass larger flood
flows. Multilevel releases will pass through twe wet wells in the
intake structure. Fach wet well will have two 8- by 8-ft intakes with
inverts at el 231 and 241.% Two flood-control passages having inverts
at el 200 with 8.5- by 19.5-ft slide gates will be provided to control
flecod fiows.

Simulation Technigue

5. The thermal and D.0. structures of the propesed Falls Take
project were predicted by using a mathematical simulation model. The
model used in conjunction with this study was developed coriginally at
the University of Texas by Clay and Fruh.l Development of this model
(WESTEX) has been continued by the U. S. Army Engineer Waterways Experi-
ment Station (WES).

6. The WESTEX model provides a procedure for examining the
balance of thermal energy imposed on an impoundment and the effect of
this energy balance on the temperature and D.O. regimes. The model in-
cludes computational methods for simulating heat transfer at the air-
water interface, advective heat due to inflow and outflow, and the

interna® distribution of thermal energy. The model is conceptually

based on the division of the impoundment into discrete horizontal layers.

Fundamental assumptions include the following:

a. Isotherms are laterally and longitudinally parallel
to the waler surface.

b. The water in each layer is isctropic and physically
homogeneous.

¢. Internal advection and heat transfer occur only in
the vertical direction.

d. External advection occurs as a uniform horizontal
distribution within the elements.

¥ A1) elevations (el) cited herein are in feet referfed to mean sea
level. : : ‘



Internal distribution of thermal energy is accomplished
by a diffusion mechanism which combines the effects of
molecular diffusion, turbulent diffusiocn, and thermal
convection.

I

7. The surface heat exchange, internal diffusion, inflow, and
outflow processes are simulated separately, and their effects are intro-
duced sequentially at daily interwvals.

8. The WESTEX model employs an approach to the evaluation of net
heat transfer at the air-water integface that was developed by Edinger
and Geyer.2 Their method formulates equilibrium temperatures and co-
efficients of surface heat exchange. Equilibrium temperature is defined
as that temperature at which the net rate of heat exchange between the
water surface and the atmosphere is zero. The coefficient of surface
heat exchange is the rate at which the heat transfer process will occur.

The equaticn describing this relationship is

H=%E-T) (1)
where
H = net rate of heat transfer, Btu/ftg/day
= coefficient of surface heat exchange, Btu/ftg/day/oF
E = equilibrium temperature, °F
T = surface temperature, °F

8
The computation of equilibrium temperature and surface heat exchange

coefficient is based solely on meteorclogical data as cutlined by
Edinger, Duttweiller, and Geyer.3

9. The inflow process intc a lake is simulated in WESTEX by the
placement of the inflow quantity and quality at that layer where the
density of the lake corresponds most nearly to the density of the inflow.
This displaces upward a volume equal to the inflow quantity. The upward

displacement is reflected numerically by an increase in the water
surface. A corresponding decrease in the water surface occurs as a
result of the outflow simulation.

10. The outflow component of the model incorporates the selective-

withdrawal technique developed at T:\TES.LL Transcendental eguations
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defining the upper and lower limits of the withdrawal zone are solved
with a half-interval search method. After the withdrawal limits have
been determined, the velocity profile can be evaluated. The flow in
each layer is the product of the velocity in the layer, the width of the
layer, and the thickness of the layer. A flow-weighted average is
applied to temperature and D.0. profiles to determine the value of the
release of each parameter for each time step.

11. The reservoir regulation algorithm in WESTEX has been formu-
lated at WES to realistically simulate operation of a selective-
withdrawal system. Minimum and maximum flows from each port and from
the flood gate are specified. Also, the maximum flow for the selective-
withdrawal system is specified. The algorithm will attempt to withdraw
water at or near the objective temperature from one port level, two
adjacent port levels, or the filood gate, depending on the cbjective
temperature, the temperature profiles, and the quantity of flow to bhe

released.



PART II: ©PROCEDURE

General Approach

12. This study involved the selection of several study years and
simulation of reservoir operation for each of these years. Study years
selected had combinations of streamflow quantities and alr temperatures
that could create extreme conditions of thermal stratification. The
data required tc conduct the simulaticns were reservoir inflows and out-
flows, inflow stream temperatures, meteorclogical data for each of the
study years, geometry of the lake, and geometry of the intake structure.

13. The heat transfer into and out of the lake was evaluated, and
the heat was distributed within the lake. A heat budget for each hori-
zontal layer was maintained throughout the simulation period. An
objective temperature was specified for each simulation day, and an
operating scheme was determined. The operation for any day was the
combination of open ports which minimized the difference between the
objective downstream temperature and the predicted release temperature.
The output from the simulation included a comparison of cbjective and
release temperatures in graphical form through the simulation pericd,
as well as tabular summaries for each day and plotted profiles of
temperature and D.0. within the reservoir at specified times of the
year.

14. Observed temperature profiles in nearby John Kerr Lake used
for model calibration purpcses indicated that thermal stratification
consistently begins to build after 1 April. For the Falls Lake study,

simulation was initiated on 1 April for each study year.

Selection of Study Years

15. A statistical analysis of the monthly runoffs and mean
monthly dry bulb temperatures was conducted using the period of record,
1933-1972, Monthly means and standard deviations for January through

December and the deviations from the means for runoff and dry bulb



temperature are presented in Tables 1 and 2, respectively. These tables,
along with plots of mean monthly dry bulb temperatures and mass curves
of runcff shown in Plate 1, were used to select study years.

16. The selection of study years was limited to the period after
1948 due to the lack of adequate meteorclogical data prior to 1948. The
following years were selected for study:

1949: Runoff was normal throughout the year; air temperatures

were warm during isothermal months but were normal
during the stratification period.

1951: Runoff was congistently less than average throughout
the year; air temperatures were average until the end
of stratification.

195T: Runoff was normal; air temperatures were slightly colder
than average.

1960: Runoff was well above normal for the period February-June;
subseguent runoff was normal; air temperatures were
considerably below average throughout the year.

1967: Runoff was well below nermal for the entire year; air
temperatures were considerably colder than average
during the stratification rericd and were somewhat warmer
than average the rest of the year.

Data Requirements

17. The daily average reservoir inflow and outflow guantities
from the study years are shown in Plates 2 and 3. Hydrologic routings,
using two different operation schedules based on water-quality consid-
erations, were conducted by the Savannah District (SAS) 1o arrive at
these flows.

18. Meteorological data from the Raleigh Weather Station, which
is approximately 10 miles from the damegite, were used for the study.
The required data consisted of dry bulb temperature, dew point temper-
ature, cloud cover, and wind speed. These data were obtained from the
National Climatic Center in Agheville, North Carolins. Eight meteoro-
logical observations were furnished for each day. Daily average values
were computed and used to determine the daily net solar radiations,
equilibrium temperatures, and coefficients of surface heat exchange for

each study year.



19. The reservoir inflow temperatures for each of the five study
years were not available. Observed values of temperature for the Neuse
River at Falls, North Carolina, were available for the period November
1960 through September 1967. A regression eguation relating equilibrium
temperature and flow guantity tc water temperature was developed using
the observed Weuse River temperature at Falls.

9= o+ BQ + BE. T BE . B (2)

t4+2
where
® = stream temperature, °F
Q = mean daily sireamflow, cfs
t = time, Julian days
E = equilibrium temperature, °F

and o and B are regression coefficients as follows:

o = 12.2623
Bl = -0.000k
B, = 0.2Lh67
53 = 0.1398
B, = 0.3670

The regression equation was used to generate inflow temperatures for
each of the five study yvears. Predicted inflow temperatures are shown
in Plate k.

20. A least squares analysis was used to fit a harmenic curve to
the predicted stream temperatures for each of the [ive study years.
The harmonic curve represents the average natural stream temperature
variation during a year. An average annual variation was derived by
arithmetically averaging the coefficients for the five harmonic

equations. The average annual variation 1s expressed as
0, =a sin (bt +c) + 4 (3)

10



where

@' = average stream temperature, °F

cF
If

time, Julian days

The coefficient b 1is a unit conversion from days to radians. The

coefficients a , ¢ , and 4 were determined by solving Equaticn 3 and

were computed to be the following:

a = 18.19°F
b= 1.721 x 1072 day“l
c = 1l.281

= 59.2°F

Equaticn 3 was used to define the temperature objective below the dam.

Model Verification

21. The mathematical model used for the simulation requires the
determination of coefficients for (a) distribution of heat transferred
at the air-water interface and {b} diffusion of internal heat. These
coefficients were determined by simulating the falls Lake impoundment
and adjusting the coefficients until the predicted profiles of tempera-
ture and D.0. corresponded in shape and range to observed profiles in an
existing impoundment in the same area. The observed temperature and
D.0. profiles in the John Kerr Regervoir located asbout 40 miles north of
the Falls Take damsite were used for this purpese. PFalls Lake was
operated in a manner similar to that for the John Kerr Reservoir for the
verification simulation. Plate 5 contains examples of the temperature

and D.C, profiles observed in John Kerr Reservoir.

11



PART TII: RESULTS

Operation Objectives

22. Daily streamflow routings were conducted by SAS for two sets

of operational criteria. The following criteria were considered to be

the essential features of the plans operation.

Pericd 1975-1985

a.

1=

o

e.

Average daily water supply diversions from the lake
for the City of Raleigh will be 59 cfs with a return
flew of 47 cfs downstream of the dam.

Releases from Falls Lake will be made to maintain
minimum flows at Smithfield, North Carolina, vary-
ing from 184 to 40L cfs throughout the year when
combined with local inflows between the dam and
Smithfield.

The required minimum release from Falls Lake to the
Neuse River will be 27 cfs.

The maximum controlled flood release from the lake
will be 8000 cfs.

Annual average evaporaticn losses from the lake
amount to 33.84 in.

Period 1985-2020

&

|

| e

Raleigh water supply withdrawal from the lake will
be 155 efs.

The required minimum release to the Neuse River
will be 90 cfs.

The maximum controlled flocd release from the lake
will be 8000 cfs.

The temperature and D.0. content of water released
from the dam during low flow periods are to conform
with state water-quality standards that existed at
the time of initiation of the study. These standards
require a daily D.0. average of 5 mg/% and stream
temperatures not to exceed 5°F zbove the natural
watTr temperature, and in no case above GO°F.

Original Design

23. The initial simulaticns of Falls Lake were conducted with the

selective~withdrawal structure as originally designed. This design

12




includes withdrawal levels at 9.5 ft (flood control gates) and 31.0 and
41.0 ft {selective-withdrawal ports) above the bottom of the lake.
Maximum and minimum flow quantities were established for each selective-
withdrawal port, for the selective-withdrawal system, and for the

flcodgates. These flow ranges were used for all of the simulations.

Selective-withdrawal ports were assumed capable of passing 10 to 500 cfs.

The selective-~withdrawal system maximum capacity was originally set at
T50 efs. The minimum flocdgate release was assumed to be 90 efs. The
original design will be referred to as four-port operation.

24, The results of simulation of the five study years with the
original design are shown in Plate 6 for the 1975-1985 routings and in
Plate 7 for the 1985-2020 routings. The sinusoidal curve on each plot
represents the average annual stream temperature variation for all of
the study years. This average is used as the objective temperature of
the release. The computed release temperature for every day of simula-
tion is plotted in comparison with the objective. Also, on each plot is
contained a description of the ports operated to achieve the computed
release temperature. Port level 1 corresponds to the selective-
withdrawal ports to be located 4l ft above the bottom. Port level 2 isg
to be located 31 % from the bottom and port level 3 is the floocdgate to
be located 6.5 Tt above the bottom. Plates 8 and 9 show isctherms as
computed by the WESTEX mcdel for the two routings.

25. It can be seen from Plates 2 and 3 that inflow and outflow
hydrographs are essentially the same for the two routings. The 1985-
2020 period requires a minimum release of 90 cfs Tor any given day.
Simulation during this period allows operaticn of the floodgate when
there exists the condition of minimum flow release and cold objective
temperature. For the period 1975-1985, the minimum release required is
27 efs. This minimum flow cannct be passed through the floodgate bhut
must be passed through the selective-withdrawal system, resulting in
release temperatures which are warmer than the objective ftemperature.
Because the 1975-1685 routing is the worst~-casze condition, subsequent
analysis will be directed toward this pericd.

26. It must be noted that the objective temperature is not the

13



natural siream temperature for any simulation day, but simply a point on
a stabistically produced curve. The curve refllects an average of stream
temperatures for all study years. Natural stream temperatures deviate
from the cobjective temperature curve as do the computed release tempera-
tures. The standard deviation of natural stream temperature from the
objective for the study years considered is 2°C. Natural maximum
deviations are as much as 5 to 6°C. WNatural stream temperatures do not
generally demonstrate significant change from day to day; therefore, a
good operation scheme for the proposed lake will not produce large daily
temperature fluctuations.

27. The computed release temperature (Plates 6 and 7) is within
2°C of the objective temperature for most days of each of the five
study years. There can be significant deviation from the objective for
either of two operaticn conditions. First, during the beginning of a
year, the lake is subject to the process of warming, and the desired
operational scheme reguired Lo achieve cbjective temperatures is usually
to release flow from the top ports. A large flow release on a particular
day requires opening of the flocdgates and subsequent release of cold
water. ©Secondly, during the latter part of a year, the lake is in the
process of losing heat to the atmosphere. The operational scheme for
meeting the objective temperature as well as possible during this period
is usually to release ccld water through the floodgates. The flow
requirement for a day in this period, which is less than the assigned
minimum capaclity of a Tloodgate, is released from the selective-
withdrawal ports. The result is a release temperature which is warmer
than the objective temperature.

28, The warm year of 1649 had low flows in October, which is the
end of the stratification period, and releases were computed toc be from
selective-withdrawal ports. Thus, for the month of Cectober, the computed
release temperature was 6°C warmer than the objective temperature. The

maximum temperature change cver a cne-day vperiod was 3°C. This occurred

three different days as a result of peaks in the outflow hydrograph.
Both 1951 and 1967 were vears of less than average flows. For this

condition, the primary mechanism for heating the lake is the penetration

1h



of shortwave radiation. The heat exchange due to advective inflows and
cutflows is negligible. For a relatively shallow impoundment like the
proposed Falls Lake, the heat transfer through the sir-water interface
penetrates to the bottom of the pool. Thus, the lake is characteris-—
tically warmer during a low-flow year than in a high-flow year. In the
latter part of the stratification period of a dry year, the outflow is
replaced by warmer water from above and the cold water is depleted.
Thus, for dry years such as 1951 and 1967, the computed release temper-
atures during the latter part of the stratification period will be
warmer than the objective temperature. For years similar to these two
years and 1957 there will be no extreme one-day release temperature
gradients. Normal runoff and slightly colder than average stream temper-
atures were observed in 1957. Computed release temperatures for these
conditions were within 3°C of the objective curve during the stratifi-
cation period. For the wet year of 1960, the computed release tempera-—
tures were within 3°C of the objective except for a two-day period in
Cctober when the flow reguirements were small and the resultant release
temperature was 5°C warmer than the objective. The flows for 1960 and
similar years were such that the procedure for operating the structure
to minimize {he deviation between release znd cbjective temperatures was
erratic and unreascnable. During October, nine operational changes in
the flood control gates alone were required. This would also result in

rclease temperatures which would not be consistent from day to day.

Increased Selective-Withdrawal Capacity

29. The original design outlet works provided a selective-
withdrawal capacity of 750 c¢fs. As discussed previously, a small
selective-withdrawal capacity coupled with the demand for a large-release
flow condition will produce cold release temperabures because of the
necesgity to operate the floodgates. The capacity of the selective-
withdrawal system was varied in the model and the effect on the release
temperature was assessed. Capacities of 1000 ¢fs and 1500 cfs were used,

and the improvement was marginal. The ouiflow duration curve (Plate 10)

15



shows that a selective-withdrawal system with a capacity of T50 e¢fs can
pass 91 percent of all flows without the need for releasing through the
flood contrcl gates. Increasing capacity to 1000 and 1500 c¢fs allows

the selective-withdrawal system to pasgs 93 and 96 percent of all flows,
respectively. Doubling the selective-withdrawal capacity only accommo-
dates an additional 5 percent of flows. It is not thought that this is

an effective means of providing increased water-quality control.

Additional Low-Level Selective-Withdrawsal Ports

30. Simulations were conducted with the original T50-cfs
selective-withdrawal structure and an additional low-level, small-
capaclty selective-withdrawal intake. The additional intake level
could take the form of piggyback gates within the service gates. The
centerline elevation of the additional low-level intake for selective
withdrawal was assumed to be at the same elevation as that of the flcod
control gates. Blending between the original two-level selective-
withdrawal system and the additional low-level intakes was allowed for
all flows. This configuration was designated as six-port operation. The
results (Plates 11 and 12} indicate some advantage is to be expected
during the late summer and early fall. It is possible to release from
the low-level ports when cold water is needed to meet the objective and
a small flow release is required. The greatest improvement occurs in
the normal flow yvears similar to 1959 and 1957. Computed release tem-
peratures for these years are within 3°C of the objective temperature
for all of the periods of simulation. The deviation of release temper-
ature from the objective for the dry years similar to 1951 and 1967 is
improved only slightly with the six-port operation. The notable im-
provement for wet years, such as 1960, is the smoothing of floodgate
cperation. The extreme daily variations of release temperature produced
with four-port operation are eliminated with six-port operation. 1In
fact, the inclusion of low-level selective-withdrawal intakes provides
for smoother operation of the flood contrcol facilities in each of the
five study years. Isotherms for the simulations with six-port operation

are shown in Plates 8 and 9.

16



Dissolved Oxygen Prediction

31. The procedure used to predict the D.C. content of Falls Lake
was based on the work done at WES for the Richard B. Russell water-
quality study.5 For the Richard B. Russell water-quality study, an
algorithm to predict the D.0O. regime of a lake was developed based on
the work of Bella6 and Carroll and Fruh.T The D.0. was accounted for in
the lake model in a manner similar to that used for other water-quality
parameters, such as temperature. The D.0Q. content of the inflow and
outflow was accounted for and used to adjust the lake D.0. structure.
The surface layers of.the lzke were assumed saturated with D.0. The
saturated D.C. condition was extended below the surface te a depth at
which a 1°C difference from the temperature of the water surface was
predicted. Prototype measurements of temperature and D.0. profiles at
the John H. Kerr Reservolr were used to determine that the 1°C value
approximated the depth of saturated D.0. conditions. After saturation
cf the surface layers, D.0. was vertically diffused through the vertical
extent of the lake in a manner analogous to thermal diffusion. A D.O.
depletion term based on the work of Markefsky and Harleman8 was then

appilied to each layer in the lake for each computation step. This

depletion term had the form
D = K (T)L (&)

where

w}
1l

D.0. depletion, mg/L/day

temperature-dependent deoxygenation coefficient, day_l

(1)

L

il

biochemical oxygen demand (B.0.D.), mg/%

The temperature-dependent deoxygenation coefficient KD(T) was computed

from

(T-20)

K_D(T) = KD(EOOC) x 1.047 {5}

17



where
1

I

deoxygenation coefficient at 20°C, day

KD(20°C)

T temperature of the layer, °O

For the Richard B. Russell water-quality study, the B.0.D. (L) in all
layers was considered egual and constant throughout the year, i.e.
independent of time and depth.

32. For the Falls Lake study, B.C.D. was considered time depen-
dent. The B.0.D. was handled in the WESTEX model in the same manner as
D.0. Tt was budgeted in the inflow and outflow processes and vertically
diffused in a manner analogous to thermal diffusion. During every time
step, the following B.C.D. depletion term was applied to each layer in
the lake: |

B = K.L (6)
where
B = B.0.D. depletion, mg/L/day
KB = decay coefficient
L = B.0.D., mg/8

Values of the D.0. and five-day B.0.D. content of the inflow were ob-
tained from observed preimpoundment data9 at the Falls Lake site.

Linear interpolation was used to develop a record of daily inflow B.0.D.
from the existing data. This one-year record of daily inflow B.0.D.
loadings was used for each of the five study years. For the development
of daily inflow D.O. data, a 1inear relationship was determined between
observed D.0. values and the value of saturated D.C. As shown in

References 6 and T, the resulting expression for saturated D.0. as a

function of inflow temperature is

sat  (p + Qo) (7)
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D.0._ . = saturated D.0. content, mg/ %
p = 6.77 x 1072
g =2.08 x 107>
¢ = stream temperature, °C

The relationship between observed D.0O. content of the inflow and satu-

rated D.0O. was

D'O'in = UD.O.Sat + e {(8)
where S
D'O'in = computed D.O. content of inflow, mg/2
g = 1.7115
£ = =9.6791 mg/4

At each time step the value of saturated D.0. was computed and used to
determine an inflow D.0. value from the above relationship. BRBecause of
the lack of sufficient data or a physical model to establish flow-through
times, no attempt was made to deplete the D.0O. and B.0.D. content of the
inflow for travel time from the headwaters to the dam.

33. Initially, the deoxygenation coefficient KD(T) and the decay
coefficient KB (Equations 4 and 6, respectively) were assumed equal
and set to values between 0.1 and 0.13. While these values are perhaps
reasonable in a stream enviromment, Markofsky and Harleman8 suggest
they may be inappropriate for use in a lake. A five-day B.0.D. value
will not be a good estimate of the ultimate B.0.D. in a lake, and the
decay process may proceed at a slower rate than in a stream. Markofsky
and Harleman suggest using a B.0.D. decay coefficient on the order of
0.0l and increasing the B.0.D. values to represent a larger ultimate
demand. However, accurate estimation of ultimate B.0.D. in the pro- E
posed Falls Lake is not possible with existing data.

34, It has been observed by Markofsky and Harleman as well as by
Carroll and Fruh! that the overall oxygen depletion in a relatively
unpolluted lake is on the order of 0.1 mg/f/day. This value of oxygen
depletion was used for the Richard B. Russell water-quality study.
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Based on the predicted Falls Lake B.0.D. loading, a deoxygenation co-
efficient KD(T) and decay coefficient Ky of 0.06 was chosen to give
oxygen depletion rates ranging from 0.1 to 0.5 mg/i/day. The results
of that simulation, in terms of predicted release D.0. content, fall
along the upper portion of the band showrn in Plate 13. The results of
the simulations with a deoxygenation coefficient KD(T) snd decay co-
efficient KB of 0.13 fall along the lower portion of the band in
Plate 13. A deoxygenation coefficient and decay coefficient of 0.13
gives an average oxygen depletion ranging from 0.2 teo 1.0 mg/i/day. The
predicted D.0. profiles from the simulation with the deoxygenabtion
coefficient and decay coefficient of 0.13 most clesely represented the
D.C. profiles observed at John Kerr Reservoir.

35. To evaluste the sensitivity of the D.0. prediction routine
and to provide a means to evaluate the effect of the inflow B.0.D.
lecadings on the D.0. predicticn, a range of values for the deoxygen-
ation and decay ccefficients were evaluated. TFor example, the decay
coefficient for B.0.D. was set to 0.0l, while the deoxygenaticn co-
efficient was set at 0.1. While it is not a realistiec condition for
D.0. to be depleted faster than B.O:D., it has the mathematical effect
of maintaining levels of B.0.D. in the reservoir longer than if the
decay coefficient was 0.1. This procedure is representative of increas-
ing the inflow B.0.D. BSince the depth of saturated D.0. conditions is a
varigble dependent on many factors, the saturated D.0. condition was
extended below the surface to depths at which 1.5°C and 2°C differences
from the temperature at the water surface were present. This had the
effect of extending the saturation condition deeper in the pocl.

36. FEight combinations of decay coefficients {0.01l to 0.1),
deoxygenation coefficients (0.01 to 0.13), and temperature differences
to determine saturation (1°C to 2°¢0) were evaluated. The results of
the simuiations in terms of predicted T.0. content of flow entering the
intake structure are represented by the band in Plate 13. The results
show the predicted D.0O. content entering the intake structure at Falls

Take to be less than 5 mg/% for at least three months during the year.
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PART IV: CONCLUSIONS

37. An attempt was made in this Sfudy to satisfy a single objec-
tive temperature curve for each of the years investigated. The down-
stream temperature objective was computed as the mean of natural stream
temperatures for the five gtudy years. Evaluation of model results in-
dicates that there should be no significant problems in satisfying the
natural stream temperature objective. The simulaticons show that, because
the lake accumulates heat during the summer months, the lake will be

warmer in the fall than the natural stream for most years. Although the

lake cools in the late summer and fall in response to heat transfer with
the atmosphere, the coocling of a lake is a slower process than the
ccoling of a stream. Therefore, excess heat energy remains in the lake
at the end of the stratification pericd. For most years, the release
temperatures will be somewhat warmer in this period than the correspond-
ing natural stream temperatures.

38. Investigations were made with increased selective-withdrawal
capacity to assess pessible improvement in deviations of computed
release temperatures from objective temperatures. Model results indicate
that the ocriginal design of 750 cfs for the selective-withdrawal system
capacity is adequate. Increasing the capacity does not significantly
diminish the deviation of release temperatures from objective
temperatures.

39. Model results indicated the advantage of including low-level
ports in the selective-withdrawal system. These ports could take the
form of piggyback gates lccated in the floodgates and would provide
more control cover the cold-water releases. Thus, objective temperatures
could be more nearly achieved in the summer and fall. The provision of
the low-level ports also results in smoother operation of the flood %
control facilities than occurs without the low-level ports. Addi-
tionally, it is thought that piggyback gates have significant capability
for aeration of release flows.

40. The D.0. content of the lake and of the flow into the intake

structure was simulated in the same manner as temperature. However,
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considerably more data were available for describing temperature than
were avallable for describing D.0. content and B.0.D. By the use of
interpolation, a one-year record of oxygen inflow data was developed from
existing data. This one-year record of inflow D.0. and B.C.D. wvalues

was used as input for each of the five study years. A range of de-
cxygenation and decay coefficients was applied in the simulations to
produce the effect of a range of inflow D.0Q. and B.0.D., values. It was
felt that a range of possible output, such as that shown in Plate 13,

was the most appropriate way to present the results of the D.OC.
simulations.

41. The predicted low D.0. content values reflect the quality of
water entering the intake structure. The gate-within-a-gate or piggyback
concept will allow reaeration on all sides of the water issuing from the
low-ievel controi gate. Free surface flow through the conduit will
allow further reaeration. A stilling basin designed to induce turbu-
lence with a free hydraulic Jump will also allow further reaeration.
Methods for predicting the amount of reaeration are not available. How-
ever, based on experience and chserved prototype data,lo it is believed
that sufficient reaeration will occur to maintain D.0. contents equal to
or greater than 5 mg/f in the releases from the multilevel outlet works.

4o, 1t is recommended by WES that the proposed Falls Lake be
operated for a downstream temperature objective and that low-level
selective-withdrawal ports be included in the intake configuration. .It
is felt that this configuration and operation will provide the downstream

temperature and D.0. objectives.
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Table
Runoff Data for Years 1928-1970, Falls Lake, North Carolina
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Values in parentheses have departures greater than one standard deviation for the month.
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Table 1 {Concluded)
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Table 2
Monthly Means and Standard Deviations of Dry Bulb Temperature for 1933-1972,

Falls Lake, North Carclina
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Table 2 (Conecluded)
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APPENDIX A: NOTATION

Coefficient (18.19°F)
Coefficient (1.721 x 1072 day
Al

B.0.D. depletion, mg/L/day

1y

B.0.D. Biochemical oxygen demand, mg/%
Coefficient (1.281)
Coefficient (59.2°F)
D D.0. depletion, mg/%/day
D.O. Dissolved oxygen
D.O.in Computed D.0. content of inflow, mg/f
D.0. Saturated D.0. content, mg/2
E Equilibrium temperature, °F
H Net rate of heat transfer, Btu/ftg/day
K Coefficient of surface heat exchange, Btu/ft2/day/°F
KB Decay coefficient

KD(T) Temperature—dependent deoxygenation coefficient, dayhl

KD(EOOC) Deoxygenation coefficient at 20°C, day_l
I,  B.0.D., mg/%

p  6.77 x 107

g 2.08 x 1073

Q@  Mean dally streamflow, cfs

t Time, Julian days

T Temperature of the layer, °C
TS Surface temperature, °F

o Regression coefficient

B  Regression coefficient

€ Coefficient (-9.6791 mg/L)

6 Stream temperature, °F
o' Average stream temperature, °F
o  Coefficient {1.7115)

6  Stream temperature, °C

Al



In mccordance with ER 70-2-3, paragraph 6c(1)(b),
dated 15 February 1973, a facsimile catalog card
in Library of Congress format is reproduced below.

Loftis, Bruce

Falls Lake water-quality study; hydraulic laberatory
investigation, by Bruce Loftis and Darrell G. Fontane.
Vicksburg, U. S. Army Engineer Waterways Experiment
Station, 1976.

1 v. ({various pagings) illus. 27 cm. (U. S.
Waterways Experiment Station. Miscellaneous paper
H-76-6)

Prepared for U. S. Army Engineer Digtrict, Savannah,
Savannah, Georgia.

Includes bibliography.

1. Dissclved oxygen. 2., Falls Lake. 3. Tntake
structures. 4. Water quality. 5. Water temperature.
I. Fontane, Darrell G., joint author. II. U. S. Army
Engineer District, Savannah. (Series: U. 8. Water-
ways Experiment Station, Vicksburg, Miss. Miscellaneous
paper H-76-6)
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