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PREFACE
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the Hydraulics Laboratotry, provided general supervision. Program Manager
of EWQOS was Dr. J. L., Mahloch, Environmental Laboratory.

Commanders and Directors of WES during this study and the preparation
and publication of this report were COL Nelson P. Conover, CE, and COL Tilford
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CONVECTICN SCHEMES FOR USE WITH
CURVILINEAR COORDINATE SYSTEMS -

A SURVEY

I. JINTRODUCTION

The convection of a concentration is a problem that needs no
introduction. The present survey concerns. this problem in regard to
the use of general boundary-conforming coordinate systems in the form
of numerically generated grids. The intent here has been to cover all
schemes with promise in applicatiom in this context, with a representative
discussion of all types of schemes, rather than to cite all works in the
area.

Figure titles are duplicated from the original references and , therefore,
may contain reference to equations or other items in the references.
Citations of other figures, however, have been changed to correspond to
the numbers in this report. Various symbols are used for the Courant
number on the figures, but this item should be easily recognized in each

case.



IT. FOUNDATIONS

The basic convection equatiom in 2D is

¢t + u(x,y,t)¢x + v(x,y,t)¢y = 0 (1)

where, in general, the velocity is nonuniform and time dependent.
Conventions

Curvilinear Coordinates

Transforming the first derivatives we have

-1 _

X
(2)
by = (x b - x $,)
y J7Enm n'g
where the Jacobian of the transformation is given by
= - 3
J *tn *ne 3)

Then the partial differential equation becomes, in the transformed

region,
J¢t + (uyn - vxh)qJE + (vxE - uyg)d)n =0
or
39, + G¢g + unn =0 (&)
where
u = uyn - vxn
- (5)
v = vxg - uyg



Therefore, in the transformed region the problem has essentially
the same form as the cartesian equations, but with the velocity components,
u and v, replaced by the contra-variant velocity components, u and v.
Note, however, that even with a uniform physical velocity field, these
contra-variant velocity components will vary in space for a nonuniform
coordinate system. (The Jacobian could be included in the definition
of u and v 1if desired, of course.,) It is thus possible to apply any
scheme valid for Eq. (1) with nonuniform velocity to Eq. (4) directly
in the transformed region. The only real complication introduced by
the curvilinear coordinate system is the imposition of an effective
nonuniform velocity.

Therefore, cartesian coordinate notation will be used in this review,
in conformance with the notation in the articles cited, with the under-
standing that the schemes are to be applied in the transformed region
using the effective nonuniform velocity components appearing in
Eq. (4), and with the Jacobian either appearing as a multiplicative
factor on the time derivative or included in the effective velocities.
In this application, the symbols x and y carry over directly to the
symbols for the curvilinear coordinates £ and 1. Schemes for which
the order is degraded when the velocity is nonuniform will likewise
be of lower order when applied in the transformed region. With
application understood to be in the transformed regiom, it is only
necessary to consider a uniform square grid with unit spacing. However,
certain considerations are necessary to preserve the order of a scheme
when the coordinate line spacing in the physical region is not dniform,

as is discussed in a later section.



Higher Dimensions

Most schemes will be presented in one dimension for economy of
presentation. Application in higher dimensions is discussed in a later
section, where it is noted that any one-dimensional scheme can be applied
with multiple dimensions through time-splitting (sometimes called factoring).
Even when a scheme has a natural generalization to higher dimensions,
the time-split approach is often preferable.

Differences

In the discussion to follow, differences are understpod to be
central and symmetric unless otherwise indicated. Schemes are assumed
to be applicable to nonuniform velocity fields without loss of order.
and grid spacing is taken to be uniform, unless stated otherwise. Precise
difference expressions are not given in this review; rather the points

involved are indicated by diagrams veferred to as "stencils." In these
diagrams for 1D schemes, the space direction is shown across the page,

while the time direction is up the page. Solid lines intersect at grid
points at integral time levels. TFor 2D schemes both directions are spatial,
with values at intermediate time levels to be understood in multi-stage
methods. Intermediate pointg and time levels are indicated by dotted

lines. Cirecles identify the peints involved, with the point at which

a new value is obtained being indicated by a filled circle.

Nonlinear Equations

Schemes are generally analyzéd. ln the quasi-linear form with
uniform velocity: so conclusions regarding stability, dissipation, and
phase error must be considered to be local for the nonlinear case or

with nonuniform velocity. Thus for the general nonlinear equation

b + LED] + (D], = 0 (6



the equation actually analyzed is
o + Ady +-B¢y + 0 (N

where A and B are the Jacobian matrices of f and g, respectively,

with respect to ¢, i.e., with

B £ ]
¢y £,
b= £=] (8
¢n J f’n

where each element of ¢ represents a different dependent variable, the
elements of the Jacobian matrix of f are given by
Bfi

Aij = a¢j i,j=1,2,. . ., n (9

It is actually the linear single-ccomponent problem defined simply by

Eq. (1) which is of direct concern in the present review.

Numerical Techniques

Numerical sclution of Eq. (1) can be approached in several ways,
of course. One basic demarcation is foundation on the differential
form given by Eq. (1), or an integral form obtained by integrating Eq. (1)
with respect to space and/or time. |

Interpolation Functions

In either approach, the basic technigque jinvolved in the construction
of a numerical method is the approximation of the solution by an
interpolation function fitted to the solution values, and perhaps to some

of its derivatives, at certain discrete points. Derivatives, or integrals,



are then approximated by differentiating, or integrating, the interpolation
function. The most common form of interpolation function is a polynomial,
the Lagrange interpolation polynomials being fitted to solution values
only, and the Hermite interpolation polynomials being fitted to derivatives
as well. Splines are a form of interpolation polynomial fitted to
solution values and some derivatives on the ends of each successive
interval between grid points. The imposition of comtinuity of certain
higher derivatives at the grid points yields difference relations among
the solution values and the derivatives that are fitted. The spline
representation is thus a piecewise continuous approximation over the
entire field. In contrast, the Lagrange and Hermite polynomials are
usually applied locally over small overlapping sets of points meighboring
the point of evaluation. Any polynomial representation will be exact,
of course, if the solution function is a polynomial of degree equal to,
or less than, that of the interpolation polynomial.

Other interpolation functions are also used, such as exponentials
or functions obtained as local solutions of the differential equation.
The spectral methods use eigenfunction expansions of the sclution.
Still another form is the expansion of the solution in a finite Fourier
series, as in the pseudospectral methods. The derivatives (integrals)
obtained by differentiation (integration) of the series in the
spectral and pseudospectral methods are essentially of infinite order.

Differential Approach - Taylor Series

By differentiation of the one-dimensional form of the partial

differential equation (1), we have

¢tt - u¢xt - ut¢x _ 0




But,

~£h
i

(8)y = - (ud, +u ) (11)

so that

¢’t:t u2¢xx * (uux - ut)¢x (12)

Higher derivatives may be obtained ina similar fashion, and thus all
time derivatives can be expressed in terms of space derivativeg, A

Taylor series expansion in time then gives

2
e 908 + b, %ﬁ + o(atd)
n 2 At2
= ¢ - ué At + [u ¢xx + ( uu, - ut)¢x}_§_
3
+ 0(AE™) (13)

Thus a second-order scheme results if ¢x in the At term is
approximated to second order, and ¢xx’ ux¢x’ and ut¢x in the
Atz term are approximated to first order. This second-order scheme is
the single equation version of the Lax-Wendroff scheme. Higher-order
expressions can be obtained by retaining more terms in the Taylor
series expansion, using successive differentiations of the differential
equation tc express the additionmal time derivatives in terms of space
derivatives of ¢$, and exXpressing all the derivatives to the necessary
order in each term of the resulting expression. Difference representations
of the various derivatives are obtained by approximating the solution
by an interpolation function, differentiating this function, and evaluating
the result at the point in question. This topic is discussed further
later in this section.

All schemes in this review that are nor indicated to be dependent

on interpolation functions other than polynomials are assumed to be




based on polynomials and are, therefore, derivable from Taylor series
expansions of the functiom at the grid points that appear in the final
difference expressions, with all time derivatives in the series being
expressed in terms of space derivatives through repeated differentiation
of the differential equation.as illustrated above.

Differential Approach-~Characteristics

Taking ancother approach, we have ¢ = constant on the trajectories
given by X = u, i.e., on

X = J u dt + X (14)

These trajectories define the characteristic curves of the partial
differential equation. Therefore we can write

t+AL
d(x,t + At) = ¢(x - J udﬁ', t) (15)
t

i.e., the solution at x at the new time level, t + AL, is equal to the
' t+HAL '
solution at x - I udt ' at the previous time level. This type of
method is constricted by approximating the solution by an interpolation
function and evaluating the function at the location given by the first
argument in the right side of Eq. (15).
Now with
t+AL
A = I udt’ (16)
t

we have by a Taylor series expansion,

2
e - AL, £) = ¢(x,8) - ¢ AT+ ¢ % ro@)) an

Now redefine the variable of integration t' such that

At
AL = J ulzx(t + "), £ + t']dt’ (18)

el



and expand u in a Taylor series so that

At
AL = J{u(x,t) + ux[x(t + &'y - x(e)] + utt' + O(Atz) Mde' (19

o}

But
=+t
x(t + t") = x(t) - Judt"
t!
= x(t) - J udt"” {(with t" redefined)
0
=x - ut' + O(Atz) (20)
Then
At 3
AL = f (u - uxut' + utt')dt' + 0(AL™)
o
At2 3 '
= uAt - (uux - ut) == + 0 (A7) (21)
Then

t+At Ar2
${x - Judt', t) = ¢(x,£) - ug At + (uu - u) ¢
t
1 2 2 3
+ 5 u"e_atT + 0(at”) (22)

which agrees exactly with Eq. (13).

Thus in constructing a convective scheme, the same results follow

from expanding the function at grid points on adjacent time levels and

from expanding the function at the intersection on the present time

level of characteristics from grid points on the adjacent time levels.

This is true, of course, to arbitrary order in the series expangion.

Thus in the diagram below, the same scheme will result whether point 1

or 2 is used in the construction. In either case it is the grid point

1 that will appear in the final difference expression.
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This development also illustrates that expansion of the solution
at the new time level about the previous level, with all time derivatives
in the geries expressed in terms of spatial derivatives through repeated
differentiation of the differential equation, followed by substitution
of spatial difference expressions, is equivalent to expressing the advanced
time solution in terms of the solution at the previous time level at a
position AL upstream, this value being determined by interpolation
among the grid points at the previous time level.

Integral Approach -~ Time

Integrating the one-dimensional form of Eq. (1) over a time

interval At we have

t+AE
R J ug_dt (23)

t

With the integrand approximated by a linear function, the second-order

Crank-Nicholson foxrm results:

n+l n nt+l

0t - - ST + @)™ g (24)

which involves a temporal average of the convective flux. Higher-
order representations are, of course, pbssible using higher-degree
approximations of the integrand (cne degree lower than the order)

involving more time levels or perhaps some intermediate time levels.

10



Integral Approach - Space

With the integration taken over space instead of time we have,

using integration by parts in the last step,

Xity X 14k
J ¢, dx =-J u¢xdx
X

i+
= - (u¢)i+% + (ucj))i_,/2 + J ¢uxdx (25)
1%

The first two terms on the right are the fluxes through the sides of
a cell. The last integral vanishes for uniform velocity.

Methods of various orders are produced using different degrees of
approximation functions for the integrands, which again must be represented
by functions of no more than one degree less than the intended order
of the method. Note that this approach involves a spatial average of
the time derivative.

Integral Approach -~ Time and Space

Integration over both space and time produces

X% t+At
+1
J 7 —pMax = - f [@8),,, - (), lde
xi-’/e t
t+AL xi+%
+ j ¢uxdx (26)
t X

Again the last integral vanishes for uniform velocity or the conservative
form. The first integral on the right is now the time-average of the
fluxes through the cell sides.

In Eq. (26} the integrals can be approximated using Eq. (15) with

11



¢ expanded in a Taylor series as in Eq. (17). Thus with dz = udt and A2 =

t+AL
J udt' , we have

t
t+At AL
Ju¢dt'= d(x ~ z,t)dc
t o
AL

2
4 3
R TR

J [9Cx,0) = 0,8 + ¢,
(o]

2 3
A 4
$0T - b S5+ g B+ o(arh) @7)

Using the approximation for Az givem by Eq. (21) this becomes, to

third order,

t+At 2 5 9
u At 3
updt = ¢ [uAt - (uux -u.) —E—] -4t 0(AL™) (28)

+ ——

Higher-order forms can be developed in a similar manner. An altetnative
approach here is to represent the flux, u¢, directly by an approximating
function of degree one less than the desired order of the method.

Multi-Level Methods

Another way to achieve higher order in time is to represent the
time derivative directly by higher-order difference representations
involving more than one previous time level. Chief among such metheds
is the three-level "leapfrog" scheme, which is constructed using a
second-order central time difference.

Multi-Stage Methods

In many methods several stages may be involved in progressing to
the next time level. These stages often involve intermediate time levels

- and points between grid points. The schemes forming the intermediate

12



stages are usually of lower order than the overall scheme. It is possible,
of course to algebraically combine these stages into a single step.
However, the actual computation is done in the separate stages, and the
presentation is certainly not elucidated by the combination. Truncation
error, phase error, and stability analyses do require the single-step

form. Stencils are shown for each stage of such methods. It is clear
from the stencils that the single-step form would involve an expanded
stencil.

Explicit and Implicit Forms

Explicit methods produce values at new time levels directly at
each point in succession, since the new values at each point depend
only on old values at neighboring points. TImplicit methods require
the solutionof a system of algebraic equations at each new time level,
since the new values at each point depend on the new values at adjacent
points as well as on the old values. Implicit methods allow larger
time steps but it is generally not possible to take advantage of this
increased stability in conwection problems without sacrificing accuracy
because of dispersion in the solution, Implicit methods are more important
with stiff systems of equations, which have widely different time scales
for the various components.

Difference - Differential Methods

In some schemes difference approximationg are made only in space
or only in time, and the resulting set of simultaneous ordinary
differential equations is sdlved_by one of many established; highly
accurate procedures for such equations. When the ordinary differential
equations are in time, the scheme is referred to as the "method of lines.”

In this case the size of the system of ordinary differential equations

13



to be solved is equal to the product of the number of dependent variables
and the number of points in the field. With spatial ordinary differential
equations, however, the system is much smaller, consisting of simply one
equation for each dependent variable.

Finite Element Methods

Finite element methods involve representing the sclution as a finite
series of basis functions,with thecoefficients in the series being the values
of the solution, and perhaps gome of its derivatives, at certain points on the
elements which fit together to cover the field in space and perhaps time also.
This representation is substituted in the differential equation, and the
residual is required to be orthogonal te the basis functionsover the element.
The result is a system of algebraic equations which must be solved over the
field. Such methods are inherently implicit,

Truncation Error

The truncation erroxr of a difference scheme is obtained by expanding
all variables in the difference equations in Taylor series about scme
certain point, and invoking the partial differential equation and its
derivatives to cancel terms wherever possible. Certain difference expressions
are common to many schemes, so the truncation error analysis can be facilitated

by firstevaluating the error of these component expressions. Thus

6fi = fi+1/2 - fj_..'/2 = fxz‘_\.x + fxxx A—z}ii + O(Axs) (29.a)
a2 4 \

w, 2 R(E Lt E ) = E T+ 0lax) (29.b)

x> 5

TSR 1C P FIRP I WU S 0(ax") (29.¢)
o 3

af, = f. . -, = f Mx 4 o —p F0(ax7) (29.9)

ax’ 3 |
VE, = Of - f, = fMx - f T+ 0(ax™) (29.e)

14



4
62F, = f. - 26 +f., . =f mE+f DX

i i+l i i-1 XX xx 17 + O ) (29.f)

with similar relations for time derivatives. With these relations, the

truncation error of the scheme

2, 2
n+l _ n uAt n u At n _ g, n
b5 = 05 = om iy~ 850 o2 a1 T 2T e )
Ax
=[N sy /(“At) 52 167 (30)

for uniform velocity is given by

2 3

T= [0t + ¢ - 2 * dree Ag * O(At v Ax (o, ax
o A’g—B + 0(ax”)] -'/2(““) (9, A"
R %ﬁ;-+ O(Axﬁ)]
= Gop +up e+ (b - ute) A%i Tl é%i
+ug Atﬁfz + o(at®, aclady (31)

3

But by Eq. (1} and (12) the first two terms vanish. Also $rpp = U ¢xxx

so that the fimal truncation error expression is

AtAx2

XXX 6

uAt 2
= [1 - &) Tue (32)

and the scheme is thus second order.

Difference Expressions

Difference expressions for derivatives obtained by differentiating
interpolation polynomials may be generalized to arbitrary order as
follows. With the displacement operator defined as

Ef, = fi+1 (33)

we have from the definitions of the difference operators in Eq. (29)

the following operator equivalences:

15



§ =E% - E (34.a)
W= (R + E% (34.1b)
A=E -1 (34.c)
VvV=1-E (34.4)
Now by Taylor series expansion on a uniform grid,
f = ; f(k) Séﬁli
i+l k=0 i k! (35)

where the superscript (k) indicates the k-th derivative. With the

derivative operator defined as Pf = £, Eq. (35) can be written

o
k k
o5 () ok T (ax) ok

BE =i do "l D F = (o g DOF

which yields the operator equivalence
© (axm® AXD

E=do™wr ~° 36)
and then

AxD = LnE (37

Using the equivalences of Eq. (34) we have

AXD = 2 sinh_lfg) (38.a)
=Ln (1 + 4) (38.1)
= -fn (1 + V) (38.¢c)

Difference expressions for approximation of derivatives to any order

may then be obtained from truncated expansions of the expressions in

Eq. (38). From Eq. (29), the leading terms of the expansioms of &f,

Af, and Vf are all fox. Therefore, the truncation error of the difference
expressions obtained from Eq. (38) is obtained by replacing the operator

with AxXD in the first term following the truncation,.

16



For example

AxDf

£nfl + AF

@-%a2 w1303, . s

Zl~ B[~ El-

If this expression is truncated after the first power of A, we have

= 1 =L -
B T B sy By - )
with truncation error - %? fxx' If the second power of A is retained
then
= 1 2 1 2
fe 5 2 (8- % 870 = — (Bf - % 47F)
Now Af = fi+l - fi so that
8%F = ACNE) = Af, . - BF = (£, ~£..) - (£, - £.)
i+l i it+2 i+l i+l i
T Mg E
Then
=1 _ _ 1 -
B % [(gyy — £ - %, 2 EP]
N SR 3
= g (T, T 2E - 9E)
2
with truncation error 3 fxxx . Higher approximations are developed
in like manner.
Also
I A .
£ = o {2 sinh (2)}f
R A A
Mx 2 8 460 ° )
But note that this would require fi+%’ fi+%’ etc., instead of fi+1,
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fi+2’ ete, This can be avoided by using the identity: u°~ = 1 + IG .
Then we may write
1 1
_ 1 1272, The
fx = [ w(l + 46 ) 2 sinh (2)]f
3 3
-1 . b, uS
" WS-t o) S

Here truncation after the first power of § yields
1 1

T MOE T Ml -6 D
2 2
=—l—[(f +£) - (f, + £, )]
Zax el TR T
1
=2 $ip - fip)

which is the familiar central difference approximation, with truncation
2

error - — f .
6 XXX

Higher derivatives are obtained in an analogous manner:

1 2
fxx—'——z(AxD)f
Ax
= L a1 + 1%
Ax
=%(A-%A2+%—A3...)2f
Ax
1 ,2 3.1 .4 5.5
———Z(A - A +-i"2—A --EA + . . Of
Ax
Also,
1 -1, .2
fxx=—2[2 ginh (7)]f
Ax
1,2 1 4.1 6
- 2(6 -12(5 +906 'o.)f
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Truncation after the first term in this last expression yields the’’

familiar three-point central difference approximation for the second

derivative:
1 2 1
f =—58f =—(f, -2f. + £_ )
XX ﬁxz sz i+l i i-1
2
. . X
with truncation error - —— f .
12 “xxxx

Another variation of the above is as follows: Using the displacement

operator E, we may write

1 1
bxDf = - OxD(EE; ;) = 5= (8nE) Ef,

t
B[~

1 1

[a L+ ®1A + »F,

B

[-en (1- D1~ D7l

&=

1

[eg
E

_ L, -l 1.8
= [2 sinh (2)]exp[2 sinh (2)]131__“1
' i
1,272 , . -1,8 . .18
ufl +-Z 87} [2 sinh (E)] exp[2 sinh (Eo]fi_l

gl

Expressions of this type yield the derivatives at X without using the
value of f at X, Obviously the displacement operator may be used to

generate similar expressions not involving £ fi—l’ or any others

i+l?
desired. The extension to higher derivatives is obvious also:

1 2 1 2
f A 5 (AxD)"f E}?( xD) Efi—l

Note also that

_ 1 _ 1 -1 .
.fx . AXDE = Ax AXDE fi+1 s €tc.
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Note also that expressions involving differences of the derivatives

can be obtained. Thus, using Eq. (38),

But then
D f =¢£ (39)
With D represented by an expression such as is given in Hq. (38),

this becomes a representation involving differences of fx instead of

f. Similarly, we may write

2
£ = D

and then either

bl = Df = f | (40)
XX X
or
D% =t 41
b .4

The first of these, with the expressions of Eq. (38), represents fx

in terms of differences of fxx’ while the second is a relation between
f and differences of fxx' Ciearly a wide variety of expressions can
be obtained b§ algebraic manipulation of these operators. Use of the

2

identity u2 =1 + = » or other identities,increases the variety even

further.

Dissipation and Dispersion

Stability and phase error (dispersion) are analyzed by substituting

10 - wt), with k real and @ complex, into

the basic wave form, w= e
the difference equation., Since this is one element of a Fourier series,

any error can be represented as a superposition of such elementary wave

forms. WNoting that
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w= oill —wt) | Tt ilkx - R@)t] (42)

where R( ) and I{ ) represent the real and imaginary parts, respectively,

we have that eI(m)t is the amplitude of the wave and R{w)t is the phase
shift, 1If the wave form is writtem as ;t eikx, where § = e_jJIi then with
t = nAt we have ;t = ant = (cAt)n = Gn with G = gAt. The wave form then
is w = Gn eikx. Now note that G = ;At = éimﬂt = eI(w)Ate—iR(m)At‘
Thus
R + 11(6) = eT 8 [eos R@)at - 1 sin R(w)AE]
so that
RE) = et oo Reu)at (43.2)
1(6) = -e* @8 oin R@wat (43.b)
Then
%%g% = - tan R{w) t
so that
R@)E = - tan (LS (44)

which is the phaseshift that occurs at a fixed location during time At,
Now the phase shift that occurs during At due to the convection of
the wave is

k(uAt) = koAx, where ¢ < %ﬁf-, the Courant number,

Therefore the dispersion of the wave during time At is the difference
between these two phase shifts:

£ = koAx + tan_l[Eigl] (45)

The dissipation is given by
=1~ |G| (46)
Stability requires that |G| < 1.
Again it is convenient to have available the results of substitution
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of the basic wave form into the expansion of the difference operators

given in Eq. (29). Thus, with B = kix,

8> 5
dw=i(B - -Z'T)w + 0@ (47 .a)
2 4
we = (1 - Ew + 0% (47.b)
8> 4
udw = i(g. - T)W +0(s.") (47.¢)
b= (18 - 38w +06) (47.d)
o= (8 + 38w +0@7) 47.¢)
9 2 gt 6
Sw=- (8 -——l‘i)w+0(6 ) (47 .£)

Alternatively, the full expression can be derived by substitution of the

wave form directly into the difference expressions. Thus, for example,

dw = AT P Gn[eik(x + A_;) - ej‘k(X - A;_)]
= (eig - e_i%)w
= 21 sin(w ‘ (48.a)
Similarly,

Uw = ¢OS (%)W (48.b)
Héw = i sinp. w {48.c)
pe = e = 1w (48.d)
we -y . (48.e)
sz = 2(cos B - LVw (48.£)

22



The expressions in Eq. (47) are simply the truncated expansions of those
in Eq. (48). <Considering again the scheme given by Eq. (30) with uniform

velocity as an example, we have

3 2
™ M 1 o1 - 5 - T 82w 4 08Y) 49)
Thus
3 2
6=1 - 106 - 2 - L g% L ogeh) (50)
The phase error then is 3
1 -0{B - =)
G=08 4+ tan |—— 2
1 -2 g2
2
083 2 4
=T(l—0')+0(8) (51)

and the dissipation is O(BA).
It is the phase error that causes oscillations in the solution of
the difference equation in the vicinity of sharp gradients. The dissipation

causes the solution to be smoothed out.
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III. LOW-ORDER METHODS

First-Order Upwind Methods

Purely Upwind Methods

The use of first-order upwind difference expressions for the

convective terms, which with flow to the right has the stencil

yields a very stable scheme because large numerical dissipatien is
introduced. However, this dissipation is excessive and will obliterate
solution gradients in long-range solutions. Second-order central difference

expressions with the stencil

have much less dissipation but are unstable without some physical diffusion
unless some numerical dissipation is added to the equation. With physical
diffusion present, central differences lead to spatial oscillations,

often called "wiggles," fimar sharp gradients when the cell Reynolds

number exceeds 2. Hybrid methods have been constructed which represent

the convective terms as a weighted average of upwind and central differences,
switching more toward the former as the cell Reynolds number increases.

It should be recognized, however, that the large dissipation introduced

by first-order upwind differences makes the solution in essence a low
Reynolds number sclution.

First-order upwind differences were used by Narayanan and Shankar
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(Ref. 151) to model flow in a shallow estuary. The results show
considerable dissipation as expected. In Ref. 59, de Vahl Davis
and Mallinson found that the first-order upwind scheme severely mis—

represented the solution for a cavity flow problem.

Hybrid Methods

The hybrid method used by Spalding (Ref. 192) for convective-—
diffusion equations employs first-order upwind differencing when the cell
Reynolds number is greater than 2, and second-order central differencing
otherwise. Raithby and Torrance, Ref. 188, also used the hybrid approach
in the form of a weighted average of second-order central and first-
order upwind differences. 1In one version the weights were determined
by the local cell Reynolds number, upwind differences being used for
Reynolds number greater than 2, with a continuous transition to central
differences as the Reynolds number approaches zero. In another version
the weights were determined to satisfy a local exact solution, in a
manner similar to that used by Chien (Ref. 43).

Runchal (Ref. 182') found the averaged central-upwind scheme useful
for a fluid in solid-body rotation. However, Leschziner and Rodi (Ref. 131)
found the use of weighted average of second-order central differences
and first-order upwind differences to be highly deficient because of
the strong dissipation. Heydweiller (Ref. 100) used a
weighted average of second-order central differences and first—ordér
upwind in a method-of-lines form. Comparisons are given for convection

of a triangular wave on the following page:

25



A +B = | (bockword difterence )

Lo~ 1] " er {1-] :
t=01 1202 t=0.3 1404 :I':‘l
a3 .
o8 ‘/\ e o8 it
! y I ar
a2 os o3 o8 D4 o8 as
A+Bell
or wr mor
1+Q.1 1=0.2 103
ob na as b
on v—AIJ o oo
. .
oz oa 0.3 03 oa o6 o3 ot
A+B=-100
I rer e e
1-02 =03
1=00 [+] }[\\
ost osl osf
un‘*ﬂ\l"\/ oo i, 00 frn S . e
th a4 [->- I - o4 s
A+B= o {cantered difference} )
o 1oy 194 10 :
t«Qd t=02 =03 1=04 ‘-:-
os | osf osf oal I: -
oo o0 (A o0 00 »J\}\j
’ o4 [ 03 o1

[ El 03 o3

Fig. 1. Effect of A + B on solution of Eg. (19)(---exact solution).
(Ref. 100)

No combination is satisfactory because of the low order of the scheme,

A variant of the first-order upwind scheme in a hybrid context is
given by Blottner in Ref. 27 for a steady-state problem. Here the
difference equation is applied at mid-points, so that the two-point
convective difference expression between grid points can be interpreted
as a central difference at the mid-point, and hence as second-order

accurate. The three-point diffusion difference representation on grid
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points thén must be interpreted as first order, since it is unsymmetrie
in regard to this mid-point, Actually this scheme was only used outside
a2 boundary layer, where diffusion was small, with the conventional
second-order central differencing used inside. With spatial averaging
of the time derivative, this procedure would be related to the Keller
box scheme for time-dependent equations.

Khogla and Rubin, Ref.113, represent the convective derivative as
the sum of the first-order upwind difference evaluated at the advanced
time level and the second-order central difference for the second
derivative at the previous level. This is inconsistent in time-dependent
problems, but reduces to second-order central differencing for the
convective terms in the steady state. The difference equations have
diagonal dominance at all Reynolds numbers.

Riemann Solver Methods

Another form of low-order upwind scheme is based on random sampling
of the results of Riemann solvers, i.e., characteristic solutions which
track discontinuities. Random choice methods based on Riemann solvers
have been used by Glimm {(Ref. 8l), Concus and Proskurowski (Ref. 53,
Chorin (Ref. 46 and 47}, Colella (Ref. 51), Flores and Holt (Ref. 70)
DiPerna (Ref. 61 ), and others. Some of these applications have been to
petroleum reserveir problems, while others have treated shocks.

The scheme of Osher and Solomon, alsc bagsed on Riemann solvers,
(Ref. 157) is designed to handle discontinuities such as shocks and
reduces to conventicnal first-order upwind differencing with smooth
solutions. This approach has also been used by Roe (Ref.175), and
Chakravarthy and Osher (Ref.38), and related earlier work is given in

Majda and Osher (Ref. 140).
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Second-Order Methods

Srinivas, Gururaja and Prasad (Ref. 194) note that first-order schemes
yield smooth profiles of discontinuities and resist nonlinear instability,
but are too dissipative. Second-order schemes give sharper profiles,
but exhibit oscillations near the discontinuities. Higher-order schemes
do not attain their order near discontinuities.

Symmetric Methods

The classic second-order method is the lax-Wendroff scheme mentioned
on p. 7, which can be obtained by expanding the solution.in a Taylor
series about the previous time level and replacing all time derivatives
with space derivatives obtained by repeated differentiation of the
differential equation. (As noted on p. 9 such schemes can alsc be
obtained via the characteristics approach). Higher-order schemes of
this type follow analogously. Abarbanel and Goldberg (Ref. 1)
generalized the Lax-Wendroff scheme to include a source term.

The Lax-Wendroff method is often implemented as a two-stage scheme
involving mid-points between grid points and a half-integer intermediate
time level as given by Richtmyer (Ref. 171). Some such schemes are
mentioned later in the following section on Comparisons. McGuire and
Morris (Ref. 145) generalize this two-stage rendering of the Lax-Wendroff

method to include a free parameter. The stencil is
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The original Richtmyer scheme (Ref. 171) and the method of Rubin and
Burstein (Ref. 177) are contained in this formulation. The Burstein

two-stage, second-order scheme (Ref. 36) in 2D uses the stencils

2D

This scheme is of the same order as the Lax-Wendroff scheme, but has
more dissipation.

Philips and Rose (Ref. 163) give a two-stage scheme which is
second order in time and space. This scheme is & leapfrog second
stage written between half-integer time steps, which is set up by an

averaging first stage. The stencils are

i ] ]

L.
Td
.

The 2D version is a three-stage method, in which the first two stages

2D

O

-t

use the first stencil above separately in each of the two directions.
The final stage then uses the second stencil in 2D form. Results for the
shock tube problem are shown on the following page.

The second-order, two-stage MacCormack method (Ref. 135) has been
widely used in compressible fluid dynamics. This scheme involves
differences in opposite directions in the two stages with the typical

stencils

29



RHO

-4

-3 -2 -1 z H c 3 S 5

(Ref. 163)

LR AR TR A TR T
Pl
#
ol
[f‘

/

{Ref. 163)

30



1-0"""'"“5'\;\

i %
»,

L )
S y €) aX=1/10
8l Az .60
"
65— X
) "
£ s N

; ! | | I [
-4 -3 -2 -1 ¢ i 2 3 L] S 1
X

(Ref. 163)

Fig. 2. A comparison of the numerical and exact solutioh of a Riemann
problem; the shock speed exhibits a relative error of 3%
{Scheme 1.2).

Diffusion terms, if present, are represented by the same central
difference expressions in each stage. Although each stage is first
order, the result is second order, and, in fact, can be viewed as a
two-stage implementation of the Lax-Wendroff method. The method is
stable for Courant numbers less than unity.

In Ref.13% MacCormack introduces a new version of the time-split
MacCormack method which is still second order in time but also unconditionally

stable. The new version is constructed by adding another stage to each
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of the two stages of the original method. This additonal stage is a
Crank-Nicholson form with first-order, one-sided spatial differences,

the stencil of which is

The overall method is still second order and remains explicit since the
additional stages are applied with the differences opposite to the sweep
direction. It was found necesgsary to add some artificial viscosity with
stromg transients.

McGuire and Morris (Ref. 144) give an implicit second-order Crank-
Nichelson type two-stage method in 1D which is constructed by adding

fourth-order dissipation to the Crank-Nicholson method. The stencils are

Boundary conditions are done explicitly in this implicit method.

The Arakawa second-order scheme {(Ref. 13} in 2D uses the nine-
point spatial stencil with leapfrog time differemcing. Lilly (Ref. 133
has shown that the leapfrog scheme is subject to weak instability, where
solutions at odd and even time steps become uncoupled. However, the use
of Adams-Bashforth time differencing

n+l

R LI

= w

which is also three-level, removes the instability. However, Orszag
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(Ref. 154) notes that the Adams-Bashforth form requires a time step
that is half that of the leapfrog form for the same accuracy. The
better approach then seems to be to use the leapfrog, and control the
instability by averaging the solution at successive time steps at
regular intervals. The stability of the Arakawa scheme is usually much
greater than that of the conventional central difference form. The
latter is a bit more accurate, however.

Chan (Ref. 40) constructs a second-order explicit method by a
Taylor series expansion about the previous time level with the second
time derivative determined from differentiation of the differential
equations as usual. However, instead of then expressing the time
derivatives in terms of space derivatives, the first time derivatives
are considered additional dependent variables. This approach will
expand the stencil in effect, since these first time derivatives, which
depend on spatigl differences of the function, will themselves be

differenced in the equation for the new function value.

As noted in Turkel, Abarbanel, and Géttlieb (Ref. 216) second-
order explicit methods in 2D that are not compact, i.e., that are not
based on Hermite interpolation polynomials,require a minimum of seven
points at the previous time level, while most schemes use nine for
symmetry. For third-order the required number of points increases to
25. The method of lines, in which the equation is discretized in space
and integrated as a system of ordinary differential equations in time,
¥equires even more points, since equations for all points on an entire
line (or plane is 3D) are integrated at once. Livine (Ref.134 ) also
shows that at least seven points must ultimately be involved in a second-

order scheme in 2D. The Lax-Wendroff scheme (Ref.121.) and several
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others involve nine points, but the MacCormack scheme {Ref. 135), discussed
later in this section, involves seven points. General seven-point schemes
are given and are found to be twice as fast as nine-point schemes.

In Ref. 26, Cushman shows that several common finite difference schemes
with uniform velocity can be obtained from a Galerkin finite element
comnstruction in space and time.

Spatial Oscillations

Siemieniuch and Gladwell, Ref. 188, analyzed several common lower-
order methods for the convection-diffusion equation to determine con-
ditions for oscillation-free solutions as well as stability. Those
conditions place restriction on the cell Reynolds number. Khosla and
Rubin (Ref. 115) note that nonlinear instability arises for cell Reynolds
greater than 2 for conventional second-order methods, essentially
independent of the Courant number. Fisk, in Ref. 69, notes that the
spatial oscillations that occur with central difference schemes at larger
cell Reynolds numbers in convection-diffusion equations appear even for
approximation techniques in which time is continuous. Hirsh and Rudy
{Ref. 102) show that the cell Reynolds number limit characteristic of
explicit methods using central space differences appears also in tri-
diggonal implicit methods, making the tridiagonal algorithm fail due to
the building of rounding error when diagonal dominance is lost. Griffiths
{(Ref. 91) determines that at least two points must be within a boundary
layer to suppress oscillations with central differences.

In Ref. 120, Lam and Simpson analyze the Keller box scheme (Ref. 108)
and econclude that this second-order scheme is superior to the second-
order central difference scheme in both dispersion and dissipation,

especially as convection dominates. The box scheme ig constructed by
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applying the difference equation in 1D at x + % Ax and t + %—At. This
amounts to a spatial averaging of the time derivative with central

space differences, and the stencil is

This scheme has much more gradual breakdown at higher cell Reynolds numbers
than does the central scheme because, unlike the latter, the various

modes do not all begin to oscillate at once. In fact, the dominant modes
are the last to go. The box scheme also retains its second-order accuracy
on a nonuniform grid. Diffusion is included by considering the first
derivatives to be additicnal dependent variables, so that a system of
first-order equations is solwved.

Upwind-Biased Methods

Cushman (Ref.57) obtains upwind schemes from a Galerkin finite element
construction in space and time. The first-order versions of these

schemes have stencils of the form

or

where the location of the point at the advanced ;ime is a free parameter,
Schemes with the location at the advanced time level to the right of the
grid poinﬁs at the previous level require that the Courant number be

greater than 1 and less than 2 for stability. The second-order version,

analogous to the two-stage Lax-Wendroff method, has one of the above
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At
2

stencils for the first stage (but to the t + level) and one of the

following forms for the second.

However, the optimum location of the point at the advanced time was
found to be at the mid-point for the first stage,thus reducing the
stencil to the conventional Lax-Wendroff form. With nonuniform velocity,
the present formulation replaces the velocity with a three-point spatial
average.

Warming and Beam (Ref. 219) give a completely upwind version of the

MacCormack method using the following stencils for the two stages:

The scheme is second order, as is the original MacCormack method, and is
stable for Courant numbers less than 2. As with all upwind-biased schemes,
it must be applied in the proper direction. Comparisons of dissipation and
phase error for this and the original MacCormack methods are given on the
following page. Both the dispersion and the dissipation are greatest for
short wavelengths. The symmetric MacCormack method has a lagging phase
error, while the upwind version has a leading error. The magnitude of

the phase error increases as the Courant number decreases for each method.
The dissipation, however, increases as the Courant number decreases for
the upwind method, but decreases in the symmetric version. In faét, the

dissipation for one method is the same as that of the other for a Courant
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phase error ¢/¢‘a for M and U schemes. (Ref. 219)

number symmetrically placed about % Therefore, the upwind version has
the more desirable dissipation properties, since the damping is greatest
when the phase erroris at its largest values. The digsipation and phase
error of the upwind scheme for courant numbers above 1 are shown in the

next figure.
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Fig. 4. Amplification factor modulus and phase error for U scheme
with 1 < v.< 2. (Ref. 219)
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The phase error is lagging in this range, and is surprisingly lower.

Since the present scheme and the original MacCormack scheme have opposite
fhase errors, there is some impetus to apply the two schemes in alternation
at successive time steps.

In Ref. 197, Steger and Warming construct schemes for the gasdynamic
equations that are based on splitting the flux vectors so that differencing
can be done according to the signs of eigenvalues. For scalar equations
this reduces simply to upwind differencing. It is noted that the

conventional MacCormack method, being symmetric, has a lagging phase

error, and that the completely upwind version given by Warming and Beam

(Ref. 219), which is also second order, has a phase lead. Therefore the

alternation of these two forms reduces the phase error. The effect of

this alternation is shown below for the shock tube problem:

1.0go0ls 1050
Oo o oo\
SOLUTION AT TIME = Y SOLUTION AT TIME = 1
8 INITIAL PRESSURE RATIO = 10 aF INITIAL PRESSURE RATIO = 10

©  NUMERICAL ‘{ c  NUMERICAL
EXACT EXACT

1 2 3 4 45 o 1 2 3 4 as
x x
Shock-tube solution obtained using second-order explicit upwind Shock-tube solution obtained with explicit MacCormack.
Fig. 5(Ref. 197) Fig. 6(Ref. 197)
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Shock-tube solution obtained by alternating explicit upwind and MacCormack schemes. -

Fig.7{(Ref. 197)

38



The alternating version is superior to either of its constituents.

Carver {(Ref. 37) constructs an upwind-biased method based on the
characteristics for a system of equations. This method evaluates different
spatial differences in different ways according to eigenvalue signs and
is related to the flux-vector splitting methods. TFor a single equation,
conventional upwind methods result. The spatial differences are evaluated
by either a four-point Lagrangian upwind formula or a three-point Hermite
upwind formula, both of which are third order. Lower-order formulas of
either type were found to give excessive phase error. The use of characteristic
directions greatly increases the stability. The method is not significantly
more difficult to Implement than conventional methods. The time integration
is by the method of lines, i.e., integrating a system of ordinary differential
equations in time, the number of which is the product of the number of
dependent variables and the number of field points,

Comparisons

Turkel, in Ref. 214, analyzes a number of second-order schemes for
phase error:

(1) The 2D Lax-Wendroff scheme (Ref. 121), a two-stage method with

the stencil

1st stage : 2nd stage :

final:

2D
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is stable for the individual Courant numbers less than-j; and has a
V8
phase lag.
(2) The 2D MacCoxmack method (Ref. 135)is a two-stage method with

four variations of the stencil

i ™ !

1st: ] 2nd: - 2D

This method requires fewer operations than the Lax-Wendroff, but is
weakly unstable in some cases. This instability ﬁay be localized,however,
and can be controlied with some small viscosity if necéssary, and the
method is widely used. The phase lag is larger than that of the Lax-
Wendroff method.

(3) The generalized two-stage 2D Burstein method (Ref. 36) has the

stencil

2D

and two free parameters. One of these parameters controls the inclusion
of fourth-order dissipative terms. Without these terms the method is
weakly unstable except for one value of the other parameter for which the
scheme is stable for both Courant numbers less than unity. This version
is known as the rotated Richtmyer method. As with the MacCormack method,
the instability may be localized and controllable. Without the dissipation
the phase lag is greater than that of the Lax-Wendroff scheme for all

values of the second parameter. However, with the fourth-order dissipation
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included, the phase error can be brought below that of the Lax-Wendroff
method. The phase error decreases as the second parameter increases, but
the stability limit on the time step decreases.

(4) The generalized Burstein scheme operated in a gplit mode (Ref. 145)

uses the following 1D stencils

This split scheme seems to have phase error comparable to that of the
2D Lax-Wendroff scheme but allows larger time steps, since tﬁe stability
is determined by the 1D schemes. The time-split version is stable for
both Courant numbers less than unity.

(5) The leapfrog method is a single-stage 2D method using three

time levels with the stencil

The phase error is the same as that of the Lax-Wendroff, and the stability
is better, i.,e., the sum of the Courant numbers is less than unity, but not
as good as with time-gplitting.

(6) The method of Fromm (Ref. 72) is an upwind-biased method with

the 1D stencil
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In the time-split mode this method is stable for the Courant numbers less
than-%. In contrast to the symmetric schemes this upwind-biased scheme
has a phase lead, which is slightly smaller than the phase error of the
other methods and vanishes for Courant number of %—. The allowable time
step is smaller, however, and the stencil extends beyond the immediate
neighbors.

(7) The Kreiss-Oliger extension of the 2D leapfrog method to fourth

order in space (Ref. 117} has the stencil
5 ]

|

2D

Fact
K'Y

and involves three time levels as before. This scheme has a phase lead
which decreases as a cubic in the time step, in contrast to the other
methods for which the decrease is linear. ' This method should therefore
be more competitive at smaller time steps. However, experience has shown
that the errors accumulate if the step is too small. The optimal seems
to be for Courant numbers around5% .

(8) The two-stage method of Crowley (Ref. 553) has the stencil

i N ]

2D
S N

However, there seems to be no advantage over the time-split methods,

and this method is more complicated.
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(9) The generalijzation of the two-stage Richtmyer scheme with one

free parameter given by Gourlay and Morris (Ref. 85) has the stencil

i N

\-F

for both stages. As with the Burstein generalization,.the phase lag and
the allowable time step decrease as the free parameter increases. The
phase error is larger than that of the Burstein scheme, though.

Some comparisons of phase error from these schemes are given in
the figures below for a Courant numbef of %; There the phase itself is

plotted so that the error is indicated by the distance away from the

diagonal line giving the £¥ué phase. Plots showing amplitude damping

are alsc shown.

P
-4 E0 B0 1.00

i)

4,50

Fig. 8. Complete numerical phase Fig. 9. @Generalized Burstein scheme
of various nine-point schemes. with a\viscosity coefficient
of 0.0625.
(Ref. 214)
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Fig. 10. Similar to Fig. 9 but with a viscosity coefficient of 0.125
for those schemes containing an artificial viscosity. (Ref. 214)
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Fig. 11. Norm of the amplification matrix for those schemes appearing in
Fig. 8.
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Fig. 12. Norm of the amplification matrix for those schemes appearing in
Fig, 9. (Ref. 214)
44



p
40 50

.20

.00

X1

Fig. 13. Norm of the amplification matrix for those schemes appearing
in Fig. 10. (Ref. 214)

All of the methods approximate the phase of the longest waves well.
However, there are striking differences with short waves. Without
artifical viscosity none of these schemes is superjior in phase error
to the Lax-Wendroff scheme, and some are very bad. The time-splitting,
however, works well. The Burstein scheme clearly improves its phase
quality with increasing values of the free parameter, but only approaches
the quality of the Lax-Wendroff scheme. With some artificial viscosity
added through the second free parameter, the Burstein scheme improves in
phase quality dramatically and is superior to the Lax-Wemndroff far short
waves since -the short waves are strongly damped. However, there is
significant damping over a very large range of wavelengths as well.

As noted above, the short waves are not represented accurately
anyway, 8o it may be best to damp out these components with some type
of artificial viscosity or filter. The Lax-Wendroff and time-split
methods do damp these short waves as desired, as is shown in the amplitude
plots above. The Burstein scheme, however, has its maximum damping at

intermediate wavelengths. The leapfrog method has no damping, and the
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‘Burstein scheme approaches this scheme in phase and amplitude as the
free parameter increases. Too large a value of the damping parameter in
the Burstein scheme, however, degrades even thephase, as is evident

in the last figure above., Here the damping is strongest at intermediate
wavelengths,

The conclusions of this study are summarized as follows. Of the
methods considered (second-order), the leapfrog, having no artificial
digsipation, seems to be best for smooth problems. For more general
problems time-splitting is more appropriate im regard to both stability
and phase error. The Lax—Wendroff is the best of the schemes considered
in regard to phase error, but thismethod requires a smaller time step
than the time-split schemes. The Burstein methods without artificial
viscosifty and the generalization of the Richtmyer scheme have entirely
too much phase error. In general the time-splitting approach is the
most reasonable, followed by the leapfrog or the Lax-Wendroff scheme.
However, all of these second-order schemes leave a lot to be desired
in phase quality.

Runchal (Ref.181.) compares several common lower-order schemes in
terms of dispersion and dissipation. The schemes compared are listed
on the following page and the dispersion is shown in the next figure.
The diagrams (a) and (b) represent pure convection, while the other two
show the effect of including diffusion. The explicit upwind scheme
has no dispersion at the Courant numbers shown, but such is not the
case for other values. Of the upwind schemes, which are first order
in space, the implicit has the greatest dispersion for pure convection.

The inclusion of diffusion inan explicit manner causes a significant

increase in dispersion. Diffusion includedin a Crank-Nicholson form
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Tahle I Schematic representation of the FDFs. ---Transient link; —
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Fig. 14, "False" dispersion for the investigated finite-

difference formulations (FDFs). (Ref. 181)

also causes a large increase with the upwind convective form, but not
with the central. With the implicit forms, the inclusion of diffusion
had less effect. The effect of diffusion on dispersion is more
pronounced at the lower Courant number for all of these schemes.

The dissipation of these schemes is compared on the following

The central schemes have no dissipation at the short wavelengths
48
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Fig. 15. "False" transient diffusion for the investigated FDFs.
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where it is most needed, and the dissipation of the upwind scheme . is
excessive and generally has the undesirable feature of being greater

at the longer wavelengths. The implicit schemes have more dissipation
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than the explicit, as expected.

Several methods are compared by McRae, Goodin, and Seinfeld in
Ref. 146. The seven methods considered are (1) the SHASTA algorithm
using FCT (Refs. 28, 31, 32), (2) compact differencing methods with
Crank-Nicholson time differencing (Refs. 5, 7, 50}, (3) Galerkin finite
element methods with linear elements (Refs. 150 and 204), (4) the
zero-average phase error method of Fromm (Ref. 72), (5) upwind differencing
(Ref. 172), (6) the Crowley second-order scheme (Ref. 55), and (7) the
Price scheme {(Ref. 167). Results for convection of a square wave,

a triangular wave and a Gaussian are shown below:
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The FCT algorithm does the best job on the square wave, and all
the others are quite bad. The FCT flattens the peaks of the triangular
and Gaussian waves, however. A comparison of the FCT method and the finite

element method is given in the next figure for the revolving cone:

{b)

Fig. 19. Results of Crowley test problem for a quarter and complete
revolution of a cone using (a) SHASTA method and (b} linear
finite element scheme (without filtering step). (Ref. 146)
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The strong dissipation of FCT and pezk clippings are evident here.

Burstein and Mirin (Ref. 35) compared several methods for the
revolving cone problem and found third-order methods to be significantly
better than second-order, especially in regard to phase error.

Sasaki and Reddy (Ref. 186) compared several methods of convection
of a vortex. The methods compared are the second-order leapfrog method (4),
the second-order Arakawa method with leapfrog time differencing (Ref. 87)(B),
and with Crank-Nicholson time differencing (E), the Arkawa scheme in two-stage
modes, and a Galerkin finite element method using Crank-Nicholson time
differencing (G). 1In one of the two-stage modes considered for the
Arakawa scheme, the first stage is a forward-time predictor and the
second is a backward-time corrector (Matsunmo, Ref. 143). The other
two-stage mode used has a forward-time predictor over half the time step,
followed by a leapfrog corrector centered at the half-time level.

The second-order Arakawa scheme is designed for use with the stream-
function wvorticity formulation, and can be obtained from a Galerkin finite
element approach using bilinear basis functions on a square element. TFor
uniform velocity this scheme invelves a weighted average of the second-
order central difference expression at three adjacent points in the
direction normal to the derivative. There are thus nine points involved,
even though the representation is only second order.

Comparisons of the results of convection of the vorticity field are
shown on..the following pages. Of these schemes, the Crank-Nicholson form
of the Arakawa method proved to be the best. The two-stage schemes had

more damping than is desired.
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Vorticity field, t = 0,
120, 240...h. Analytica
solution. (Ref. 186)

Vorticity field, t = 120h,

At = 1h., Scheme B.
(Ref. 186)

Fig. 22,

Vorticity field, t = 120h,
At = 1h, Scheme A.

(Ref. 186)

1 1 1 1 I 1 1 1 ]
1 H 3 4 3 [ 7 B 9 W
1 =
Fig. 23. Vorticity field, t = 120h.

At = 1h, Scheme E,.
(Ref. 186)

35



Fig. 24. Vorticity field at t = 120 h. Scheme G. (Ref. 186)

Grammeltvedt (Ref. 87) considered several methods for the dynamics
of the atmosphere, most of which are delineated by the treatment of
the momentum equation. The effects of various types of averaging, hence
smoothing, of convective terms with a nonuniform velocity field may also
be seen, however. All the schemes use second-order leapfrog time
differencing. The fluxes fdrmed by the product of the velocity and
the concentration are written in the following forms at the mid-points
between grid points: (1) average of product, where the velocity and
concentration at the grid poiﬁts are multiplied and then the product is
averaged to produce the flux at the mid-point, (2) product of averaging,
where the velocity and concentration are individually averaged and then
these averages are multiplied, and (3} a combination in which the product
of the averages is averaged in turn in the direction away from that of
the derivative, hence using a nine-point stencil. Some staggered grid
configurations are also included. The results show that the preoduct of

ayerages is better than the average of the product. The nine-point schemes
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are more stable because of the smoothing accomplished by the additional
average, but the phase error is increased.

It was also noted that more grid points per wavelength are required
for longer-term integrations. Higher-order methods need fewer points,
but may have to be averaged periodically between time steps to prevent
aliasing errors.

Three multi-stage methods are compared by Anderson (Ref. 133} for
shock problems. The schemes are (1) the conventional second-order
MacCormack method (Ref. 135), (2) the third-order Rusanov method (Ref. 183),
and (3) a third-order method due to Kutler, Lomax and Warming (Ref. 119).
The Rusanov method is equivalent to that of Burstein and Mirin {Ref. 35)
and is based on Runge-Kutta techniques. The third method is a variation
of the Rusanov method, having the same third stage but using the MacCormack
method for the first two stages. This method has two free parameters.
Adjusting these parameters to minimize dispersion or dissipation improved
the results but it did not matter greatly which was minimized. The
MacCormack method was found to be superior with the Courant number near
l. However, the third-order methods performed better than the MacCormack
method when the Courant number varied widely. Of these two methods, that
of Kutler, Lomax and Warming is easier to program,

Srinivas, Gururaja, and Prasad (Ref. 195) compared five schemes for
shock problems and found that different schemes modelled different aspects
of the problem better. The results of some earlier comparisons are also
summarized, the general conclusion of which is that the higher-order
methods (Rusanov, Burstein and Mirin here) are best for general problems.
In the present comparison the first-order van Leer scheme (Ref. 127) is

considered preferable to the first-order Rusanov scheme (Ref. 184), The
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second-order MacCormack (Ref. 133) was judged to be better than the
Richtmyer scheme (Ref. 171) of the same order.

Taylor, Ndefo, and Masson (Ref. 207) compared four methods for shock
problems and concluded that the third-order Rusanov (Ref. 183), alsc Burstein
and Mirin (Ref. 35), ig better than the Godunov, Richtmyer, or MacCormack
methods. An older comparison of low-order methods for a shock problem is
that of Emery (Ref. 67). Here a first-order method of Rusanov (Ref. 183)
was preferred, Another older comparison of second-order schemes for
shock problems is that of Rubin and Burstein (Ref. 177 ). A two-stage

implementation of the Lax-Wendroff method was found to be best.
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IV. HIGHER-ORDER METHODS

Baker (Ref. 17.) notes that the dispersive character of the discrete
representation is the dominant error mechanism in convection-dominated
problems. Williamson and Browning (Ref. 223) found that more efficient
error reduction was possible by increasing the spatial order than by
decreasing the grid sign.

Gustafsson (Ref. 93) shows that representation of boundary conditions
can be one order lower tham that of the field method.

Symmetric Methods

Zwas and Abarbanel (Ref. 229) develop higher-order schemes by expanding
the solution in a Taylor series about the previous time level and replacing
the time derivatives with space derivatives obtained by repeated differ-
entiation of the differential equation as discussed on p. 7. Third and
fourth-order methods are given. It is noted that odd-order schemes are
unstable unless modified by the addition of a term containing the next
higher space derivative or by rewriting the central term as a spatial
average of order equal to that of the method.

Oliger, in Ref. 133, uses fourth-order symmetric spatial differences
with second-order leapfrog in time. Fourth-order was found to be far
superior to second-order, and only slightly inferior to sixth-order.

It is also noted that it is possible to use approximation of one order
lower at boundaries without degrading the order of the solution. This
was also noted by Gustafsson (Ref. 93).

Gerrity, McPherson, and Polger (Ref.80 ) use a fourth-order repregentation

of the first space derivative that involves six symmetric points about

the point in question:
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This is two more points than are necessary for a fourth-order expression.
Fourth-order difference expressions are also used for the spatial
derivatives by Takeo in Ref. 206,

Crowley (Ref. 55) comstructs a fourth-order method using the
characteristic equation, as discussed on p. 8 , and an interpolation
polynomial fitted to five symmetrically placed points at the previous

time level. The stencil is

The method is fourth-order in space and time for uniform velocity, but
only second-order in time for nomuniform velocity.

Conservative methods are also constructed by representing the flux -
through a cell side as time averaged, as discussed on p. 10. With a linear
representation of the solution on the grid interval contacting the point
of flux evaluation, this results in a second-order scheme. If the solution
is represented by a cubic on the four grid points located symmetriéally
about the point of flux evalmation,the scheme will be fourth-order in space.
With this symmetric placement of points about the point of flux evaluation,
there is no upwind bias.

These methods have maximum phase error and dissipation at short
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wavelengths. The phase error has a minimum and the dissipation a

maximum for Courant number of %u The fourth-order conservation form

has larger phase error than the non-conservation form of the same order.
Extension at 2D is by time-splitting. The unsplit versions showed

distortion not present in the split version.

Results for the revolving cone problem are shown below:
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The improvement with order is evident.
Fromm (Ref. 73) shows that the Crowley fourth-order scheme

(Ref. 55) can be written in a two-stage form with the stencils

Upwind-Biased Methods

Davies in Ref. 58, with uniform velocity and one dimension, takes
the approach of expressing the solution at the advanced time level in
terms of the value at the previous time at an upstream point determined
by the characteristic backward to the previous level, as discussed on
p. &

$(x, t + At) = ¢(x - uat, t) (1)

The value at the point (x - uAt) at the previous time level is determined
by polynomial interpolation among the grid peints at this level. This
approach produces methods that are of the same order in space and time
(for uniform velocity). Linear interpolation using the points (i - 1, 1)
produces the familiar first-order upwind scheme, while quadratic inter-
pelation over the points (i - 1, i, i + 1) yields the second-order Lax-
Wendroff scheme.

Symmetric even-order central schemes are obtained by using polynomials
of even degree, with the points placed symmetrically about the grid point
i. oOdd-order schemes with upwind bias are obtained with polynomials of
odd degree, using points placed symmetrically about a point one-half cell

upstream of the grid point i, assuming positive velocity. The odd-order

schemes have zerc phase error at Courant numbers of O, %3 and 1.
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Particular schemes up to fifth order are given, the stencils for the

third and fifth-order versions being respectively, or the form

and

{This third-order scheme is also discussed by Huffenus and Khaletzky in

Ref. 106, where it is mislabeled first order in time.)}

The damping and phase error of schemes of thig type are 1llustrated

below for two Courant numbers:

Fig. 27.
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(a) Damping per time step and (b) relative phase change per time
step plotted as a function of the wavelength (in grid lengths for
both & = 0.2 and & = 0.7, The numerals on the curves refer
respectively to the order of the interpolation scheme (e.g., 5
denotes the quintic scheme)., (Ref. S8) .
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As expected, the odd-order schemes have lower phase error, but more
damping. Also the phase error of the odd-order schemes reverses sign at
Courant number %—, leading for the lower numbers and lagging for the
higher. For the even-order schemes the phase error is leading over all
Courant numbers. Phase error generally decreases with increasing Courant
number for the even-order methods, while extrema cccur on either side of
Courant %-for the odd-order schemes. Both phase error and damping decrease
with increasing order for all the schemes.

Damping generally increases with the Courant number, and the increase
is more marked for the even-order methods, which have very low damping
at low Courant number. Both the greatest damping and the largest phase
errors occur at the shortest wavelengths.

Comparison of the third and fifth-order schemes with the schemes

of Gadd, Ref. 76, andMahrer and Phiki, Ref 139 are given below:

o
©
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DAMPING PER TIME SYEP

—————eet
WAVELENGTH IN GRID LENGTHS

Fig. 28. (a) Damping per time step and (b) relative phase change per time
step platted as a function of the wavelength (in grid lengths) with
a = 0.2, for the cubic and quintic pseudo-upstream schemes and
for the schemes of Gadd (G), and Mahrer and Phiki (M + P).
(Ref. 58)
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Of these schemes, that of Mahrer and Phiki is superior im regard to
phase error and damping. The Gadd scheme is not satisfactory in that
it has an extremum in the phase error at a wavelength where the damping
is very low.

Although these upwind-biased, odd-order schemes of order greater
than one are not monotonic in general, they are able to handle spikes
of an order of greater tham can be handled by the second-order Lax—
Wendroff or.leapfrog schemes without loss of monotonicity. The maximum
spike amplitude for which the scheme remains monotonic decreases with

inereasing order.

Kholodov, in Ref, 112, develops a measure of the non-monotonicity
of schemes. This measure is then used to select the free parameters in
second and third-order schemes to obtain the schemes of that order which
are most monotonic. The stencils of the general explicit and implicit

forms considered are, respectively,

These forms give a two-parameter family of second-order schemes, and a
one-parameter family of third-order schemes. Oscillations, i.e., non-
monotonicity, can occur when some of the difference coefficients are
negative. The most monotonic schemes of a given order are obtained by
selecting the free parameter to minimize the least-square difference

between the coefficients and those of the monotonic scheme with lowest
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numerical dissipation.

Second-order explicit schemes with stability limits requiring the
Courant number to be less than 1, and schemes requiring the Courant number
to be between 1 and 2, are obtained with the explicit stencil given above,
and with the stencil formed by deleting the right-most point from the

advanced time level of the implicit stencil:

P

A third-order scheme with stability for Courant number less than 1 is
also obtained.

These schemes can be interpreted as being constructed from the
characteristic equation (p. 8 ) using the interpolation polynomials of
the given order that has the smallest deviation from the first-order
interpolation polynomial in the least-square sensge.

Comparisons for a shock problem are given belew for several

third-order explicit schemes with the first stencil above:
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Fig. 29. (Ref. 112)
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The scheme designed to have the greatest monotonicity has the least
oscillation as expected. The next figure compares second-order methods

with this same stencil.
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Fig. 30. (Ref. 112)

Second-order explicit schemes with the five-point stencil given above

are compared in the next figure:
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Fig. 31.
(Ref. 112)
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Differences are more noticeable with this stencil. Finally second-
order methods with this last stencil with Courant numbers between 1

and 2 are compared below:
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Fig. 32. (Ref. 112)

The schemes designed for Courant numbers less than 1 are better.
Extensions to nonlinear cases are also given.

Higher-order, multi-level schemes with an upwind bias are
constructed in one dimension by Chan in Ref. 39 using Taylor series
expansions of the solution at the previous time step at about a point
one-half mesh width upstream of the point of solution evaluation.
These schemes are of equal order in space and time. These schemes are
based on uniform velocity, however, and the poiﬁts are placed on the
previous time line either at grid points or at the intersection of
characteristics from grid points on adjacent time lines, using the

relation {cf. p. 8)

d{x, t + At) = d(x - uAt, t) {2a)
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¢(x + uat, t) = ¢(x, t = At) (2b)

The same results could have been reached by expanding the function at
grid points at the adjacent times, differentiating the differential
equation to obtain expressions for the time derivatives in terms of
space derivatives.

The stencils and the symmetrically placed points are shown below

for three fourth-order methods and one sixth-order method.
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The stencil for the sixth-order scheme, A4, is as fallows:
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The last of the fourth-order methods is dimplicit, but all the other

methods are explicit if the field is swept downstream. All of these

methods except the implicit one use three time levels.
This use of symmetrically placed points eliminates all even
derivatives in the truncatiom error, and hence schemes of this type

are non-dissipative even though there is an upwind bias. The phase
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error for schemes 1 and 2 vanishes for Courant numbers of 0,-%, and 1 and
is leading for the lower Courant numbers and lagging for the higher.

This behavior is clear in the figure below:

10 T T
08} N
Fourth-order
06 B
3

0.4} N

c2r
AAAQA

ABDTTUE. AAA 000 =]

| 1 | J .l

~-0.2 =20 -10 0 10 20

x-{xg+0t)

Fig. 36, A2 results at NCYC = 50,000 (0 o = 0.25; eqg = 0.50; A a = 0.75).
(Ref. 39)

That the phase error decreases as the order increases is evident

in comparison of the figure above with the following figure:

e

’OT_—‘ T

0.8
Sixth-order

o6

c4r-

g2

] 1
-20 -0 o 10 20
-(xg+ul}

-02

Fig. 37. Results using A2 once as predictor and A4 twice as correctors
(o= 0.75 and A Tepresents NCYC = 50,000 and NCYC = 100,000)-

(Ref. 39)
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Performance with a triangular wave is shown in the next figure:

Fourth-order

- |l | i} i i
0.2723¢ Jio ) 10 26

x-{xg+ut}

Fig. 38. A2 results for triangular wave at NCYC = 1,400 (e o
o a=0,75). (Ref. 39)

0.50;

A procedure for including diffusion is also givem, using a time-
split approach in which the functiom is essentially convected along the
characteristics and then diffused at a fixed time.

If the velocity is nonuniform, the points will no longer be sym-
metrically placed on the present time line, so that even though analogous
schemes using the same grid points could be derived which would preserve
the order, these schemes would not be nondissipative,since not all of
the even derivatives in the truncation error would be eliminated. 1In
this case the derivation would proceed using Taylor series expansion of
the functiom at the grid points at each time without using the characteristic
relations to relate these values to values on the present time line.

Thiscuse of expansions about an upstream point to introduce an
upwind bias is attractive even in the case of nomuniform velocity,

especially since such a scheme will become nondissipative when the
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velocity is uniform. The upwind bias allowed stable solutions to be
obtained without a cell Reynolds number limitation in Ref. 39,

The QUICKEST method of Leonard, Ref. 129, uses individual quadratic
interpolation polynomials to evaluate the fluxes through the sides of
a cell (Cells contain one grid point and are bounded by sides located
mid-way to the adjacent grid points.) in 1D, with the three grid points
fitted by the interpolation polynomials being chosen to extend upstream,
i.e., with the cell side located between the two most downstream peints,

as diagrammed below (cf. p. 11),

p1e,)

i-2

Fig. 39. Quadratic upstream interpolation for ¢r and (B¢/3x)r.
{(Ref. 129)

(ogT

i-2 1

Fig. 40. Quadratic upstream interpolation for ¢£ and (B¢/3x)£.
(Ref. 129)
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This results in a third-order upwind biased method for convection with

the stencil

q

This scheme is constructed by first integrating the differential
equation ¢t + (u¢)x = 0, over space and time, as in Eq. (I1-26), to

produce the exact relation

r

7 At
1

J Ax(¢“+ - ¢Mdx = - i (u g, - updp)dt

£
T2

Az;z A;r
= - J ¢ (x - £z fj $plx, - 2T 3)
o o

At

where Acr = J urdt, etc. Here the subscripts, r and £, refer to the

Q
right and left sides of the cell, respectively. The integrals on the

right are the time-average fluxes through the cell sides. With the
solution given by the characteristic relation, $(x, t o+ t) = ¢(x -ut,
to), the ¢ passing through a cell side during time will be all that is
located up to a distance x, - Agr to the left of the side, hence the
form of the integrals on the far right. These average fluxes are
evaluated by replacing ¢ in the integrals on the far right with the
interpolation polynomial corresponding to the cell side in question.
The integral on the left is a spatial average of the time change of the
solution and is evaluated from the interpolation polynomial fitted to

the points (i-1., 1, i + 1).
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With the uniform velocity and spacing, the QUICKEST method is
equivalent to the third-order upwind biased method of Davies (Ref. 58),
which uses a cubic interpolation function on four points biased to the
upstream side. The Fromm method (Ref. 72) uses these same four points,
but averages two quadratics, one through (£ ~ 2, 1 ~ 1, 1) and the other
through (i - 1, i, i + 1), to represent the solution on the interval
[i -1, i}. That the present methed is truly third order with nonuniform
velocity is unfortunately not demonstrated and no reference is cited for
such a demonstration.

Diffusion is included in a second-order central difference form,

A second-order version, called QUICK, is given also using the same stencil.
In the second-order version, the integrands in the time-average fluxes

in Eq. (3) are simply evaluated at the. cell sides from the corresponding
interpolation polynomial, instead of being functions.of . Long waves
are unstable in the second-order version.

This method reduces to the second-order Leith method (Ref. 128 and
129) if the quadratic interpolation is replaced by linear interpolation,
and further to the Lax~Wendroff method for uniform velocity. The method
is stable for Courant numbers less than unity in the pure cenvection
case, and has some stable ranges for Courant numbers greater than unity for
some values of the diffusion coefficient, This method is shown to
produce much less oscillation near a shock than does the lower-order
Leith method, and the results are relatively insensitive to the Courant
number within the stable range. A comparison for convective and diffusion
of a step function is shown in the next figure,

The extension to multiple dimensions, except for cases in which
convection dominates in a single direction, is not straightforward.

The 1D scheme can, however, be applied in a time-splitting mode to
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{a)

(b)

Fig. 41.

Convection and diffusion of a step (P

= 50): (a) upstream

differencing, (b) Leith's method, (c) QUICKEST method {in each
case the exact (error-function) solution is showm for reference}.

(Ref. 129)

treat higher dimensions, but the third-order in time would be lost.

The QUICKEST method is extended by Leonard in

exponential, rather than polynomial, interpolation

gradients.

is made as the region of high gradient is entered.

of a step and a Gaussian wave

is still present.

A continuous change from polynomial to

are shown below.

Ref. 130 to use

in regiens of strong
exponentiil interpolation
Examples of convection

Significant dissipation

0.5

cerananar

t=0

B o a mmemees e e e min s

Fig. 42. Monotonic step profile

predicted by the adjusted
QUICKEST algorithm under
conditions of pure con-
vection. (Ref. 130)

Fig. 43.
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Pure convection of an initial
Gaussian profile using the
adjusted QUICKEST algorithm
(Ref. 130)



Han, Humphrey, and Launder (Ref. 98 ) found the QUICK scheme to
be markedly superior to the first-order hybrid scheme. Leschziner
and Rodi (Ref. 131) found the QUICK scheme to exhibit some over- and
undershoots. Both of these applications were to turbulent confined
recirculating flows.

MacCracken and Bornstein (Ref. 137) also represent the flux asg
a time-average using the characteristic equation for the solution. Use
of a linear interpolation polynomial on each grid interval preduces the
flux expression used by Leonard (Ref. 129) without the curvature term,
which is equivalent to the Leith method (Ref, 128),

As in Fromm, Ref. 72, the Lax-Wendroff method in 1D with uniform
velocity can be constructed from the characteristic relation (1), a§
also noted on p. 9.

The scheme results from fitting a quadratic to the three points
£¢i-1, i, i 4+ 1) and evaluating the polynomial at x - uAt. The stencil

then is

This scheme has dissipation and a lagging phase erxor, both of which are
greatest for small wavelengths. If the quadratic is fitted to the point

(1 -2,41-~1, 1), however, the stencil is
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and this method has a leading phase exrror. A scheme with & phase error
an order of magnitude lower can be constructed by averaging these two

schemes, and the stencil then is

The improvement is greatest at the short wavelengths.

In Ref. 124, van Leer generalizes the Fromm scheme to a one-parameter
family of second-order upwind-biased schemes. A third-order scheme
results for one value of the parameter. Another value minimizes the
dispersive and dissipative errors. A two-stage version of this family of
schemes is also given. These schemés, including the original Fromm
methods, involve many more operations than does the Lax-Wendroff scheme.

In Ref. 125, van Leer constructs several second and third-order
schemes that have upwind bias. These schemes are formed by approximating
the solution between each pair of mid-points by a polynomial which matches
the average value of the solution, and perhaps some average derivatives
also, on the interval between the mid-points. This interval between mid-
points, containing one grid point, is called a cell., The solution is thus
represented by separate polynomials within each interval, and is not
necessarily even piecewise continuous. (In Ref. 125 the scheme is
actually formulated to produce new average values of the solution on the
intervals between grid points, so the polynomials are applied between
the grid peints. The present interpolation is used for compatibility
with other schemes in this survey.)

The construction is based on the same exact integral over space and

time given in Eq.(3) and discussed on p.11 . In the present development,
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the time-averaged fluxes are evaluated from the integrals on the far
right as in the construction discussed in connection with this equation.
Here, however, the interpolation polynomial used to evaluate the flux
through each side of the cell is the one formed on the cell to the left
of the side in question.

The basic difference between the present approach and that of Ref, 129
is the use of a compact representation in the present case, i.e., inter-
polation polynomials defined on intervals between two points instead of
over several points. Order is increased in the present case by matching
derivatives, as well as the function, on the same interval, while in
Ref. 129 order is increased by expanding the interval, i.e., fitting the
polynomial to more points. The present approach also interprets the
solution values obtained at the grid points to be averages over the cell.
In all schemes based on flux evaluations from interpolation functions,
the interpolation used can be of one order less than the order of the
method since it is the difference of the fluxes that enters the equation.

The first-order version of the present scheme, formed with a zero-
degree polynomial, is equivalent to the Godunov methed (Ref, 172),
which is labeledthe best first-order method by van Leer in Ref. 124 .

The stencil is

With linear interpolation, which fits some average of the first space
derivatives as well as the solution, several second-order versions of the

scheme result, depending on the Tepresentation used for this average
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of the first derivative. If this average is represented as a central
difference of the average solution values in adjacent cells, then the
method of Fromm (Ref. 71) results (Scheme I here), with the stencil
proo

Another possibility (II) is to represent the first derivative
as a central difference between the solution values on the cell sides,
these values being equal to the solution values at a distance uAt to the
left of the side at the previous time level by the characteristic
relation, Eq. (1). This value, for each side, can be evaluated from
the interpolation polynomial on the cell to the left of the side. This
results in a difference equation for the average first derivative, so

that this quantity becomes an additional dependent variable, with both

stencils of the form ﬂ

This scheme unfortunately has dissipation even at zero Courant numbers.
S$till another possiblity (III) is to define the average derivative
such that the solution and the interpolation palynomial have the same
first moment in each cell, i.e., 50 that the difference between the solution
and the interpolation polynomial is minimized in the least-squares sense
over the cell. Again the derivative becomes an additional dependent
variable with the same stencils given above for scheme II,
Third-order methods are obtained by using a quadratic interpolation
polynomial fitting some average of the second -space derivative as well.
One third-order scheme (IV) is obtained by representing this average
second derivative by a central difference using the average solution values
in the adjacent cells, with a similiar representation for the first

derivative as usual above.
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This scheme has the stencil

H ]

by

In another scheme (V) the second derivative is chosen such that the

interpolation polynomial matches the solution at the cell sides. 1In
this case the polynomial representation of the solutdion is piecewise
continuous. In this form thesolution at the cell sides becomes an
additional dependent variable, the difference equation for which is
obtained from the characteristic relation as done above in connection
with the representation of the first derivative in terms of salution
valﬁes on the cell sides. This Lepresentation of the first derivative

is, in fact, again used in this form. The stencilg are

Finally, in analogy with Scheme IIT above, the second derivative

can be chosen so that the solution and the interpolation polynomial have
the same second moment over the cell, with the first derivative chosen
as in Scheme III. Here both derivatives become additional dependent
variables (VI).

Since upwind-biased methods have maximum dissipation for Courant
number-% » the dissipation of these schemes is compared here at that
Courant number in the figure on the following page,.

In this and the next figure the semi-circle is the ideal. The

rhase error vanishes for a Courant number of %3 and therefore the
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0 B5 1] -1 10

Short Long
Fig. 44. Dissipation in schemes I-V. Polar plots of the damping
factors per time step |gl,IV},|gl!| and lg3" 27| as a function
of the wavenumber o = 2mAxf of the wave, for Courant number %.
(Ref. 125)

schemes are compared in this regard at a Courant number of zero in

the next figure.

Fig. 45. Dispersion in schemes I - V. Polar plots of the ratios mI,
wII, WwrITV and wlV of numerical and exact convection speeds
as a function of o, for vanighing Courant number. (Ref. 125)

These figures show that the second-order schemes I and II, and the
third-order scheme IV, have very large dispersion. In fact, this third-
order scheme is worse than the two second-order schemes. Schemes I and
IV also have large dissipation which would damp out much of the
dispersion, so that these schemes might be fairly smooth but inaccurate.

These two schemes are also the least compact of the six schemes considered.

Scheme II has less dissipation, but the large dispersion would render it
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inaccurate., As noted above, this scheme has some dissipation even for

zexo Courant number. These three schemes are thus unsatisfactory. The

second-order scheme .IIT, however, approaches the third-order scheme V in.

accuracy, and both of these schemes have small dispersion and dissipation.
These comparisons show that order alone is not a complete measure

of accuracy. Scheme V is somewhat more accurate than scheme IIT and

requires about the same number of operations., Scheme VI is somewhat

more accurate but is more complicated as well, Therefore scheme V

is the best of the six schemes. A comparison of the comvection of a

triangular wave by schemes I and III is given in the figure below

Fig. 46. Convection of a triangular wave by Scheme I (top row)
and Scheme IIT (bottom row). No monotonicity
enforced. (Ref 125)

Scheme II is applied by van Leer in Ref. 124to a system of
equations, in what may be regarded as a second-order sequel to the
Godunov method. This code is named MUSCL, for Monotonic Upstream-
central Scheme for Conservation Laws. The results of this code for

the shock tube problem are shown on the following page.
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Fig. 47. Exact solution (line) and cell averages (circles) of p, u, p
and e obtained with MUSCL (Eulerain) for the same exploding
diaphragm problem as used by Sod. Initial values: u = 0
p=p=1for x < 0.5 p = 0,125, p = 0.1 for x > 0.5; y = l.4.
Courant number 0.9; Ax = 0.01. Output after 34 time steps at
t = 0.14154. (Ref. 124)
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Multi-Stage Methods

Gottlieb and Turkel, Ref. 84, construct two two-parameter generali-
zations of the two-stage Lax-Wendroff method which are fourth-order in
space and second-order in time. The largest Courant number allowed
for any value of the free parameters is about 0,731, which is only
slightly larger than that of the Kreiss-Oliger stcheme (Réf. 118) of the
same order. One of these schemes is of the Richtmyer form with the 1D

stencil

R R e

and the other is of the MacCormack form:

H

This form is fourth-order when the directions of the differences are
alternated at successive time levels,

These fourth-order space methods have about the same amount of
dissipation ag the analogous second-order methods, but the phase error
is significantly reduced for sufficiently small time steps. Some direction
is given as to the choice of the free parameters to increase the stability
limits er to decrease the dissipation and/or phase error. With these
schemes the phase error decreases with the time .step.

The dissipation can be reduced to sixth order by alternating these
schemes with the Kreiss-Oliger fourth-order space scheme (Ref. 118 ). This
alternation of schemes can be considered to be a three-stage scheme,

with the Kreiss-Oliger third Stage having the same stencil as the second
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stage shown above.

Some results for a sine wave are shown below:
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The phase error of this scheme is considerably better than second-
order methods and is comparable with Kreiss-Oliger. The dissipation
is alsc much less than with the lower-order methods.

A 2D form is also constructed but as a three-stage method with
This scheme has nine free

the stencils shown on the following page.

parameters, and no complete choice is given.
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Burstein and Mirin (Ref.35) note that the multi-stage methods
involving successive evaluations of the flux vectors at intermediate
levels are of the Runge-Kutta class. Such a third-order method is
given, having one free parameter. Each stage here is a consistenkt

approximation to the time-dependent equations. One three-stage version

has the stencils

Rusanov (Ref. 183) gives a third-order scheme using three stages

with the stencils
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Here each stage is a consistent approximation, to first, second, and
third order. The method has two free parameters. A 2D version is also
given. This scheme is equivalent to that of Burstein and Mirin (Ref. 35).

Abarbanel and Gottlieb, Ref. 3, give a general formulation for
constructing schemes of order p + 1 and p + 2 in space and time for the
equation, W, + fx = 0, if a scheme of order p is known. From this
result, a general multi-stage scheme of any desired order is constructed
for N dimensions. Both explicit and implicit schemes are included in
the general formulation. This general scheme is said to include all
finite difference schemes presented thus far for one and two dimensions,
and several examples are given. The number of stages is equal to the
order. Written as a one-stage method the even order schemes would involve
2M + 1 gymmetrically placed grid points, where M is the order, and 2M + 2
symmetrically placed mid-points for odd order. Extensions to higher
dimensions are also given. For the explicit schemes, stability requires
that the Courant number not exceed 1/N, where N is the number of
dimensions, for even order, and 1/2N for odd order. A significant
feature of this multi-stage formulation is that each stage is a valid
approximation to the solution.

Reddy in Ref. 165 follows a similar approach to construct a scheme
of order p + 1 in space and time if a scheme of order p is known, but
involves the Jacobian matrix of the flux as well, while Abarbanel and
Gottlieb (Ref. 3) used only the flux itself. The stability criteria,
aumber of points and stages required are the same as that in the formu-
lation of Abarbanel and Gottlieb, but fewer flux evaluations are required.
One specific third-order scheme and two fourth-order schemes are given.

The convection of a sine wave by these three schemes and a fourth-order
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scheme of Abarbanel, Gottlieb, and Turkel (Ref. 4) is compared in the
figures below.
10
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Fig. 52. Solution to Problem 3, using scheme I, at t = 10.0125,
&% = 1/40, At/Ax = 0,45, (Ref. 169)
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Fig. 53. Solution taq, Problem 3, using AGT scheme, at t = 10.0125,
Ax = 1740 At/ix = 0.9. (Ref. 169)

91



Fig. 54.

Fig. 55.
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Ax = 1/40, At/Ax = 0.9. (Ref. 169)
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The improvement of the quality with order is evident in a reduction
of both dissipation and dispersion. The results for the three
fourth-order schemes are nearly the same.

Turkel, Abarbanel, and Gottlieb (Ref. 216) give a four-stage

scheme that is fourth order in both space and time, with the stencils
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Here the first three stages are first order. This scheme contains
eleven free parameters, and no procedure for selection is given.

This fourth~oxrder scheme was found to give accuracy equal to that
of second-order schemes, while using only about 1/25 as many points for
the 2D wave equation. The fourth-order scheme is twice as fast as the
leapfrog scheme for the same accuracy.and 60 times as fast, with less
storage, than the rotated Richtmyer scheme (Ref. 1224} . This advantage
is expected to even improve for more complicated equations, as the time
required for evaluation of the fluxes increases. This occurs because
fluxes calculated in the early stages are used in all the remaining stages.
For the same accuracy, the present scheme requires fewer flux ewaluations
than the Kreiss-Qliger scheme (Ref. 11}),Ehat is fourth order in space
but only second order in time and about the same number as pseudospectral
methods. The latter, however, require Fourier expansion. The fourth-

order scheme is more efficient also as the error tolerance decreases or
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at higher frequencies. This present method was more efficient than

the Kreiss-~Oliger fourth-order space, second-order time scheme {Ref.

112) in each of these situations. An advantage of equal order in space
and time is that the error decreases as the time step increases, while in
schemes with unequal order the error has a minimum at some time step.
Time step selection is thus more simple with equal order. This method
does have dissipation, and decreased the amplitude of a rotating cone by
about the same amount as did the Arakawa fourth-order space, second-
order time scheme, and less than second-order schemes, though more than
do pseudospectral methods. Both the phase error and dissipation decrease
with the present method as the time step increases.

Khaliq and Twizell (Ref. 111) construct higher-order methods in
time by combining the results of a lower-order scheme applied twice over
two time steps and once over a double time step to eliminate the leading
term in the.truncation error of each.

Compact Methods

Compact methods are based on interpolation pelynomials which match
solution derivatives, as well as solutiontvalues, at certain points.
Within this category aremethods based directly on Hermite interpolation
polynomials, methods using Pade difference approximations, and spline
methods. All of these approaches are ultimately equivalent.

Hermite Methods

Fischer, Ref. 68, also uses the characteristic approach (p.8 )
with uniform velocity, but with a cubic Hermite interpolation polynomial
fitted to each grid interval, thus fitting both the solution and its
gradient at the end points of the interval. Again the schemes have the

same temporal and spatial order with uniform velocity. Here the gradient
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is treated as an additjonal dependent variable. With uniform velocity,
we have

(40, +uld), = 0 %)

50 that the gradient is convected in the same manner as is the solution
and, therefore,

¢x(x, t + At) = ¢x(x - ult, t) (5)

Thus the gradient at each grid point at the new time is equal to the
value at the upstream point (x - uAt) at the previous time level, as
is the function itself,

This upwind-biased scheme is constructed by expanding the function,
and its gradient, at this upstream peint in a Taylor series about the
grid point i at time t. Second and third derivatives in this expansion
are evaluated by differentiating the interpolation polynomial. This 1s
equivalent to evaluating the solution from the interpolation polynomial
evaluated at this upstream point, and the derivative from the derivatiwe
of the polynomial evaluated there. Schemes up to third-order can be

obtained using the cubic polynomial. These schemes are compact, with

11

Results for convection of altriahgular wave are shown on the following

the stencil

page for first, second, and third-order versions in comparison with

the Fromm scheme, Ref. 71.
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Fig. 56, Numerical convection results, C = 0.1, 240 steps. Peak at
X - 34: exact solution. Bold: Fromm's method. Dotted:
present method, second-order. {Ref. 68)

80

Fig. 57. Numerical convection results. C = 0.1, 240 steps. Peak at
x = 34; exact solution. Bold: Fromm's method. Dotted:
present method, third-order. (Ref. 68)
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The conservative version of the present scheme referred to in the above
figure involves an ad hoc correction that is applied to the solution at

each time step to bring the change in a cell into exact balance with the

net flux into the cell. The improvement with order is evident, and these
schemes are less dissipative than the Fromm schéme. However, the dissipation
is still significant and some oscillations are present due to phase error,
The results for the third-order scheme improve with increasing Courant
number, as do those of the Fromm scheme, as is seen by comparison of the
following figure with that above. (The first- and second-order versions

are unstable at this Courant number.)

25 30 35 40 x

Fig. 58. Numericdl convection results, C = 0.8, 30 steps. Peak at x = 34,
exact solution. Thin; Fromm's method. Dashed: present method,
third-order. (Ref. 68)
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Essentially this same approach was used by Holly and Preissman,
Ref. 104, but the method is mislabeled fourth order, when it is actually
third order in space and time for uniform velocity. Comparisons of
representation of convection of a Gaussian by this and other methods

are seen in the figure below.
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Fig. 59. Calculations of one-dimensional advection of Gaussian
distribution using several methods: (a) Two-point
fourth-order; (b) Martin (3) n = 2; (c) Martin (3)

n = 3; (d) Martin (3) n = 4; (e) Leendertse (2).

The Martin schemes (Ref. 14I) used here are second, third, and fourth-
order schemes in space, which for pure convection are formed simply by
using the appropriate order representation of the gpatial derivative.

The superior phase quality of the present compact scheme is evident,

even in comparisﬁn with the third and fourth—order non-compact schemes.
Also evident here is the general superior phase representations of schemes

with an upwind bias, i.e., the Martin third-order as well as the present
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scheme.
An extension to nonuniform velocity is also given as follows:
With nonuniform velocity, the velocity appearing in Eq. (1) is taken
as the average of the velocity, u, at the peint (x,t) and that evaluated
from the interpolation polynomial at the point (x - udt, t). Also
Eq. (4) is replaced by

(b +ulo), +6u =0 (6)

X
u - u
I*i———i:l) , where ¢_ is
B L S PG ®

evaluated from Eq. (5), but using the average velocity obtained above.

and the last term is approximated by ¢

This procedure amounts to a single iteration of a complete representation
of the effect of the nonuniform velocity. An example of convection of a

Gaussian through a nonuniform velocity field is given below.
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Fig. 60. Calculation of one-dimensional advection of Gaussian distribution

through zone of nonconstant velocity, two-point fourth-order method.
(Ref. 104)
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Diffusion is added in a time-split manner, the solution being first
convected and then diffused. An extension to a fifth-order scheme (mis-
labeled sixth-order) is also cited, using a2 quintic Hermite interpolation
polynomial on the interval [i - 1, i], fitting the second derivative at
the end paints as well. In this case the second derivative is added as
a third dependent variable. An extension to 2D is also noted using the
solution, its two first derivatives, and the cross-derivative at each
point on a cell as the dependent variables.

Huffenus and Khaletzky (Ref. 106) note that the simple addition of
1D methods is not consistent. Bad results for 2D convectiom of a
trapezoid with this approach are shown below for two schemes that perform

very well in 1D:

1,0

(Y]

Third-oxder

140

[+1%:]

Fig. 61. Two-dimensional test problem: 1 — FTUS3 uncoupled.
2 ~ Akima uncoupled. (Ref. 106)
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The improvement gained by using 2D interpolation polynomials amalogous
to those used in 1D versions is evident in the figure below for the 2D
extensions of.the methods of Holly and Preissman (Ref. 104), Akima (Ref. 10),

and the third-order method of Davies (Ref. 58):

Third-order

045

-]

Fig. 62. Two-dimensional test problem: 1 - Transport of the derivatives,
2 - Akima, 3 - FTUS3. (Ref. 106)

These extensions are expensive, however, because of the large number of
coefficients in the polynomials. Also the extengion is not complete, in
that not all of the features of the 1D version are analogously {ransferred
to the 2D version. For instance the 2D version of Holly and Preissman
uses the two first derivatives and the cross-QErivative in the inter-
polation polynomial, but not the two second derivatives.

The present referencg proposes a polynomial fitted to the
x-derivative at i and i - 1, the y-derivative at jand j - 1, and the
solution at the four corners of the cell formed by these points (and
the point i - I, j - 1). The polynomial is a bi-cubic without the cubic

cross term. Results are shown in the figure on the following page.
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Third-order

Fig. 63. Two-dimensiomal test problem: 1 - Akima simplified,
2 - FTUS3 simplified. (Ref. 106)

This scheme requires fewer operations than the meore complete 2D schemes
cited above.

Hermite interpolation polynomials were used in a finite element
approach by Sobey, Ref. 190, using rectangular space-time elements. It
is argued that increased nodal continuity gives better results than does more
nodes. It is antdicipated that the extension to the continuity of second
derivatives alsoc is beyond the point of diminishing returns in regard to
accuracy and complexity, since such higher-order representation increases
the operations by an order of magnitude. Results for phase and for elements
including (1) only the solution values and (2) the first space derivative,
(3) the first and second space derivatives, (4} the first time derivative,
or (5) the first space and time derivatives are compared in the figures

on the following pages.
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The phase error increases with the Courant number except when the

time derivative is included. The complete Hermitian element (3) using

both the space and time derivatives clearly has the least dispersion,
and the dispersion is relatively insensitive to the Courant number.
The dispersion of the elementsusing only the spatial derivatives is
moderate for Courant number of 1/2, but excessive for larger values. The
element using both of these derivatives has the lowest dissipation.

The dispersion is greatest with the elements that do not use any space
derivatives. These elements also have the'greétest dissipation for the
five-cell wavelength, thus indicating the importance of spatial order in

reducing dispersion, The inclusion of the time derivative alome has little

effect on the phase error.
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The inclusion of the second space derivative as well reduces the
dissipation but has less effect on the dispersion, while the inclusion of
the first derivative evoked a marked change from the linear case. Inclusion
of only the first time derivative, however, had little effect except to
remove the dependence of the dispersion on the Courant number, but the
inclusion of the time derivative was much more effective when the first
space derivative was already in use. It appears that all of these
schemes, except that using both space deriviatives, would have stability
problems with short wavelengths.

These schemes are compared in regaxd to convection of a Gaussian wave

in the figure below:
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(cV+1 nodal continuity) (d) Element 5 (C!-I nodal continuity)

(Ref. 190)

The element using both.the space and time derivatives is clearly superior.
Adding the time derivative alone has little beneficial effect, but adding
the time derivative to the space derivative has a significant effect.
Adding the second space derivative had little effect.

Agarwal (Ref. 8) uses a symmetric compact fourth-order expression
for the first derivatives, which amounts to fitting the solution and its
derivatives on three points with a Hermite quintic polynomial. The
derivative then becomes.an additional dependent variable, Adam (Ref. 6)
constructs fourth-order methods using Hermite interpolation. Although
both of the derivatives become additional dependent variables, the second
derivative is analytically eliminated to reduce the size of the system.
Krause, Hirschel, and Kordulla (Ref. 116) give a fourth-order method based
on Hermite interpolation. Application is made to 3D turbulent boundary
layers. Hermitian polynomials are used by Thiele in Ref. 208 for boundary-
layer equations.

Watanabe and Flood (Ref. 220) use fourth-order central expresaions

for the spatial derivatives. The method is formed from Eq. (II-23) using
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Simpson's rule for the integration, i.e., using a quadratic to represent
the integrand on the interval At. This introduces the value at the

intermediate time level, n + 1/2, which is obtained from a cubic Hermite
polynomial on the interval over At. The resulting implicit scheme has two

stages with the stencils

7
4
-

and is fourth order in time and space. Being implicit, the method is
unconditicnally stable.

Chin, Hedstrom, and Karlsson (Ref. 45) construct higher-order schemes
of the method-of-~lines type by integrating the differential equation in
space as on p. ll. Representation of the integration by Simpson's rule
gives a fourth-order three-point method. Methods of higher order are
obtained by expanding the range of points in the interpolatiocn for the
integrand. Sixth and eight-order forms, involving five and seven points,
respectively, are given.

In a series of papers, Ref. 198-200, Steppeler constructs second and
third-order symmetric schemes based on polynomials that match some derivatives
as well as the solution. The procedure is somewhat complicated in both
construction and operation’and'producés the solution alternmately at grid
points and at mid-points between grid points at successive time levels.
Time advancement is by the usual Taylor series expression. of the solution
at the new time level about that at the previous level, with the time
derivatives in the series replaced by space derivatives through repeated

differentiationof the differential equation. Similar Taylor series are
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used to give the first three spatial derivatives at the new time level in
terms of derivatives at the previous level.

To start with, the solution is represented on each interval bounded
by grid points by a polynomial fitted to the solution at the grid points
and to the second and third derivatives at the mid-point.. The values of
the solution and the first derivative at the mid-point are calculated
from this polynomial and its derivative. The solution and its First
three derivatives are then calculated at the mid-point at the new time
level from the Taylor expansions. A spatial Taylor series expansion of
the solution at the new time level about the mid-point is then given in
terms of the new solution and first three derivative values obtained at
this point. The solution at the new time level is also represented on
the intervals bounded by mid-points as a polynomial fitting the new
solution values at the mid-points and the as yet unknown new second and
third derivative values at the grid points. These new derivative values
at the grid points are then deﬁérmined to minimize the least squares
integrals of the difference between this polynomial and that from the
spatial Taylor series about the mid-points on the intervals bounded by
the mid-points, and similarly to minimize the integral of the difference
between the first derivatives. This completes one time cycle, with the
solution now represented on each interval bounded by mid-points by a
polynomial fitted to the solution at the mid-points and to the second and
third derivatives at the grid points. Successive time steps then alternate
from intervals between the miaQ;oints to intervals between the grid points.
This alternation introduces a smoothing into the solutiom.

The stability limitation is to Courant nuﬁbers less than 0.5 in the

first-order case, 0.24 for second-order and 0.22 for third-order. A
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major disadvantage of this approach is that dissipation occurs even for

zero velocity.

In fact, the dissipation increases as the Courant number

decreases, and is largest for a Courant number of zero. The second-order

scheme exhibits an extremum in the phase error at a wavelength for which

the dissipation is less than its maximum.

The phase error at the larger

wavelengths increases as the Courant number decreases.

These trends are illustrated in the figures below:
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Relative phase velccity and
damping factors for first-
and second-degree method.

(a) Relative phase velocity
¢/c, of second-degree method.
(b) Damping factor An+l/An of
second-degree method,

(c) Relative phase velocity
C/C_ of first-degree method.
(d) Damping factor A llAn
of first-degree methoﬁ.
(Ref. 200}

Damping factors (above) and
relative phase velocities
(below) for the third-degree
method, corresponding to the
first eigen-value.

(Ref. 199)



Both the phase error and the dissipation decrease as order increases,
and with the third-order scheme the extremum in the phase error is
shifted to lower wavelengths where there is more dissipation, Also, the
phase error and the dissipation both decrease with the Courant number

at larger wavelengths with third order. There remains scme dissipation
at zero velocity, however. The third-order scheme is twice as expensive
as the second. That the dissipation in these schemes is significant

is illustrated in the next figure showing convection of a triangular wave.
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Fig. 72, Solution of the linear advection equation with positive initial
values, N, number of timesteps; —-———- » second-degree method;
—, third-degree method. (Ref. 199)

The dramatic improvement obtained with the third-order method is evident

in the figures on the following pages, showing convection of a two-cell

wavelength wave train.
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Fig. 73b. Third-degree method.
The 2D case is treated in Ref. 199 by alternating between cells
with grid points for corners and cells with center points of the original
cells for corners. Certain terms are neglected in 2D.
The dissipation is reduced in Ref. 19§ by alternating the third-
order time advancement procedure between the Taylor expansion used in
Ref. 199 and a third-order leapfrog procedure. This latter procedure

uses three time levels, and eliminates one averaging of the solution
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between grid points that occurs in the former procedure. The stability
limitation is now Courant of 0.3, and the phase error is slightly greater
than the original third-order scheme of Ref. 199. With this scheme the
dissipation has, unfortumately, also been reduced at the small wavelengths
where it is needed. It was, in fact, necessary to introduce some additional
smoothing by using the original form omce in each five time steps in a
2D shallow water wave problem.

On the whole, these schemes seem to be too cumbersome to be considered
for general codes.

Pade Difference Methods

Harten and Tal-Ezer, Ref. 97, give higher-order generalizations
of the Crank-Nicholson implicit method, based on the time integration on
p. 10, that are nondissipative and unconditionally stable in the linear
sense. The usual Crank-Nicholson scheme is constructed from Eq. (II-23)
by approximating the integrand with a linear fumction. Spatially second
and fourth-order schemes can be obtained using the following difference

representation of fx:

-1 2
£, = Axu6f+0(Ax) (7a)
L _ ué 4
£ = % 62f+0(Ax) (7b)
I+?

Both of these expressions can be cbtained by differentiation of inter-~
polation polynomials - a quadratic fitted to the function at the points
(i -1, i, 1 + 1) in the first case,and a quartic fitted to the function
at these three points and to the derivative of the function at the points

(i -1, i+ 1) in the second case. The stencil for both schemes is of
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the form

The schemes are linearized to second order in time by expanding

fn+l about £ as

n+l n+l

£ 2 £ b A™T C ) 4 ocatd

where A is the Jacobian matrix of f with respect to ¢. Both schemes
remain second order in time under this linearization. The difference
equations then are linear and are block tridiagonal in form. The first
scheme is second order in space, while the second scheme is fourth order.
Both are second order in time.

A scheme that is fourth order in both space and time is obtained by
using a Hermite polynomial (cubic in this case) for the integrand. The

fourth-order expression of (7b) is used for f , and the second-order expression

(e,), = é §(usp) + 0(ax?) (8

is used for the product derivative. The stencil is again as given above,
In order to preserve the fourth order in time, the linearization must be
done about some second-order accurate approximation of the new time solution
instead of about the old time solution as in the previous case. The
result is again a linear block-tridiagonal system of difference equations.
The linear stability and order of accuracy do not depend on the intermediate
second-order approximations of the solution, which may even be calculated
from a scheme that is unstable in itself.

In contrast to the above two second-order time schemes, which are

unconditionally stable, this fourth-order time scheme is stable only for
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Courant numbers less than unity. It was found that the expansion of the
difference representation of the product derivative in (8) to five
points,i.e.,

(o) = Z;l? HE@uds) + 0 (ax") (9)

improved the stability, but at the cost of a pentadiagonal, rather than
tridiagonal, matrix so that no real gain in efficiency is realized. The

stencil is now of the form

This form alsc has a larger truncation error, though still of fourth
order. A two-step version is also given in which the derivative, fx’

is evaluated in the first step from a tridiagonal solution of {7b),.and then
is used directly in the solution of the difference equation, which, with
this derivative known, is also tridiagonmal. This is essentially a spline
approach. Hirsh (Ref. 101) uses the Pade forms to comstruct higher-order
three-pocint spatial approximations, each derivative becoming an additional
dependent wvariable.

Spline Methods

The spline approach is taken by Rubin and Khosla in Ref. 179 to construct
compact methods. Here the solution is represented by cubic splines on
each grid interval, with the effect that the higher derivatives become
additional dependent variables. The scheme is fourth order on uniform
grids and third order on nomuniform. It is noted that the approaches based
on splines, Hermitian interpolatiom polynomials, and Pade approximants
are all equivalent.

Rubin and Khosla (Ref. 180) give a number of spline representations
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and discuss the relationship with Hermite forms. It is noted that all
of the results obtained by the Hermite (Pade, Mehrstellen) development
can also be reached with appropriate spline forms. Some of the Hermite
forms are equivalent to representations using different spline forms for
different derivatives. Others require spline-on-spline representations.
Although the overall representations are equivalent, the spline approach
provides certain relationships between derivatives that are not shown by
the other developments. The spline representations alsc .carry over to
nonuniform grids while the others do not,

Rubin and Graves ( Ref. 178) construct spatially fourth-order schemes,
with second-order time, using cubic splines. The spatial order drops to
third for nonuniform grids. The inclusion of diffusion also drops the
spatial order by two. The oscillations due to large cell Reynolds numbers
were reduced. Cubic splines were used by Price and MacPherson in Ref. 166 .

Holla and Jain (Ref. 103} use cubic splines as the interpolation
function to construct compact implicit schemes that are second order
with three free parameters or third order with one free parameter. These
schemes involve a weighted average of the fluxes between true time steps
and hence include a scheme of the Crank-Nicholson type. Also ineluded is
the scheme of McGuire and Morris (Ref. 144). The schemes are dissipative

of order four. The schemes operate in two stages with the 1D stencils

117



Extension to 2D is by time-splitting.
Pepper, Kern, and Long (Ref. 160) compare a compact fourth-order
scheme based on cubic splines with a Galerkin linear finite element

scheme. Both schemes use second-order Crank-Nicholson time differencing.

The results for rotation of a cosine hill are shown below:

b. Isometrit View

Fig. 74. Cosine hill distribution of concentration. (Ref. 160)
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Concentration after 4-3/4 revelutions using (a) cubic splines

= 2500 m. (Ref. 160)
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With nonuniform grids, the noise was greater with the finite element

scheme. The noise oscillations are more localized near the cosine hill with
the spline scheme. The finite element scheme tends to spread the noise

over the entire field. The methods were also applied to a pollution
dispersion problem,

Operator Compact Methods

In Ref. 50, Ciment, Leventhal and Weinberg construct implicit schemes
based on a tridiagonal relationship between the solution and the spatial
operator at three adjacent points ineach direction. Such schemes are
referred to as "operator compact implicit" methods. The use of the entire
spatial operator, rather than the separate derivatives, in the construction
produces schemes which are point-tridiagonal, rather than block-tridiagonal
as results from schemes censtructed simply by replacing the individual
derivatives with compact difference expressions based on Hermite polynomials.
The boundary conditions are more easily represented also using the full
operator, since values of the individual derivatives are not required.
The schemes are fourth-order in space on a uniform grid, and third-order
on a nonuniform grid. The schemes given by Peters (Ref. 162) and Krause,
Hirschel, and Kordulla (Ref. 116) ére of this class, as are the "mehrstellen"
methods of Collatz (Ref. 52).

Two second-order time discretizations are given, the Crank-Nicholson

form with the stencil
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and the three-level Lees form with the stencil

Both of these forms are stable for all time steps provided the cell
Reynolds number does not exceed ¥12 . The Crank-Nicholson form is
nonlinear, but the Lees form is linear since the coefficients in that form
are evaluated at the previous time step. The nonlinear Crank-Nicholson
form is solved by approximate factorization. Both forms were found to
converge to a steady state at about the same speed for the parabelic
problems considered.

It is noted that the block-tridiagonal compact schemes referred
to above do not satisfy a reasonable stability requirement, but at low
cell Reynolds numbers no dominate oscillations occur. This is a potential
problem for such methods, though.

Leventhal (Ref. 132) derives an integral identity relating the
solution values and the values of the inhomogeneocus term of the convection-
diffusion equation on the points (i ~ 1, i, i 4+ 1). This tridiagonal

relationship is

te o a

— c =
11 = Yfag Y4 Pty &

r+h
i i+l

+rlu, +ru
i1 1
+ - . . .
Schemes with nonzero 9 and q; are implicit. The expressions for the
coefficients involve exponentials of integrals of the functions a(x) and

b(x),and. integrals of f(x), on the interval [xi—l’ I. If the functions

i+l
a{x) and b{x) are approximated as constants, a; and bi’ on this ianterval,
and the integrals of f(x) are evaluated by the mid-point rule, the explicit

first-order method of Allen and Southwell (Ref. 11) results. If a, b, and
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f are taken to be piecewise constant in [xi—l’ xi+l]’ with the values
in {xi_l, xi] represented by the averages of the grid values, etc., the
second~oxder implicit method of El-Mistakawy and Werle (Ref. 66) is
obtained.

The present scheme is developed by taking z and b to be piecewise
quadratic on [xi—l’ xi+l]’ i,e., in {xi_l xi],‘a(x) is represented by

>

a quadratic fitted tothevaluesek_l, ai_%, ai, etc. The integrals are
evaluated by Simpson's rule. The resulfing implicit scheme is fourth
order in smooth regions and second order at shocks. This scheme can be
extended to conservative form, i.e., (bu)x instead of bux, to time-~
dependent equations, and to two dimensions. The time-dependent form is
constructed using conventional differencing in time, and the version given
is in the second-order Crank-Nicholson form. This scheme is in the .class
of operator compact implicit methods, and is expensive because of the
evaluation of expomentials in each of the coefficients, The scheme is

being applied to reservoir simulation.

Local Solution Methods

Although most methods use interpolation functions of some general
type in the constructionof difference representationg, some schemes
use functions obtained as local solutions of the partial differential
equation. These local solutions are derived by holding certain quantities
locally constant to obtain a form that can be integrated. The use of such
functions that have a close relationship to the solution naturally leads
to greater accuracy, but these functions often involve exponentials or

the like which are expensive to evaluate.
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Khaliq and Twizell (Ref. 111) use a local solution in time, assuming
constant velocity, and approximate the exponential of the spatial
difference cperator by Pade approximants. The spatial difference
operator was taken to be the second-order central difference in all
cases considered. The (1,0). Pade approximant produces the familiar

first-order time implicit scheme:

TIT

b i I

while the (1,1) Pade gives the second-order Crank-Nicholson scheme

The (2,0) approximant gives the following scheme also with temporal

-

71

second order:

and the (2,1) Pade gives the second-order scheme

Finally, the (2,2) Pade approximant yields the temporal fourth-order scheme;
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In this work these schemes were formulated to be extrapolated to
higher temporal order by combining the results of a scheme applied twice
over two time steps,and once over a double time step, to eliminate the
leading term in the truncation error. This process yields a second-
order method from the first-order method with the (1,0) Pade approximant
above. From the three second-order schemes above, f.e., the schemes using
the (1,1), (2,0) and (2,1) approximants, this process produces fourth,
third, and fourth-order methods in time, respectively., The fourth-order
scheme above from the (2,2) Pade, leads to a sixth-order time methad.

Local solutions are also used by Roscoe, Ref. L76, for a convection-
diffusion equation. Here the difference representation of the differential

operator

is taken as

Mx(lL - e

where E is the shift operator. An anlogous operater is applied in each
direction with multiple dimensions. This difference representation is
expensive, because of the exponentials, but it can eliminate the oscillations
that occur with covention representation, as is illustrated in the
figure on the following page.

The exponential operator compact schemes of Leventhal, Ref. 132, are
also based on local solutions in space through the integral idéntity formed

from the differential operator.
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Fig. 76. Solution of equation (4.1) with ¢ = 750 and ¢(0) = 0, ¢(1) = 1.
The BDR and FDR are extremely poor, the CDR is good about x = 0.5,
and very poor elsewhere. The UDR gives excellent results everywhere:
® , Central difference solution: [], true solution and the UDR
solution: -—— , backward difference solution; —-——, forward
difference solution. (Ref. 176)

Chien, in Ref.43, includes a coefficient in the overall spatial
difference expression for a 1D convection-diffusion equation, and
evaluates this coefficent such that the difference expression will be
exact when the velocity is constant on the interval spanned by the
differences. In a similar fashion, a coefficient affixed to the
first—-order forward time difference expression is evaluated to make the
difference equation be exactly satisfied by the amalytical solution of am
approximation of differential equations in which all of the off-center
terms in the spatial difference expression are included in source
term, which is considered constant in time.

In actual computation, approximate truncated expansions of the
exponentials are used to aveid the computation time required to evaluate
the exponentials. The use of such difference expressions based onlocally
exact solutions removes the stability limitation normally associated with

explicit methods. In the case of nonuniform velocity the accuracy remains
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only second-order, however, and second-order artificial diffusion is
introduced that is proportional to the velocity gradient.

In higher dimensions, with no cross-derivatives, the abovg 1p
spatial difference expression is applied in each direction using the
corresponding velocity component and spacing interval. Results are
given for several 2D flow problems which show that Courant numbers in
excess of unity can, in fact, be used. There is no improvement in
accuracy, however, so that the use of locally exact solutions is primarily
a device to improve stability of explicit methods;

A type of local solution is given by Kellogg, Shubin, and Stephens
in Ref..109 for a convection-diffusion equation. This scheme incorporates
the local solution in the difference coefficients of the diffusion_term
and hence is not relevant ﬁo pure convection. Like the first-order upwind
scheme, and unlike the central scheme, this second-order scheme does not
have a cell Reynolds number restrictiom.

Spectral and Pseudospectral Methods

Orszég (Ref. 154) notes that the primncipal source of inaccurate
results with finite difference schemes is phase error, and that accurate
spatial differemcing is the prime requirement. In spectral methods,
the solution is expanded in Fourier series, and the Galerkin approach is
used to solve the equations numerically. These methods are essentially
of infinite order in gpace, and thus have essentially no phase error.

Comparisons are made with the second and fourth-order Arakawa finite-

difference methods on the revolving cone problem:
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Fig. 77. Three-dimensional (x;, x3, A) perspective plot of the A(x,t)
field obtained after revolution using (a) second-order Arakawa
scheme on 32 x 32 space grid; (b) fourth-order Arakawa scheme
on 32 x 32 space grid; (c)} fourth-order Arakawa scheme on 64 x 64
space grid; (d) cut-off Fourier-expansion scheme 32 x 32 space grid.
(Ref. 154)

The spectral method here used second-order leapfrog differencing in time.
The reduction that occurs in both phase error and dissipation with
increased order is clearly evident here. The spectral method is superior

to the fourth-order finite difference method on twice as many grid points
in each direction. Second-order methods require twice as many points again.
The stability limit of the spectral method is %—for the Courant number,
whereas those of the second and fourth-order methods are 1.0 and 0.73,
regpectively. The spectral methods thus require more time steps and more

work per time step.
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Pseudospectral and spectral methods are compared by Fox and Orszag
in Ref. 75. Pseudospectral approximation uses truncated spectral series
to obtain approximations to derivatives and imposes the differential
equation at selected discrete points. Spectral approximation attempts to
distribute the error more uniformly by making the error in the differential
equation orthogonal to the retained spectral functions.

Gazdag (Ref. 77 ) constructs a pseudospectral scheme of very high
order in space by expressing the spatial derivatives in terms of Fourier
transforms of the solution. The explicit method is based on the usual
Taylor series expansion of the solution at the new time level about that
at the previous level, with the time derivatives expressed in terms of
space derivatives through repeated differentiation of the differential
equation., In this scheme the velocity is not assumed to be uniform, so
that spatial derivatives of the velocity appear as well. The time order
is determined by the extent to which the Taylor series is taken.- The
spatial order is essentially infinite,

The dissipation and the phase error generally decrease as the temporal
order increases, Convection of a Gaussian through one complete rotation
reduced the peak by 0.18% for the third-order method and by 0.11% for the
fourth. TIn neither case were the trailing oscillations greater than 0.005%
of the peak in amplitude, as seen in the figure on the following page.

Diffusion can be included either by time-splitting, where the solutiomn
is first convected and then diffused, or directly, with the diffusion terms
being included in the differential equation when expressions of the time
derivatives are obtained by repeated differentiation. The latter procedure

is more accurate, especially for large diffusion coefficients.
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Fig. 78. Perspective view of the Gaussian distributionin Experiment 1 of
Table I. (a) At w/2, (b) At 7 turn from its initial position.
The mesgh size is 32 x 32. (Ref. 77)

The Fourier transforms naturally increase the computing time, but
the one-dimensional fourth-order version was found to be only about
twice as expensive as conventional fourth-order methods. This comparison
is expected to improve in higher dimensions.

A pseudospectral method for convection-diffusion based on an expan-
sion in exponential functions is given by Christensen and Prahm in Ref. 48.
This expansion takes advantage of the fast Fourier transform. Boundaries
are included by specifying exponential decay of the solution thereon.
This generates some aliasing which is suppressed witﬁ a selective filter
passing only wavelengths greater than a certain value, The filter was
applied at regular intervals after a certain number of time steps. The
scheme is operative only for velocity fields that do not vary rapidly.
The time discretization was leapfrog.

Comparison of the results of a number ofISChemes for revolution

of a cone is given in the -table following:
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TABLE I

Uniform Rotations of the Gaussian Distribution

Order Rotations Prnr
of in 2 Maximum  Minimum
Exper-  scheme Counter degrees ata ata

iment P Clockwise  Clockwise (approx.) £24r meshpoint meshpoint

[ 0 1.0000 0.0000

w2 0 0.9996 0.0000

- 0 0.9991 0.0000

1 3 372 0 80 400 0,9987 0.0000

27 0 0.9982 0.0000

2o g 0.9973 0.0000

27 27 0.9964 0.0000

0 [4] 1.0000 0.0000

w2 ¢ 0.9997 0.0000

- 0 0.9995 0.0000

2 4 3wi2 0 50 400 0.9992 0.0000

2 0 0.9989 0.0000

2 - 0.9984 0.0000

2 il 0.9979 0.0000

(Ref. 77)

The maximum error after ome revolution with the present method was 2%.
This small error was achieved only by the spectral or psuedospectral
methods in this comparison. Pseudospectral methods are about a factor

of 2 faster than spectral methods.

Moment Methods

Egan and Mahoney (Ref. 64} construct a method based on conserving
the zeroth, first and second moments of the distribution within each grid
interval so as to conserve the moments. This scheme will convect a square
wave exactly without distortion in a uniform velocity field, but will
Diffusion is included in

deform all other waveforms into a square wave,

a separate stage of a time-split process. An extension to 2D is also given.
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Pepper and Baker, Ref. 159, use the method of moments, given by
Egan and Mahoney (Ref. 64), in which the first three moments of the
concentration within a cell are preserved during the convection. Imn this

method a single cell of concentration is convected without dispersion or

dissipation:

on me I{lN “f. -]'0 i

Fig. 79. Advection of concentration (C= 100} in two-dimensions;
v=(,1,0); AX = AY = 1; At = 0.5. (Ref. 159)
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A width correction procedure due to Pederson and Pralm (Ref., 158) is used
to check the lateral spread of concentration within each cell. Thigs
correction is also discussed by Pepper and Long (Ref. (161). Diffusion

is added through time-splitting. Application is made to atmospheric
pollutant transport.

Pederson and Pralm also used a different form for the second moment
designed to reduce the dissipation,and Pepper and Long found this form to
give better results than the original form used by Egan and Mahoney when
the velocity was uniform. However, with nonuniform velocity, the Pedersen-
Prahm form can be very inaccurate. A comparison of the two forms for

convection of a revolving cosine distribution is shown below:

Unmodified Modified

D

£3

O

o

Fig. 80. Concentration contours after 3/4 revolution for unmodified/modified
methods, (Ref.159) 131
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a. Unmodified b. Madified
{mox, =42) {max. = 1048)

Fig. B8l. Concentration contours for unmodifed and modified methods after
4=3/4 revolutiong. (Ref. 159)

The original form is clearly superior, but does have noticeably more
dissipation than the modified form. The width-correction term can also
degrade the accuracy with a non-uniform velocity.

The second-moment conserving method of Egan and Mahoney (Ref. 64),
as extended by Pederson and Prahm (Ref. 158), is analyzed by Kerr and
Blumberg in Ref. 110 for uniform velocity. Results for the convection

of a triangular wave are shown below:

CONSTITUENT ¢

LENGTH

(Ref. 110)
INTIAL
CONDITIONS | A !SWIDTHS ] 30WIDTHS € 45 WIDTHS | D owiDTHs

fe'ax -.3.4000 33430 34470 3.4480 5.5287
Jetax - 21330 16440 1. 7010 17020 17788
SV

&) - 0.4000 o.5597 0.7T10 07640 1.0082
I(%)dx * 0.2400 07853 1.3320 1 2730 2.oi64

Fig. 82. A comparison between the analytical and numerical distributions

for advection intervals of 15, 30, 45 d —_ .
o= 0,3125, ’ an wedge-widths with
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Although there are no dispersion effects, the wave is eventually deformed
into a rectangle. This effect is more pronounced at lower Courant number .
The scheme preserves the long waves but amplifies certain short waves, a
property that may lead to instability in nonlinear proflems. This scheme
is compared W:Lth_ second and fourth-order leapfrog methods and another

method that is fourth-order in time but second in space:

10
3 Analytical Numericol LEAP.FROG, FOURTH ORDER
s f ?dx = 3.4000 3.4002 ACCURATE IN SPACE
[efdx =213 18979 === Anolytical ]
B Numerical
5 2
$- f (7}) dx 04000 04003 T

242
2 ¢
f(__h’) dx = 0.2400 0.2406

=
T

CONSTITUENT ¢

if
L

-2 -
_4 1 1 1 1 i ! 1 I
) 130 135 140 145 150 155 160 165
LENGTH
10
r Analytical Numericol FOURTH.ORDER ]
gk f ¢?dx = 3.4000 33049 QUASLLAGRANGIAN  _|
| Setdn = 2aa% 16613 -=== Analyticol |
i P MNumevicol
o B j(%) dx = 0.4000 03¢ -1
- 2 .
'2 b f (j—:cr) dx = 02400 00757 i
g -
> L 4
[l
5 2 .
¢ | ‘ -
-2 -1
-4 1 1 1 1 1 1 1 1
) 130 i3 140 145 150 156 160 165
LENGTH

Fig. 83. A comparison between the analytical distribution and several
numerically obtained distributions after an advectiom interval
of 15 wedge~widths with o = 0.3125. (Ref. 110)
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CONSTITUENT ¢

CONSTITUENT ¢

1.0 A
Analytical Numerical i \‘ LEAP.FROG, SECOND ORDER
Py fc?dn = 34000 3.4001 A ACCURATE IN SPACE
fc‘ dx  =21330 0.6685 [ === Anelytical
- 2 " \\ Numaricol
= Jc _
6 [ (ﬁ) dx = 04000 0.4001 ] \“
3’: ? A
= f (?‘) dx = 0.2400 0.2401 '
\
\
2 )
) PR SUPHURER, VRS S -
-2
-4 1 1 t 1 1 I 1 L
’ 130 135 140 145 150 155 160 165
LENGTH
10 A
3 Analytical Numarical ,f ‘\ LOCAL SECOND-MOMENT
g f e?dx = 34000 13450 'R CONSERVING _.
’ f 4 ! QUASLLAGRANGIAN
R c“dx = 21330 1.6440 .
7 m=em== Anglytical
6 = f(%) dx = 04000 0.5597 Numerical -
i 32: ¢
4 (Iz') dx = 0.2400 0.7853 .
2 I 4 n
i \
r i
1} SR —— - -
-2 .
-4 | i 1 | 1 ] I 1
130 135 140 145 150 155 160 165

LENGTH

(Fig. 83 continued)
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The improvement in both dispersion and dissipation to be gained with
higher order is evident upor comparison of the two leapfrog results here.
The present method eliminates the trailing oscillations due to dispersion
but badly deforms the wave.

Wesseling (Ref. 222) constructs difference schemes by choosing a
free parameter in a scheme of given order of comsistency so ag to minimize
the weighted deviation of the difference solution from the analytical
solution for a harmonic wave in the least square sense. Thilis minimization
and the requirements for order determine the coefficlents in the difference
expression. The weight function depends on the wave number of the wave,
and ideally should be the square of the modulus of the Fourier transform
of the exact solution at time t. The use of this ideal form of the weight
function would require the exact solution and hence is not reasonable.
Difference schemes can be developed, however, using weight functions
corresponding to certain specified forms of the solutfon. Four forms are
considered: (1) harmonic wave, (2) step function, (3) 2Ax wave, and
(4) 2nAx wave with n = 2,3. Each of these will convect the solution form
on which it is based exactly. The harmonic wave form produces the
conventional schemes. The last two forms lead to schemes which will model
the shorter waves well.

With the stencil
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and only first-order required, the first of the above forms produces the
Lax-Wendroff scheme (Ref. 121), while the second gives the upwind scheme
of Courant, Isaacson, and Rees (Ref. 54). This latter scheme is first
order in space, but the other three are second-oxder. The temporal order
is the same as the spatial for uniform velocity, but becomes first order
with nonuniform velocity. The last two lead to schemes with cosine functions
of the Courant number for coefficients.

Dispersion and dissipation for the first and last of these schemes

are compared below:

I8y, ltigl arg g targ 9

Fig. 84. Dispersion and dissipation:
————— , scheme 4. (Ref. 222)

» Law-Wendroff;
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Although the results are not greatly different, the Lax-Wendroff scheme
does have more dispersion, but less dissipation, then the other scheme.

These two schemes are compared for comvection of a Gaussian distribution

in the next figure.

! N\
/)

Fig. 85. Results for test-case 4: , exact solution;
— —-, Lax-Wendroff; ————- » scheme 4. (Ref. 222)

Neither is very good, but scheme 4 has less oscillation. The increased

dissipation is evident also, however.

Higher order schemes are obtained with the stencil

bedbd
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The scheme produced by the step-function form is identical to the zero
average phase error of Fromm (Ref. '71). The first scheme is the classical
third-order scheme. The other three are second order. Again the temporal
order drops to one with nonuniform velocity. Three of these schemes are

compared for dispersion and dissipation below

cs0.8 = c=0.8
1
1 ce0.5 1
c=0.2
1 e 1

arg ghlarg " \

onlfi9l

Fig. 86. Dispersion and dissipation:
————— , scheme 8. (Ref. 222)

, scheme 5; — —, scheme & (Fromm);

The only noticeable difference here is the somewhat improved phase error of
the Fromm scheme, again accompanied by more dissipation, however. The
scheme designed for 2Ax waves was worse than the others with both stencils.
The multi-stage third-order Burstein and Mirin scheme (Ref. 35, also
Rusanov, Ref. 183) was also included in the comparison and found to be
slightly more accurate than the present schemes using the second stencil
with free parameter in the former scheme chosen so that the scheme is fourth-
order in space though still third in time. Other choices make this scheme

significantly worse than the present schemes as shown on the following page.
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Fig. 87. Dispersion and dissipation of the Rusanov-Burstein-Mirin scheme.
(Ref. 222)

0f all these schemes the conventional forms, i.e., those based on
convecting the harmonic wave form, are best. The special forms designed
to enhance the short wave accuracy are more time-consuming because of the
cosine functions involved at each point and did not show significant
improvement over the conventional forms.

Finite Element Methods

Baker, Soliman, and Pepper (Ref. 23) give a Galerkin finite element
algorithm using quadralateral elements and linear basis functions. TFor
2D the use of bi-linear basis functions and 1D time-splitting through
approximate factoring is compared. Some comparisons for the revolving
cone problem are shown on the following page. The second and last figures
here are for the finite element solution in the unsplit and split 2D forms.
The accuracy is virtually the same with the two forms, but the split form
requires one-fourth the time and one-fifth the storage of the unsplit form.

The third figure is from a finite difference (second-order Crank-Nicholson)
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(Ref. 23)

Fig. 88. Advection of environmental release in constant velocity field ﬁi.

c=20.1,
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Fig. 89. Rotational convection of a symmetric surface h . (Ref. 23)
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type of approach. The reduced dispersion and dissipation with the
present form are evident.

This procedure is further developed by Baker in Ref. 18. Here a
dissipative mechanism is added by requiring the gradient of the residual to
be orthogonal to the basis functions alse. The procedure is extended to
quadratic basis functions, and the time-splitting factorization is further
developed for multiple dimensions. With quadratic elements the time-split
factorization is to pentadiagonal matrices, rather than tridiagonal as
in the linear case. The scheme based on the linear element is shown to
have sixth-order phase error for one value of a free parameter associated
with the added dissipation and fourth-order otherwise. The dissipation
is fourth order. Without the dissipation this scheme is thus fourth
order and neutrally stable. The improvement using the quadratic element
was found to be significant, at a cost of about 1% in storage and 16% in
time. Less dissipation is required with the higher-order version.

In Ref. 21, Baker and Soliman extend the algorithm to treat free
surfaces. Further comparisons for the revolving cone are also given
in the figure on the following page. The improvement gained with the
higher-order element (k = 2) is clear here. The dispersion and dissipation
decrease with the Courant number.

Further amplification of this scheme is given by Baker in Ref. 17,
by Baker and Soliman (Ref. 20) and by Baker (Ref. 16). Here extension
is made to general curved-sided elements for use with curvilinear coordinate
systems. The cartesian coordinates within each element are given by the
same type of interpolation from nodal peint values used for the solution.
A differential constraint to enhance satisfaction of continuity is also

added. The dissipation mechanism is expanded to include two free parameters.
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The scheme based on the linear element is second order in rhase error and
first order in dissipation for arbitrary values of these parameters, but

can be made sixth order in phase error for a particular choice, with the

dissipation at third order. Without the dissipation the scheme is fourth

order.

With the quadratic element, the scheme is only second-order without

the dissipation, and is zero order for arbitrary values. The scheme can

be made fourth order in phase for a particular choice of parameters. The

formal accuracy of the quadratic element is less than that of the linear,
but the performance of the former seems to be somewhat better. Applica-

tion is made to the shallow water equations.

Further results from the finite element method of Baker and Soliman,

these from Ref. 22 for convection of a cone,are given below.
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Fig. 90. Advection of concentration cone.

C = 0.1, nat = 0, 50, 100, 150.
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Here the first and third sets of figures are the finite element method.
The Courant number here has little effect. The second set is for a
second-order finite difference Crank-Nicholson scheme. The higher-order

of the finite element scheme clearly leads to a reduction in phase error.

Further comparisons are given in the next figure
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Fig. 93. Advection of a concentration packet. (a) Initial condition, dashed

{b) Finite element, k=1, C = 0.4,
-» Re = >  {d) Finite element

line is anmalytical solution.
Re = «. (c) Crank-Nicholson,C - 04
k=2, C= 0.4, Re (e) Finite element, k = 1, C =10.8, Re
(f) Finite element, k=1, ¢ = 1.2, Re = «. (g) Finite element
k=1, C=1.6, Re = w. (h) Crank-Nicholson,C = 1.6, Re
(1) Finite element, k = 1, C = 0.4, Re = 102, (i) Finite element,
k=1, C= 0.4, Re = 10%. (Ref. 22)
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The small oscillations in the finite element scheme increase with the
Courant number. Only a small effect of the element order is evident
here. Related to the finite element methods is the least squares

approach of Chattot, Guiu~Roux and Lamine (Ref. 42).
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Ordinary Differential Eguation Methods

In Ref. 132, Oey reduces the partial differential equation in space
and time to a set of ordinary differemntial equations in space by using
difference representation in time only. The ordinary differential equations
are then solved numerically by high-accuracy methods, Multiple dimensions
are treated by approximate factorization, i.e., time-splitting, which
reduces the equation to a multi-stage set of ordinary differential equations.
A third-order split form is given. The number of ordinary differential
equations to be solved at each stage is equal to the number of dependent
variables. In contrast, with the method of lines, where spatial discretization
is used to produce ordinary differential equations in time, the number of
equations in the set to be solved is equal to the number of points in the
field.

Bellman, Kashef, and Casti (Ref. 25) represent the first derivative
in terms of the sclutionvalues at neighboring points to obtain a system
of ordinary differential equations in time. The spatial order is determined
by the number of points used in the representation of the derivative.

Comparisons

Turkel (Ref. 215) compares several methods that are fourth order in
space and second order in time. _

(1) The Kreiss-Oliger scheme (Ref.118) is the fourth-order extension

of the leapfrog three~time level method and has the 1D stencil

3 ]

B
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b,
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N

Stability requires that the Courant number be less than 0.72. This scheme
is nondissipative,

(2) The fourth-order extension of the MacCormack method (Ref. 135) is
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a two stage method with the stencils

with four obvious variations of implementation of these stages. It is
necessary to alternate the succession of difference directions at successive
time steps to achieve fourth order. Here the stability limitation on the
Courant number is 2/3. A compact version of the MacCormack method is also
given based on the Pade approximation of the derivative. This method has

the stencils:

The stability criterion is that the Courant number not exceed 0.57. The
compact version thus has a more restrictive stability criterion than the
version using wider stencils.

(3) The fourth-order version of the implicit Crank-Nicholson method

(Ref, 107 and 155) has the stencil:

This implicit method is unconditionally stable in the linear sense, so
that the short waves will not destabilize the solution even though they
are still not computed accurately.
In addition to these methods, pseudospectral methods are also considered.
Here the spatial order is effectively infinite. For unbounded regions
Fourier series expansions are used, while with boundaries Chebyshev expansions

are more appropriate (Ref. 83). These methods are also unconditionally stable
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in the linear sense.

The fourth-order MacCormack scheme was about twice as fast as the
second-order version and required less than half the storage for moderate
accuracy in 1D problems. The fourth-order implicit Crank-Nicholson form
was about 30% more efficient than the second-order version and required
about a quarter of the storage. The fourth-order version was most effective
with smaller time steps than those used in the second-order version, since
for larger steps the temporal error dominates and the fourth-order accuracy
in space is not being utilized. The time step should be chosen so that the
temporal and spatial errors are about equal.

These advantages of fourth order increase dramatically when greater
accuracy is required and for stiffer problems. Although the fourth-order
accuracy is lost at shocks, overshoots and oscillations are not aggravated
by the higher-order methods.

Multiple dimensions are treated by time-splitting, which if done
symmetrically preserves the second order in time and does not disturb the
spatial order., The stability condition is simply the most restrictive
of the 1D criteria. The fourth-order version of the MacCormack method
was found to give smaller phase error and similar accuracy with half the
points in each direction required by the second-order version.

The spectral method allowed a reduction in storage but was not more
efficient than the fourth~order method. Spectral methods may be more
efficient, however, if the solution contains the small wavelengths which
are not resolved accurately by the finite-order method. The speed of the
spectral method is highly dependent on the fast Fourier transform used.

In general the fourth-order methods were about three to five times
faster at 5% accuracy than the second-order versions, and required half the

points in each direction. These advantages increase in higher dimensions
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or with smaller error tolerances. In some cases especially sensitive to
boundary treatment, the fourth-order methods may be less stable. Fourth-
order schemes are most appropriate for stiff equations, where the higher
frequency components are of less physical significance. Higher order in
space than in time is also more appropriate with stretched meshes, since
the time step is limited to small values by the minimum spacing. The
fourth-order extension of the MacCormack method has been found to be
robust in several applicatioms.
The time step of the fourth-order space, second-order time methods
should be chosen small enough that the temporal errors are mot larger than
the spatial errors. Too large a time step severely degraded the solution.
In general it was better to choose the time step too small than too large.
In many problems, e.g., stiff equations or stretched meshes, the largest
time step allowed by the stability criteria is small enough that the second
order in time is comparable to fourth in space. Higher-order methods usually
require more computer time per time step, so efficiency is improved only if
a coarser grid can be used. Methods for which only the spatial order is
increased are not significantly more complicated than the lower order version.
Fromm, Ref. 71, states that the variations in relative quality among
second-order methods are too small to warrant efforts toward selecting a
best method. Fourth-order methods have much better phase properties and much
legs dissipation. First-order methods are monotonic but have massive
dissipation and large phase error.
Central difference representationsgenerally have lagging phase error.
All second-order methods generally have the property that the phase error
decreases as the wavelength increase. It is thus desirable that the dissipation
be greatest at shorter wavelengths. Some methods, however, have the greatest
damping at intermediate wavelengths. In this class are the Richtmyer two-

stage method, with the stencils:
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which is equivalent to the Lax-Wendroff method written over points '‘that
are twice as widely spaced. The 4Ax mode is nonpropagating in this scheme,
as well as the 2Ax mode. Also in this category are the Burstein method
(Ref. 38), discussed elsewhere, and the Crowley fourth-order method

(Ref. 53), formed by simply adding another term to the Taylor exXpansion,

for which the stencil is

The time-centered methods have no dissipation. Among such second-

order methods are the implicit Crank-Nicholson with the stencil

the leapfrog:
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and the method of Roberts and Weiss (Ref. 174):

The figure below gives a comparison of the phase error for some

of these methods for a wavelength of 4Ax and a range of Courant numbers.
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Fig. 94.. Phase lag curves for A = 4A¥ for typical second-order schemes.
[3¢a¢)/3a], = -0.5. (Ref. 71)
For small Courant numbers there is little difference among the methods,
but the methods vary widely at larger Courant numbers.
Phase properties can be dramatically improved by fourth-order

methods. Here time centering is less important since the dissipation is
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greatly reduced. A comparison analogous to that given above appears
in the next figure for three differeat wavelengths for the fourth-order
methods of Roberts and Weiss (Ref. 174) and Crowley (Ref. 55). Again there

is a phase lag, but much reduced in magnitude.
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Fig. 95. Fourth-order methods compared for phase error. TFor )\ = 4AX,
[8(A¢)/Ba]0 * - 0.25. Compare Figure 94, (Ref. 71)

A composite fourth-order method is formed by averaging schemes
with lagging and leading phase errors. The scheme with the phase lag
it taken to be one formed froma quartic interpolation polynomial fitted

to five symmetrically located points. The new time value is formed by
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evaluating the polynomial at the point x - uAt. The scheme with a phase

lead is formed in the same way, but with the five points shifted one point

upstream.

The phase error of the combined schemes is showm below, together

with that of a similar second-order combination.

Fig. 96.
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Comparison of phase errors of various orders ¢f upstream
difference methods where the second- and fourth-order forms
are combined forms [Eq. (21) for fourth order]. For A = 44X,
[9(ap)/3a), ® — 0,05 in both second and fourth order. Compare
Figure 95. (Ref. 71)
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The phase error clearly drops rapidly with increasing wavelength. The
dissipation is also reduced in the combination except for the shortest

wavelength, where it is desirable anyway.
Huffenus and Khaletzky (Ref. 106) compare several methods on the
basis of convection of a Gaussian. The excessive dissipation of the

simple first-order upwind method is clear in the figure below:

T=0 T-9600 S

-2

Fig. 97. Upwind differencing scheme (FTUS1) (Ref. 10§6)

The Lax-Wendroff scheme, also called the Leith scheme, is second order and

consequently has less dissipation but more dispersion:

T=0 T=9600 S
o

2
A
0 Loty /l/ P L
p 0 T N0 |y

2t

Fig. 98. Leith scheme.
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The second-order Crank-Nicholson scheme, which is time centered and

Implicit, has even more dispersion:
T=0 T-9600 S

h

Fig. 99. Euler's modified method.
(Ref. 106)

This time-centered scheme is less dependent on the Courant number and,
being implicit, is unconditionally stable. Another implicit scheme is
the simple first-order backward-time, second-order central space scheme.
This scheme is more dissipative than the Crank-Nicholson method, however,

because of the low time oxder:

T:0 T=900 S

.‘

-2

Fig. 100. TImplicit centered space scheme.
{Ref. 106)
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The third-order upwind-biased scheme given by Davies in Ref. 58

has much less dissipation and better phase properties than the second-

order methods;

T:=0 T=380C S

o

-2

Fig. 101. Polynomial fitting of degree 3 (FTUS3).
(Ref. 106)

The third-order compact method of Holly and Preissman (Ref. 104)

has even better phase properties and less dissipation:

T=0 T=5600 S

o ~

-2

Fig. 102. Transport of the derivatives.
(Ref. 106)
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Akima's method (Ref. 1() is not compact and involves six points from
i -3 todi+ 2. This scheme has a built-in filter for W and N waves
as discussed elsewhere. The dispersion and dissipation are slightly greater

than that of the compact method above:

7:0 T-3600 S
0%

0

p 200 4000

.24

Fig. 103. Akima interpolation method.
(Ref. 106)

Overall the authors favor the Davies third-order scheme because of
its simplicity for the accuracy given.

Forester compares a number of higher-order schemes in Ref. 74 for
convection of several waveforms. The schemes considered were:

(1) the original FCT scheme of Boris and Book (Ref. 31 and 32),

{2) the monotonic van Leér scheme (Ref. 123}, which consists of
the application of a flux limiter to the second-ordexr averaged phase
error scheme of Fromm (Ref. 71),

(3) the second-order Leith scheme (Ref. 71}, to which the Lax-
Wendroff scheme reduces for uniform velocity,

(4) the second-order upstream-biased form of the Leith scheme given

by Fromm (Ref. 71},
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(5) the second-order Crank-Nicholson scheme,

(6) the fourth-order space Crowley scheme (Ref. 55) using second-
order Crank-Nicholson time differencing,

(7) the one-flux version of the Crowley scheme given by Fromm (Ref. 71),

(8) the two-flux version of the Crowley as given by Fromm (Ref. 71),

(9) a symmetric spatial sixth-order scheme with second-order Crank-
Nicholgon time differencing,

(10) the spatial eighth-order form of the previous scheme, and
finally,

(11-13) schemes based, respectively, on determination of the derivative
by cubie, quintic, and septemic splines.

In the -spline schemes higher derivatives are obtained by splining
the lower derivatives in tura. This requires a tridiagonal solution for
each derivative. Thus all the required derivatives are obtained on the
entire field from the solution at the previous time level. Substitution
of these derivatives in the Taylor series expansion then produces the
solution at the next time level, all time derivatives in the series being
replaced by spatial derivatives obtained by repeated differential equation.
These spline schemes follow the same approach used by Gazdag (Ref. 77)
except for the method of determination of the derivatives. The order of
these spline schemes is more thamtwice the spline degree with Courant
number less than about 1/4 and more than two time derivatives retained in
the Taylor series. For larger Courant numbers, the order depends on both
the spline degree and the number of derivatives retained in the Taylor
series. The quintic spline method has order about midﬁay between a spatial
fourth-order method and the pseudospectral methods. A ninth-degree spline

method would have order approaching that of the pseudospectral methods.
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These spline schemes are applicable to arbitrary numbers of grid points

while the Gazdag method, using fast Fourier tramsform,is not.

Results are compared with low Courant number for a square wave

below:

Fig. 104.

Fig. 105.
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The dots indicate the numerical representation of the linear

wave shown which has been propagated 60 mesh intervals with

600 time cycles by a second, second, sixth, and fourth~order
convective scheme. Note the significant increase in the frequency
of the computational noise as the order of the convective scheme
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S?me comments as Fig. 104, except for sixth, tenth, sixth and
eighth-order schemes, 160



and for such a wave with rounded corners in the next figures:
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Fig. 106. Same as comments in Fig. 104 .with the following additiomal
consideration. Compare Fig. 104 with Fig. 106 and note the _
significant increase in the amplitude but not the frequency of
the computational noise by decreasing the number of mesh intervals
over which the steep gradient regions are distributed.
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Fig. 107. Same comments as in Fig, 105 with the same additional comment
as in Fig. 106, except compare Fig. 105 with Fig. 107,
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and for a Gaussian wave next.
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Fig. 108. Same as the comments in Fig. 105 with the same additional
comment as in Fig. 106, except compare Figs. 107 and
108,
The frequency of the noise increases with the order of the scheme
but the amplitude decreases. Rounding of the corners of the wave
significantly reduces the error with the high-order schemes, but the
effect is less pronounced for the lower-order methods. Higher-order
schemes thus can handle steeper gradients with a fixed grid point distribution,
or can handle the same gradient with fewer points, than can the lower-
order methods. The frequency of the noise is not affected by the steepness
of the gradient.
The figure on the following page illustrates the effect of the Courant
number. The noise frequency decreases as the Courant number increases,
especially for the schemes that are lower~order in time, The amplitude

also increases with the Courant number for these methods, but not for the

_higher-order time methods.
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Fig. 109. Same as the comments in Fig. 105 except for 75 time cycles.
Compare Fig., 105 with 109 and note the reduction in frequency
of the computational noise associated with the increase of
Courant number, o = 0.8.
Though reduced, the noise persists even in the higher-order schemes
when the wave form has sharp corners. The tenth-order spline method, though,
has virtually eliminated the oscillations with the Gaussian,

Results for the square wave using the present and other methods of

fitting are shown in the figure below:
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Fig, 110. The same test computation as shown in Fig. 109 except the

application of the filter of Section 2 has been used to remove
the computational noise in the splined ASD convective schemes.
¢ =0.8; filter constants: ¢ = 0,1; K = 1.
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Fig. 111.

Fig. 112.
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The comparison of Figs. 110, 111, and 112 shows that the phase
errors of the Fromm monotonic and filtered splined ASD methods

are reduced as the Courant number is reduced. However, the acuity
of the steep gradient regions improves upon reducing the Courant
nunber for filtered splined ASD computations, whereas the opposite
regult occurs in the Fromm monotonic scheme. WNotice the fine results
of the Boris-Book scheme for the Courant number range represented

in Figs. 110 and 112. A comparison of the results of Leith's

scheme in Fig. 104 with the results of Boris-Book scheme in Fig. 112
shows dramatically the power of the Boris-Book filter to Improve

the solution accuracy in phase and amplitude properties.

g = 0.1. Filter constants: ¢ = 0.1; K= 1, '
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The lower-order FCT and van Leer filtering of the Fromm method deform

the wave badly.

From the earlier figures, wavelengths below about 8Ax

must be filtered in gemeral, though with higher—order and lower Courant

numbers the filtering may be limited to shorter waves.

next.
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Results from the filtered schemes for the Gaussian wave are shown

Fig. 113.
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The Gaussian wave distribution is
propagated 60 mesh intervals for

600 time cycles. Note the excellent
phase but poor amplitude properties
of the Boris-Book algorithm for this
problem. Also note the substantial
improvement in amplitude response as
the order of the filtered algorithms
is increased. Compare Figs. 108 and
113 and cobserve the small amount of
amplitude damping of the peak of

the wave which the filter of

Section 2 produces. ¢ = 0.1,

Filter constants c 0.1;

K=1. (Ref. 74)

Same as the comments in Fig. 113,
excepl compare Figs. 108 and 114,
(Ref., 74}
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Fig. 115. Compare Figs. 113 and 115 and note the increase in phase errors
of various filtered sclutions with increased Courant number. 1In
spite of this, note the monotonic response of the solutions.

g = 0.4. Filter constants: c¢ = 0.1; K = 1.

While the effect of order on the filtered schemes is small when the

solution has sharp cormers, it is clear that higher-order methods are

far superior with the Gaussian. The lower-order methods require at

least three times morepoints than are needed by the fourth and higher-

order schemes. Phase error tends to increase with Courant number, and

decrease with increasing order, for the filtered schemes. The strength

of the filter must increase with the Courant number.

General recommendations for use of the filter are given. It is
generally better to keep the stremgth of the filter at 1/5 and to restrict
the Courant number sufficiently that only a few repetitive filter applications
are necessary to bring the error to within tolerances.

Zalesak (Ref.226 )} compares several higher-order leapfrog schemes
having second order in time. These are two-stage schemes formed of a
leapfrog predictor and a trapezoidal corrector, both of which are of the

same high order in space and second order in time. Actually the corrector
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is not applied at each time step. Results of these schemes for convection

of a square wave are shown below; together with results of a pseudospectral

scheme. )
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Fig. 116. Tests of various schemes applied to the linear advection (Eq. 1.3)
of a square wave, using periodic boundary conditions. This is the
same problem originally used by Boris and Book, and subsequently
many others, to test advection schemes. The standard output time
(shown here) is after 800 time steps using a Courant number vt/ Ax
of 0.2. The analytic solution is shown as a solid line. In the
upper left plot we show results using the first-order donor cell
scheme, followed by results for the leapfrog-trapezoidal scheme
using spatial derivatives of second, fourth and sixteenth-order
accuracy. Note the "ripples" in the high-order schemes and the
moilotone but excessively dissipative performance of the donor
cell scheme. (Ref. 226)

PSEUOOSP LT4 EPS.0.2 Fig. 117. Tests of the linear
advection of a square wave,
as in Fig. 116, but using
the Fourier pseudospectral
- approximation of spatial
derivatives together with
the leapfrog-trapezoidal
temporal discretization as
the "high-order" scheme.

. Shown is the result of

e using just the pseudo-

e spectral scheme alone (no
FCT). (Ref., 226)
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As seen 1n other comparisons, the amplitude of the oscillating
error decreases,and the frequency increases, with increasing order. However,
even the pseudospectral method, which is essentially infinite in spatial
order, is not able to handle this problem satisfactorily.

In Ref. 213, Trefethen discusses the group speed of difference schemes
and its relation to numerical dispersion. The analysis is strictly applicable
only to non-dissipatiwe schemes. It is noted that the error in the group
speed is typically three times the error in the phase speed. Wave fronts
and wave packets travel at the group speed. Numerical dispersion arises
when the group speed is dependent on the wave number. Short.wavelength
parasitic waves may be generated at interfaces, shocks, or other discontinuities
and also from sudden changes in grid spacing.

Haidvogel, Robinson and Schulman (Ref. 9%4) compare three methods
for vorticity convection. Tha first method is the second-order Arakawa
scheme (Ref. 15) for the convective terms with leapfrog time differencing.
The second is a Galerkin finite element scheme using linear rectangular
elements and second-order centered time differences or second-order Adams-
RBashforth time differencing, both of which are three-time level schemes.
Here the matrices are factored into a tridiagomal matrix for each direction.
The method is fourth order in phase error.

The final scheme is a pseudospectral method based on Chebyshev
polynomials. The pseudospectral method was found to be the most accurate,
and the finite difference the least accurate. It should be recalled
that the finite difference method considered was only second order.

However, nonlinear instability is more of a problem with the pseudospectral
and finite element methods. Periodic smoothing can maintain stability,

however.
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Harten and Tal-Ezer (Ref. 97) found that the accuracy advantage of
fourth-order spatial differences over second—order differences decreased
with increasing Courant nubmers above unity in implicit schemes of the
Crank-Nicholsen fﬁrm. Fourth-order differences gave an order of magnitude
improvement in accuracy over second order for Courant number of unity,
but negligible improvement for Courant above 4. The use of fourth-order
in time gave about two orders of magnitude improvement in accurxacy for
all Courant numbérs considered (up to 8) over second order in time, both
with fourth order in space. With fourth order in space only, the optimal
Courant number for accuracy was around 0.25, while with fourth order in
space and time the optimal was around 2.5. At Courant nuibers near unity,
fourth order gave considerably less oscillation with shocks {using a
switched Shuman filter) than did second order, while at Courant numbers
around 2 no such improvement was seen.

It was concluded that with shocks present, the Courant number should
not be much larger than umity.

Sod, in Ref. 191, compares a number of schemes for the shock tube
problem. The methods considered were the following:

(1) the two-stage first-order Godunov with the stencils

(2) the two-stage second-order Richtmyer rendering of the Lax-
Wendroff method {(Ref. 171),

(3) the MacGormack two-stage second-order method (Ref. 135},
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(4) the first-order Rusanov method (Ref. 183),

(5) the first-order upwind scheme,

(6) the random choice two-stage, first-order method of Glimm
(Ref. 81) rendered by Chorin (Ref. 46), which builds the solution by
sampling Riemann solutions, i.e., propagation of step functioms,

(7) Harten's artificial compression method (Ref. 96}, which is
inherently first order,

(8) the hybrid scheme of Harten and Zwas (Ref. 98), which combines
low and higher order schemes, using the former only when necessary to
suppress oscillatioms,

(9) FCT of Boris and Book (Ref. 31) applied to the two-stage
Richtmyer version of the Lax-Wendroff method,

{10) Hyman's two-stage predictor-corrector method using
a first-order explicit predictor for a half time step followed by a
second-order leapfrog correction, with fourth-order spatial differencing
in each, the stencils being

i | . 1 i | ] {
{ppte
| L

T

First and second-order artificial viscosity, respectively, was added

to the two stages, lowering the order to that of the artificial viscosity.
The lower-order method used in the hybrid method above was the second-

order MacCormack method with first-order artificial viscosity added, and

the higher-order was the second-order MacCormack method without the

artificial viscosity. Some type of artificial viscosity was added to the

methods of Godunov and MacCormack and to the Lax-Wendroff methods. The

results are shown on the following pages:
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Godunov's method.

Fig. 118.

‘.

[ o] B.Hoﬁﬂs‘.-

(Ref. 191)

Fig. 119.

Godunov's method with ACM.
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Upwind difference method.
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Hybrid method,

Fig. 127.
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The artificial compression cannot be applied in the presence of
oscillations. The Glimm scheme required three times as much time but
far less grid points. Without corrective procedures, the Godunov and
Hyman methods gave the best results. The Glimm scheme gave the best
shock resolution. The shock tube problem, however, is the type of
problem to which Riemann solvers are particulary well suited. The
hgiher-order schemes gave better approximations to the smooth parts of
the flow.

Raithby and Torrance (Ref. 168} note that order may be misleading
in cases with strong convection when higher-order derivatives in the
Taylor expansion may be larger than those of lower order. These authors
also found that the use of variable time steps over the field speeded up
convergence to the steady state considerably, though true time representation
is lost.

Orszag and Jayne (Ref. 156) note that order is degraded at solution
discontinuities, but even then the higher-order methods are superior.
Second and fourth-order schemes are examined. It is stated that spectral
schemes require at least a factor of two less resolution to achieve the
same accuracy as fourth-order schemes, while fourth-order schemes require
a factor of two less than second-order schemes. The amplitude and
wavelength of phase error-induced oscillations decreases as the order
of the scheme increases. Necessary dissipation can therefore be smaller

and more localized with higher-order schemes,
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V. FILTERS

The computational noise, i.e., short wavelength spatial oscillations
that occur near strong gradients, can be controlled by filters which
smooth out the oscillations by selectively applying large local dissipation.

Switched Shuman Filter

An older form of filter, usually called the Shuman filter, simply
applies large dissipation everywhere in the form of the addition of a
second derivative term to the equation. The artificial diffusion
coefficient is such as to produce the effect of replacing the solution
value at each point by the average of the present value and the average
of the neighboring values. The Shuman filter was used by Vliegenthart
(Ref. 218). This filter applies too much dissipation for realistic use.

A better approach is the switched Shuman filter, in which the
artificial diffusion coefficient is made space-dependent, being large
only near-large gradients and being of the order of the difference
scheme elsewhere. This coefficient, i.e., the switch, is usually made
proportional to a power of the gradient of importance. A related approach
is the switched hybrid schemes, which are constructed of a weighted
average of low and high-order methods, discussed later in this section.
Here the switch favors the low-order scheme in regions of large gradient.

The switched Shuman filter was applied by Harten and Zwas in Ref.
99 . The switched Shuman filter was used by Harten and Tal-Ezer,

Ref. 97, in second and fourth-order schemes of the Crank-Nicholson
type to control oscillations occurring with shocks. This type of filter
was also used by Hella and Jain, Ref. 103, The effects of the Shuman

switch (Ref. 99) were investigated by Srinivas, Gururaja, and Prasad
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in Ref. 195 for several shock problems. This filter was found to be

effective against oscillations, but it did smear the shock considerably,
Srinivas and Gururaja (Ref. 193) make the coefficient on the Shuman

switch filter (Ref. 99 ), or in the switch used for hybrid methods

(Ref. 98}, locally dependent on the Courant number, such that maximum

filtering effect occurs for values of 1/2, with no filter at O or 1.

This type of switch was used by Sod (Ref. 191) for the Harten and Zwas

hybrid scheme (Ref. 98). A switch was also used by Sod to reduce

added artificial viscosity in a predictor-corrector method. Results

for these schemes are shown on p. 171-176,

Flux-Corrected Transport

Flux-corrected transport (FCT) is basically a procedure for adding
artificial diffusion to an algorithm and then removing diffusion, i.e.,
adding anti-diffusion, whenever possible without allowing the solution
to assume new local extrema. This procedure involves three stages——
convection, diffusion, and anti-diffusion. (Diffusion here is understood
to be artificial. Physical diffusion would be included in the convection
stage or applied separately ina time-split mode.} Some testing procedure,
called a flux limiter, is also necessary to locally limit the anti-
diffusion so that its application will not push the solution'beyond
its values at neighboring points to form new local extrema.

There are two free parameters in FCT, the diffusion and anti-diffusion
coefficients, which may be uniform or variable over the field. There are
also the choices of what provisional solution to base the anti-diffusion
on, and how to construct the flux limiter. The original form given by
Boris and Book in Ref. 32 had both the diffusion and anti-diffusion
coefficients equal to 1/8, with the anti-diffusion based on a convected

and diffused provisional solution.
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With the convection, diffusion and anti-~diffusion operations
represented by C, D, and A, respectively, the overall operation in this

case is given by
o™ o (1 + @+ c o+ D" (1)

and the provisional solution from which the anti-diffusion is calculated is

8 = (1 +C+D)e" (2)
The flux limiter used was the limitation of the anti-diffusion flux at
each point to the minimum of (1) the diffusion flux at this point and (2)
the anti~diffusion flux which would push the provisional solution at either
of the two points affected by this anti-diffusion flux beyond its value
at the adj#cent points.
The results of this version of FCT applied to the second-order Lax-—

Wendroff scheme is shown below.

{a) EXPLICIT FCT ALGORITHM,

1.
§-CRS

Lo Ly
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X(CELL NO.)—=

L L ! 1
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Fig. 130. Simple explicit ("1/8" = 0.125) versiom of FCT antidiffusion using
the SHASTA Transport algorithm. The velocity is unity and £ = 0.2.
The time is t = 20 (cycle = 100). The explicit version is far
better than the standard schemes, (Ref. 32)

This early form was used by Book and Ott (Ref. 29) for a shallow water

problem, and is also discussed by Boris in Ref. 30. In Ref. 28 the diffusion
and anti-diffusion coefficients were kept uniform and equal, but were determined
as the minimum necessary to make the combined convection and tramsport stages

monotonic. The uniform value then depends on the maximum Courant number.
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An implicit anti-diffusion version is also given in Ref. 32. Here
the overall operation is represented as

o+l

Q- = @ +C+D)¢" (3)

and a tridiagonal solution is required. The flux limiter is based on
the same provisional solution as used for the explicit case. The
implicit version is not significantly better than the explicit in
general but does eliminate the residual diffusion that remains with Zero

velocity in the explicit version, as shown below:

2 (a) EXPLICIT FCT ALGORITHM,
.y
' M 7 =0.I25
P
o x ! . [ L 1 L ! L
o] 20 40 60 80 0o
M (CELL NO)—

2 {b} IMPLICIY FCT ALGORITHM, —!

L
§ ~0125

0 L 1 1 I L 1 L 1 L
o 20 40 €0 8O 100
X{CELL NO)—

Fig. 131. Same as in Fig. 130 except the flow velocity is zero. The solid
line again shows the correct solution. Here the implicit FCT
algorithm (b) gives the exact answer whereas the somewhat simpler
explicit method still has a small residual smoothing. (Ref. 32)

In Ref. 31, a "zero residual damping" version of the implicit form
is used. In this case the diffusion and anti-diffusion coefficients are
again equal but are determined as functions of the local Courant number

such that the anti-diffusion (when not limited) exactly equals the
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diffusion. The results, however, are not as good as the original explicit
version with uniform coefficients because this choice of the coefficients

increases the phase error by about a factor of 2:

_ Fig. 132. Result of using Shasta ZRD on
ESHASTﬂ ZRD IMPLICIT FCT the square wave test. Implicit anti-

" 800 CYCLES diffusion is required for zero residual
2 _Lhé(hez) damping and v is chosen to complete the
square in the squared amplification
factor so that twe equal implicit anti-
diffusion steps can exactly cancel the
damping. The Shasta ZRD result,

AE. = 0.66, 1is worse than simple FCT
algorithm because even though the

. residual damping is zero, the phase
AE=0G66 4 properties are much worse than in the
olevetinentoss b lansetvrs simpler Shasta algorithms. (Ref. 31)
40 50 60 7O 80 20 100

CELL NO.—
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The residual damping remains with zero velocity in the original
explicit form because the anti-diffusion operator acts on the diffusion
operator as well as on the comvection operator. Thus from Eq. (1) with

n+1 n . L oas .
C = 0 we have ¢ = (L+ A){(1 + D)¢, so that even if the anti-diffusion
has exactly the opposite effect of the diffusion, i.e., A = -D, we still
have ¢n+l = (1 - D2)¢n at zero velocity. The implicit version avoids
this, since Eq. (3) reduces to

n+l

(L+ D)™ = (1 + D" 4)

for zero velocity and A = -D.

It is also possible to construct an explicit form without residual
diffusion at zero velocity simply by basing the provisional solution on
only the convection stage. Thus Eq. (1) is replaced by

o™t = [+ A + ) + Dl (s

with the provisional solution now given by
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=@+ (6)

Clearly, ¢n+l = ¢n If C=0and A= -D in this version. This form was

introduced by Book, Boris, and Hain in Ref. 28, and giveﬁ the name
"phoenical FCT." Implementation is by first calculating the provisional
solution frem convection only, Then the anti-diffusion fluxes are
caleulated and limited, all based on the provisional soclution. The
diffusion flux is calculated from the previcus time lével solution.
Finally, both the diffusion and anti-diffusion fluxes are added to the
provisional solution to produce the solution at the new time level.
Here again the coefficients of the diffusion and anti-diffusion must be
taken to be equal else residual diffusion will still remain at zero
velocity. The coefficients do not have to be uniform, however.

Results for several uniform diffusion strengths are shown below:

PHOENICAL SHASTA

FPHOENICAL
i DIFF. COEF.2.0625 _,

E SHASTA A
2( DIFF. z
I COEF=0.0

lur'llr-|r|l|||l|||l1“l“l‘|

IARANEANREE NS an

] .. .
Tl AE=17S ] el AE 088
0J.lll]'l--'.!lllllllllIIII|1||II||-' ol NN FIENI ST A NS RTI DAY,
4 50 60, T0C 80 B0 100 % 50 e 10 B 2w
u CELL ND —— b CELL NO=—e
PHOENICAL. SHASTA PHOENICAL SHASTA
DIFF COEF =0.125 DIFF COEFF 10,5

Iy

A.E, r0088

1] PR SEEEN FEEEE TR FEYT P
40 50 60 e 80 «° o0
CELL NO. ~—e

Fig. 133, Phoenical SHASTA (or Lax-Wendroff) with diffusion/antidiffusion
coefficient (a) n=0,0; (b) n = 1/16; n = 1/8; (d) n = 1/2.
(Ref. 28)
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Ref. 28 also gives results for phoenical FCT applied to the second-order
leapfrog scheme and the first-order upwind scheme. However, with equal
and uniform coefficients of diffusion and anti-diffusion set at 1/8 the
results do not differ significantly among these schemes for comvection
of a square wave.

Convection of a square wave is a problem to which FCT is particularly

well suited since the flux limiter clips sharp peaks as shown below:

-

1.
1

DISPLACEMENT

Fig. 134. Results of successively diffusing and antidiffusing the sharply
peaked profile (a) 20 cycles with diffusion/antidiffusion coefficient
n = 0.2. Curve (b) is produced by explicit antidiffusion, curves
(¢) and (d) (indistinguishable on the scale of the plot) by phoenical
and implicit antidiffusion. (Ref. 28)

The clipping is less pronounced, but still significant, for the phoenical
version. Terraces can also be formed on the sides of steep gradients when
local extrema occur due to phase error and thus activate the flux limiter.

The phase error of FCT applied to second-order schemes is second order.
This order can be increased to fourth by making the equal diffusion and
anti-diffusion coefficients functions of the local Courant number as in
Ref. 31 . The results of this "low phase error” phoenical version are

considerably better, as shown in the following figure:
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Fig. 135. Implicit and phoenical loy phase error Shasta on the square wave
test problem. Using v = (1 - £2) in each case reduces phase errors
from second order to fouréh order in k x, and hence, digpersive
ripples are minimized, making the work on the flux corrector much
easier. Phoenical antidiffusion is not quite accurate. It does have
the advantage of being local and not requiring the solution of a
tridiagonal system of equations and is more accurate than the
simplest FCT algorithms. (Ref. 28)

It is also possible to go one step further, of course, and construct an

implicit phoenical low phase error form, with the overall operation represented

as - 1@ - w7l + o) + pye® (7

with the provisional solution
* n
(1 -44¢ =(@1+0¢ (8)

The results are shown below:

[ REVERSIBLE FCT
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Fig., 136. Reversible FCT algorithm on the square wave test. The reversible FCT
algorithm, here with the diffusion coefficient v chosen toc minimize
phase errors, gives the lowest error of any finite-difference

algorithm tested to date. A.E. = 0.033 is within 50% of optimum and
8 times smaller than the donor cell value A.E. = 0.260. (Ref. 28)

but the improvement is not worth the extra work.
The FCT filtering was applied in the ALFVEN code of Weber, Boris, and
Gardner (Ref. 221) using the .ofiginal flux.limiter. This code will therefore

clip peaks badly. The SHASTA formulation using FCT was used by Anderson

in Ref. 14 in a time-split mode. 185



In Ref. 125, van Leer gives a flux limiter that is more compact than
that used in the original FCT algorithm (Ref. 32). A comparison with

the FCT limiter is given for convection of a triangular wave below:
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Fig. 137. Convection of a triangular wave by Scheme III, using the
monotonicity algorithm (74) (top) and the FCT algorith (72)
(bottom). (Ref. 125)

The c¢lipping phenomenen characteristic of monotonity algorithms is

still present but the present limiter does give a somewhat smoother
solution. This limiter is used with a system of equations by van Leer

in Ref. 126. A flux limiter which takes account of the solution's history
is given by Zalesak in Ref. 227, as discussed below in comnection with

the hybrid metheds form of FCT.

Hybrid Methods

The hybrid method of Harten and Zwas (Ref. 98) is formed by
taking the algorithm to be a weighted average of a low-order method
and one of higher order. The weight is designed to be 0(l) near
discontinuities, and in smooth regions of crder at least equal to the
difference between the order of the high and low-order methods. The
weight (switch) is incorporated with the fluxes in such a manner that
the scheme is in conservative form. This weight caﬁ be taken to be
the ratio of a first-derivative magnitude to the average thereof over
the field raised to a power equal to the difference in order between
the high and low-order methods. In the 2D version separate switches

can be used in the two directions, basing each on the derivative in the
186



given direction.

Zalesak (Ref. 227) redefines FCT in a form which is essentdially
the same as the hybrid method of Harten and Zwas (Ref. 98)., This form
is as follows: First, the fluxes are computed on the entire field
independently from a low-order scheme and a high-order scheme. An
"anti-diffusive” flux is defined to be the difference between these
two fluxes. A low-order provisional solution is computed by applying
the low-order flux to the solution at the previous time level. The
anti-diffusive flux is then limited at each point such that the solution
at the new time level, formed by the application of this anti-diffusive
flux to the provisional solution, will not be beyond the combined ranges
of neighboring values in both the provisional solution and the solution
at the previous time level. Finally, the new time-level solution is
formed by applying the limited anti-diffusion fluxes to the provisional
solution. If the anti-diffusion fluxes were not limited, the final
result would be simply that of the high-order scheme. The differences
that arise between the schemes of Ref. 227 and Ref. 98 are due only
to different construction of the flux limiter.

The extension of these steps to 2D is straightforward. Some care
must be exercised in the construction of fhe flux limiter, however.

The present flux limiter differs from that used in the earlier
version of FCT in two significant ways. In the first place, the
original form did not allow the new solution to move beyond the range
of neighboring values in the provisional solution, thus, the range of
neighboring values at the previous time level was not considered. Even

more significant, the original version limited the flux at a point based
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entirely on its individual effect, not in concert with the other member
of the pair {(in 1D) of fluxes that affects the solution at each grid
point.

In 1D the lack of consideration of fluxes acting in concert errs
on the conservative side by cancelling each member of the pair in the
cases when they would push the solution in the same direction. This does
not carry over into 2D, however.

The present limiter considers the cumulative effect of all fluxes
affecting the. solution at a point. With a maximum and minimum permissible
values defined for the solution, least upper bounds on the fractions
which must multiply a2ll anti-diffusive fluxes into and away from each
grid point to guarantee that the solution there does not move beyond
the maximum or minimum are determined., At each point this defines the
fraction of the combined flux that can be allowed. Each individual
flux is then multiplied by the minimum of the fractions determined for
all the points affected by this flux.

This is, in a way, the reverse of the philosophy followed in the
original form. 1Imn that case a fraction was assigned directly to & flux,
dependent on how this one flux affected the solution at the relevant
points. In the present case the fraction is assigned to the points,
dependent on the combined effect of all relevant fluxes. The difference
is subtle, and irrelevant in 1D, but important in higher dimensions.

There remains the choice of definition of the maximum and minimum
solution values to be allowed. A conservative choice is to take the
maximum to be the maximum of the provisiomal solution at the point in
question and at the adjacent points, with an analogous definition of the

minimum. However, this choice is essentially that used in the origimal
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FCT and results in the clipping phenomenon characteristic of the
original limiter. A less restrictive choice is to include the solution
values from the previous time level at the same three points in the
determination of the extrema. This allows the new solution to exceed
the range of the low-order provisional solution provided that it remains
within the range of the solution at the previous time level.

That the new limiter reduces the clipping phenomenon is evident in

the figure below:

15
2-8 LEAPFROG- TRAPEZOIDAL
600 CYCLES
=01
— ANALYTIC

-10 x  OLD LIMTER

O NEW LIMITER

Fig. 138. Same comparison as in Fig. 5, but with more accurate transport
algorithm (2-8 leapfrog-trapezoidal). Again note the reduced
clipping with the new flux limiter. (Ref. 227)

Here the high-order solution was a leapfrog-trapezoidal scheme with

second order in timeand eighth order in space (Ref. 117). The low-

order scheme was the domor-cell procedure with zero-order diffusion

added, as was cbmmon in the original FCT. Some clipping is still present,

however.

A further reduction is possible in 1D by projecting the~provisional
solution values to form peaks between grid points and including these

peaks on either side of the point in question in the determination of the
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extrema, as illustrated below:
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Fig. 139. A possible scheme for extracting information about extrema which
exist between grid points at a given point in time., An extremum
is assumed to exist between grid points i and i+l if the inter-
section of the right- and left-sided extrapolations of wt@ has an
x. and Hyoq- The w coordinate of the intersectionis then used in
the computation of wRaX and w1, (Ref. 227)

The results below show considerable improvement, with clipping virtually

eliminated.

15(

2.8 LEAPFROG - TRAPEZOIDAL
800 CYCLES

=01

— ANALYTIC

0 NEW LIMITER WITH wPeak
COMPUTATION (SEE TEXT)

10k

Fig. 140. Same as Fig. 138, except that Eq. (19) and (2), which utilize the
: wPE2¥ computation illustrated in Fig. 139, are used to compute wax
and w®iD in rhe new flux limiter. Values for the old flux limiter
since they are identical to those shown in Fig. 138, are not shown.

Note that the clipping has been virtually eliminated. (Ref. 227)
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It is clear that, in order to elminate clipping, some past history of
the solution extending to the sub-grid level must be included in the
limjiter.

The new flux limiter generalizes directly to higher dimensions.
The figures below show results obtained for rotation of a cylinder
with a cut-out using a leapfrog scheme that is second order in time and
fourth order in space (Ref. 117) as the high-order scheme. The low-order
scheme was the same as that used above. (The new limiter here did not

include the sub-grid peaks).

INITIAL CONDITIONS

Fig. 141. Perspective view of initial conditions for the two-dimensional
solid body rotation problem. Note that only a 50 x 50 portion
of the mesh centered on the cylinder is displayed. Grid points

inside the cyliner have w.. = 3.0. All others have w.. = 1.0.
(Ref. 227) H H
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Comparison of perspective views of the w profile after 157
iterations (1/4 revolution) with both the old and new flux
limiters. The perspective view has been rotated with the
cylinder, so that direct comparison with Fig. 141 can be made.
Again we plot the 50 x 50 grid centered on the analytic center
aof the cylinder. Features to compare are the filling-in of the
gap, erosion of the "bridge," and the relative sharpneds of the
profiles defining the front surface of the cylinder.

(Ref. 227)
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The superiority of the new flux limiter is apparent,

Zalesak (Ref. 226) states that with FCT in the form given in

Ref. 227,

involving a combination of higher and low-order methods,

higher order of resolution as obtained in smooth regions and sharper

representation of discontinuities, such as shocks, are also obtained.

No linear scheme of order higher than first will preserve the monotomnicity

of a step function.

Comparisons of several high-order schemes in this FCT framework are

given below for convection of a square wave. The low-order scheme was

the donor cell first-order upwind method in each case:

2D T4 EFSeD.2 I AW LT4 EFS-0.2
neer e —— ME « D OBIs 1-poc o A+ Q.00
..0E . a0

x x
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Fig. 144, The same test as in Fig. 117, but using FCT algorithms. The

"low-order" and "high-order'" components were selected from the
schemes shown in- Fig. 117. Results are shown using the donor cell
scheme as the low-order scheme and leapfrog-trapezoidal schemes
utilizing spatial derivatives of second, fourth, eighth, and six-
teenth-order accuracy,respectively as the high-order schemes.

Note that the monotonicity of the analytic solution is preserved

in all cases, and that there is a marked increase in the sharpness
of the profile as the order of the spatial derivatives is increased.

(Ref. 226)
134



PSEUDOSP T4 EPS5+0.2

4.0GDE O DENST T

AE - D.C1E3

Fig. 145. Tests of the linear advection of a square wave, as in Fig. 117,
but using the Fourier pseudo-spectral approximation of spatial
derivatives together with the leapfrog-trapezoidal temporal
discretization as the "high-order" scheme. Shown are results
for our pseudospectral-FCT scheme. The L, error of 0,0133 is
the lowest ever seen by this author for t%is problem. (Ref. 226)

Similar comparisons for a Gaussian are shown next:
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Fig. 146.

Tests of linear advection using FCT algorithms, but this time
using the sharply peaked Gaussian of half-width 24x used by
Forester. The standard output time (shown here) is after 600
time steps using a Courant number vAt/Ax of 0.1. We have used
exactly the same four FCT algorithms as in Fig. 144. Again note

the increase in accuracy as the order of the spatial derivatives
is increased. (Ref. 226)
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Clearly the combination of this form of FCT with higher-order schemes
in space 1is effective in reducing the dispersive error without intro-
ducing significant dissipation.
Zalesak (Ref. 225) again suggests that the ultimate convection
scheme may be a very high-order scheme operating in the FCT framework.
Chapman {Ref. 41) first calculates provisional values using a
higher-order method, and then uses these values to determine the diffusion
coefficients of first-order diffusion t€ImS to be added to these provisional
values, The diffusion coefficients are set to 0 or 1 according to whether
the provisional values are beyond the range of the local Lagrangian
solution, modified by the effect of nonuniform wvelocity. This is
accomplished as follows. By the characteristic equatiom, the solution
value one grid point at i - 1 will appear at some point between this
paint and point i at the next time level if the velocity is uniform.
With nonuniform velocity this value is modified by the term, —¢ux, which
is here expressed by a central. difference. Similarly, the solution
value at point i at the previous time level will appear at some point
between this point and the point i + 1 at the next level, subject to the
nonuniform velocity modification. Therefore, the maximum allowed for the

: * k&
provisional value at point i is max (¢i_1, ¢i’ ¢i+1)’ where

n n
* _n nf %kl 7 Yg-1) s L
¢k = ¢'k - ¢R(T At k=i-1, i, i+l
The lower limit is just the minimum of these three values.

Results for this type of switched dissipation applied to the Crowley

second-order scheme (Ref. 55, same as the Lax-Wendroff) are shown on

the following page for convection of a square wave.
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Fig. 147. Crowley second-order convection of square pulse. ¢max at
t =50 =12.2. (Ref. 41) .
s
"]
o
ﬁ-
Fig. 148,

Filtered Crowley second order, ¢ at t = 50 = 9.6,
max
(Ref. 41)
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Next a comparison is given for convection of a Gaussian of 2Ax
half-width by the Crowley scheme using (a) the Forester filter (Ref. 74)
set to filter 2Ax wavelengths, (b) the generalized form of FCT given by
Zalesak (Ref. 227) using upwind with. zero-order diffusion as the lower-crder
method and the original FCT lLimiter of Refs. 32, 28, and 31, {(c) FCT

as above but with the new limiter of Ref. 227, and (d) the present filter.
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Fig. 149. Gaussian test probe. {a) Filter of Forester; (b) FCT, old limiter;
(c) FCT, new limiter. (Ref. 41}
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Fig. 150. Gaussian test problem. Crowley second order plus FRAM. (Ref. 41)

Of these, FCT with the new limiter is the best, and FCT with the old
limiter is the worst.

The present scheme for uniform velocity is equivalent to the
generalized version of FCT using the.upwind scheme as the low-order
method, but with the present form of the limiter.

The next figure shows a comparison of the schemes mentioned above
for a square wave in a nonuniform velocity field. Also shown is FCT

with the new limiter and using the upwind scheme as the low-order method.
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Fig. 151. Test problem 2. (a)Forester's algorithm; (b) FCT algorithm, low-
order upwind +1/8; (c)FRAM plus Crowley. (Ref. 41)
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The upwind scheme is a better choice for use with FCT, and the present
scheme gives essentially the same tesults as this form of FCT. The peak

amplitude for the distribution of this problem as given by the numerical

solution is shown next.
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Fig. 153. Peak pulse amplitude as a function of time for au/3x < 0.
(Ref. 41) 200



Here FCT with upwind for the lower-order method was essentially
coincident with the results of the present scheme.

The construction of the present filter in 2D is similar to that
in 1D, with Y "u replacing u, in the modification of the Lagrangian
velocities used to set the limits. TFive points arenow used to form
the limits. In the figure below the unfiltered results are compared
with those of the present scheme and FCT using upwind as the low-order
method for a square wave. Here the FCT was applied separately in each

direction,

Fig. 154, Contour plot for second-order convective scheme, ¢max = 14.5,

¢min = -1.9. (Ref. 41)
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Fig. 155, Second-order with damping, ¢ = 9.81. (Ref. 41)

Fig. 156. Operator split FCT upwind, ¢max = 9,99, (Ref. 41)
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The FCT applied in this split manner clearly shows a skewness.
With fourth~order method the results are much sharper as shown

below:

Fig. 157. Fourth-order unfiltered, oy = 13-6- (Ref. 41)

Fig. 158. Fourth-order filtered, Ppax = 9-30. (Ref. 41)
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The fourth-order scheme used was that of Fromm (Ref. 72), which is a

two-stage method with the stencils

2D

and the flux at i + 1/2,3, for example, evaluated on the stencil

2 2D

The present scheme is said to require fewer operations than FCT.

Waveform Filters

In Ref. 74, Forester constructs a nonlinear filter based on the
additionof second-order artificial diffusion with the diffusion
coefficients set to 0 or 1 according to a test for slope sign continuity
on either side of a point. At each point where the sign of the slope
(the difference in the solution between grid points) changes, a range of
¥ points on either side is examined for additional slope changes. If any
are found, the coefficients are set to 1 at the central point and at M
points on each side. Here N is chosen to span one-half of the wavelength
of the longest waves to be filtered. Thus 2Ax waves are filtered for
N =1, 44x and shorter waves for N - 2, etc. The value of M is taken
to be less than that of N, half the largest even integer equal to or

less than N being a typical cheoice. The filter can be extended to longer
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wavelengths also by repetitive application, and this was found to be
more effective than increasing N for waves longer than 10Ax when higher-
order algorithms are used. Repetition until none of the diffusion
coefficients is set to 1 will produce a monotonic scheme. Several
comparisons of results using this filter have been given on p. 163=166.
Zhmakin and Fursenko (Ref.228 ) use a selective filter that
operates by setting a diffusion coefficient different from zero at
mid-points located in an N wave to produce a monotonic method. A

comparison with other methods is shown below for a triangular wave:

ZL first order sesond order
Z
f
as ¥
z &
a b
0_ ') n .
third order present C = 0.02
2
7
FAN 1 & 2 are
earlier and
later time
here
¢ d
1 L | 1 1
g éq 48 7 20 L7

Fig. 159. Note that unlike algorithms (1.4) - (1.7) with smoothing by
{1.8) ~ (1.10) the solution is not distorted at all in regions
of monotonic variation of the parameters, (Ref.228)
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Dispersion is reduced, but there is considerable dissipation.

Shapiro (Ref. 187) gives a filter based on repetitive applications
of the basic smoothing operator, Gxx’ with the coefficient used at each
repetition chosen so that wavelengths below a certain value are strongly
damped while longer waves are hardly damped at all. This filter is

shown to be equivalent to adding an artifical viscosity of order ZN given

by
2N
- N1 Ax, " N
FN = DL (2) 6xx
The 2D form is
N-1, 8, 2N N M1 Ay, 2 x
Fa = (=1 (T) Sex T -1 (2) 6yy
2N 2M
MHN Ay, Ay. N M
+ CLTNED G sl

The cross-terms are necessary to preserve the highly selective character
of the filter.
McRae, Goodin, and Seinfeld (Ref.146) discuss several types of
filters designed to prevent negative concentration. The simplest approach
is simply to reset any negative concentrationto zero. This procedure
will violate mass conservation, however. Mahlman and Sinclair (Ref. 138
take the concentration to zero from the downstream cell. A comparison
of these two filters with the Forester filter (Ref. 74) set to filter
all wavelengths less than 8Ax is given for a squarewave on the page following.

The Forester filter is clearly superior.
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Implicit Filters

Pepper, Kern and Long (Ref. 160) use an implicit filter of the

form (Aui - aéi)¢ = éuiE',where E-ls the solution being filtered and

o is a parameter to be set.

The 2Ax waves will always be damped out

completely, and the range of filtering extends to higher wavelengths as

the parameter & increases.
after a certain number of time steps.

convection to a rotating

Typical operation is to apply the filter

Analytical

*ax = 100

No filtering

§ = .01 every time step

Max = B4

o= 158X

S e

Max * 86

§* .005 every 2 time steps

Max = B7

b= 075X

§ = 007 every Cime step
(szme 45 § .01 evary 1D time

iy Max = 33

steps)

Max = 9

o 025K

Max = 96

§ = 0025 every S time steps

Max = 97
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Results from application to

cosine hill are shown below:

Fig. 161, Effects of
filtering on a cosine
hill distribution at
27 revolutions by
using chapeau
functions with

AX = AY = 2500 m.
(Ref. 160)



Alpert (Ref. 12) gives an implicit filter requiring a tridiagonal

solution:

Lm0y ¥ 2A+ DG+ W =gy =, + 205 + 4,

The 24x waves are completely eliminated and the smoothing of longer

waves is determined by ®. This filter has somewhat less damping than

the explicit fjlter at the lower wavelengths and a bit more at the
higher. However, this implicit filter is sharper than the explicit.

The implicit filter is made sharper by reducing o, while it is necessary
to add more points to sharpen the explicit filter. It is possible to

set the implicit filter such that there is less damping than the explicit
for all waves of interest, while still completely removing the 2Ax waves.

Khosla and Rubin (Ref. 115) replace the convective velocity with a

three-point weighted average of the form

. = i+l i-1 i
i 2 +k
sz
which is of order Tk Yk Im gemeral k can assume any value greater

than -2. The filtering effect decreases to Zzero as k becomes very large.

Artificial Viscosity

In Ref.-IB7, van Leer determines the minimum artificial diffusion
neceésary to stabilize some second-order methods. This artificial
diffusion is found to be proportional to the square of the Courant number.
This topic is continued by van Leer in Ref. 122 where it is noted that
the minimum artificial diffusion for second-order methods corresponds to
that in the Lax-Wendroff method. Also determined is the minimum amount

for montonicity, this corresponding to the first-order Godunov method
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There are no linear monotonic sthemes higher than first order.

The question of monotonicity is further pursued by wvan Leer in
Ref. 123, and Fromm's second-order composite scheme (Ref. 72), formed
as an average 0of schemes with lagging and leading phase error, is made
monotonic through the inclusion of nonlinear feed-back terms. The
dissipaticn is naturally increased, but oscillations are eliminated in
the monotonic form. The scheme retains its formal second order, however.

Sirinivas, Gururaja, and Prasad (Ref. 194) give a first-order
scheme based on the addition of the local minimum amount of first-order
artificial viscosity to a second-order central difference scheme required
to ensure stability locally., This scheme is related to the first-order
van Leer scheme of Ref. 72 and the first-order Rusanov scheme (Ref. 184).
The scheme does not guarantee monotonicity, and extra viscosity must be
added near shocks. The Lapidus form of third-order artificial viscosity
was uged by Sod in Ref. 191,

Strauss {(Ref. 205) notes that the use of second-order artificial
viscosity based on the difference of the diagonal averages across
a square cell in 2D, as given by Chan, is equivalent fo using
26XX - 6dd’ instead of axx’ for the artificial viscosity, where add has
the same form of sxx but rotated 45°. This nine-point form has less
damping for long waves than the usual five-point form, while still
eliminating the 2Ax mode,

Dukowicz and Ramshaw {Ref. 62) introduce a multiple-dimension
tensor artificial viscosity based on representation of the second time
derivative in the Taylor series expansion in terms of spatial derivatives
through differentiation of the differential equation without assuming unniform

velocity. Actually only the part of this term involving second derivatives
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of the concentration is used. The resulting scheme is first order.

Chin and Hedstrom (Ref. 44) show that it is better to add an
artificial viscosity to a nondissipative scheme than to use a scheme
with built-in dissipation.

Sod (Ref. 191) found that with high-order methods using the
appropriate high-ovder artificial viscosity term, the coefficient of
numerical diffusion was so large that the time step was limited to
prohibitively small values. A third-order artificial viscosity was

the largest that could be used.
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VI. TIME-SPLITTING

One-dimensional schemes can be applied to higher dimensions in a
sequence of properly factored steps. It is also possible to include
physical diffusion in succession to convection in this manner.

Multiple Dimensions

Since time-split methods operate as a sequence of 1D methods, this
approach achieves maximal stability properties because the amplification
matrix is a product of matrices each of which is derived from a 1D scheme,
so that the stability requirements are those of the imdividual 1D scheme.

Strang introduced the symmetric product form of time-splitting which

preserves the order of second-order methods in Ref. 203, in the form

Lx(-é%:-_) Ly(At)Lx(—%E). Earlier, Strang (Ref. 201) had proposed the sum
of products form, %[Lx(At)Ly(At) + Ly(At)Lx(At)]. The symmetric product
form requires fewer operations than the earlier form.

Several generalizations and extensions of Strang-type splittings are
given by Gottlieb in Ref. 82 for any number of dimensions. All of these
schemes are symmetric in some sense and preserve the second order of the
component 1D schemes. TFor ease of understanding, these schemes are given
below for three dimensions, the generalizations to higher dimensions and
the specialization to 2D being easily inferred.

The first scheme was originally given by Strang (Ref. 201) and has

the form

L =

1531 ELiL,L

ik
where i,j,k represent cycliec permutationsof the indices x,y,z, and the

summation extends over all permuations (six terms).
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The new generalizations introduced by Gottlieb follow. In each

case obvious variations are possible:

Ny
[Ny

L

Moy

1/2
L, =1 LL "L
2 zZ°y

®

y

e

where the superscript indicates the use of >

in the 1D operator.
L, = E{L LL 4+LLIL)
3 2%y =z 2y %

The 2D forms of both of the above two schemes were also introduced by
Strang, in Ref. 203 and Ref. 20Z, respectively. The 3D versions of
both of these schemes were originally given by Gourlay and Morris
{Ref. 86). Finally any symmetric combination of portions of the above
two schemes is also a valid second-order scheme. TFor example, the

following scheme was considered:

=
Mo
e

L, = 3L (LyLz+LL)L

zZ y X

N

Other possibilities are easily inferred.

The first scheme, Ll’ is grossly inefficient compared with the
others, requiring about 1/3 more operations in 2D and three times as
many in 3D. The second scheme,.LZ, is the most efficient, requiring

3/4 as many operationsg as the other two in 2D, and 5/6 as many in 3D.

The stability of all the schemes is that of the individual 1D components,

a feature characteristic of splitting methods. Implementations of the

schemes L, and Ly in 3D were given by Gourlay and Morris (Ref. 86)

and are repeated by Gottlieb. An implementation of the scheme L4 is also

given by Gottlieb.

Eilon, Gottlieb, and Zwas (Ref. 65) found the Strang symmetric
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splitting (Ref. 201, 203) of the form L to be more efficient than
several split and unsplit methods for 2D.

Burstein and Mirin (Ref. 35) give another second-order symmetric
splitting based on combination of splittings given by Strang:

2
3(L

y
]
x

Mot

i s 1
L+ L?LLY) - =(LL +1L1L)
y y Xy 6 %"y ¥y X

Of more interest, a third-order splitting is given:

| 4

122
9.3.3 .3
X

-

y

= L. L L

SXyL

1
-7 Lkl

W

where each 1D operation is third order. It is also shown that any third-
order splitting must involve six 1D operations.

Morchoisn, Ref. 149, uses the time-split approximate factorization
procedure with the residual evaluated in a pseudospectral manmer, while
using difference expressions in the matrices multiplying the solution
change in the delta form. Approximate factorization time-split ferms are
given by Beam and Warming in Ref. 24 which are second order in time, and
in space are second or fourth-order central or second-order one-sided.

Multiple Processes:

The use of convection followed by diffusion is considered in some
detail by Pironneau in Ref. 165, McRae, Goodin, and Seinfeld (Ref. 146)
use symmetric time.splitting for a reacting flow, with the chemical step
in the middle.

Numerical Considerations

Some forms of time-splitting can introduce error either because
the combined steps do not reproduce the difference equations exactly or

because theintermediate steps are not consistent approximations of the
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difference equations. Error of the first sort occurs, for instance,
when terms of the order of the temporal truncation error are added to
the difference equations in order to factor the equations into a product
of 1D difference operators. This type of error is no real problem with
the small time steps of explicit methods, since the formal order of the
difference approximation is not altered. It can be significant, however,
with the large time steps allowed in implicit methods. The other kind
of error results fromthe fact that the proper .expression of the boundary
conditions is not clear if the intermediate steps are not consistent
approximations of the time-dependent equations. Both of these types
of error in splitting methods are discussed by Dwoyer and Thames in
Ref. 63, and procedures for removing these sources of error are given.
Gourlay and Morris (Ref. 85) discuss the formulation of immediate
boundary condition for the time-split methods given by Strang (Ref. 203).
The use of explicit boundary conditions in implicit schemes was found
to be satisfactory.
Abarbanel and Gottlieb (Ref. 2) note that the locally one-dimensional
splittings that have beer in common use in explicit methods, such as
the MacCormack method, are not optimal in stability when mixed derivatives
are involved. They show that the optimal splitting involves a split
into a hyperbolic part (convective terms), a parabolic part {(double
second derivatives) im each direction and a mixed-derivative part. In
2D there are thus five distinct factors in the split. A symmetric product
of these factors then preserves second order in space and time. This has
no bearing on pure convection problems, of course, since the mixed derivatives
arise from the diffusion terms.

In Ref. 105, van der Houwen discusses general multi-stage splittings
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to construct iterative solutioms for implicit methods. In particular,
the increase in order from that of theinitial guess toward that of the
difference approximation is covered. It is shown that the formal oxrder
of the difference approximation can be reached in finite number of
iterations but stability considerations, and accuracy at finite At, may

require tighter convergence.
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VII. VARIOUS CONSIDERATIONS

Stability

Stability in the linear sense is analyzed by substitution of elementary
waveforms into the difference equation, as has been mentioned earlier.
Explicit methods will have limitations on the Courant number, which
become more restrictive as the number of dimensions increases. This
decrease in stability ip multiple dimensions can be circumvented by
time-splitting as noted above. Some other considerations follow in
this section.

Gerrity (Ref. 79) shows that the second-order Lax-Wendroff method
can exhibit a nonlinear instability which is associated with the separation
of solutions on alternate grid points. Robert, Shuman, and Gerrity (Ref. 173)
discuss nonlinear instability and recommend time-averaging as a control.

Griffiths, Christie, and Mitchell (Ref. 92) show that error can
become arbitrarily large after a finite number of time steps even though
it ultimately decays to zero. Thus the accuracy of the steady-state
solution may not necessarily be a good indication of that of the transient
solution. It is also noted that the von Neumann method of stability
analysis is more indicative of stability at finite time than is the
spectral radius approach.

Piacsek and Williams (Ref. 164) show that the difference form

Uil Opp1 T Yaoy Pyp b5

wp) = ( )24x 1

is more stable than the form
Wiy = Togy(on + 00 - vy oy + 0, D120x ()

The first of these differs from the second by subtraction of the term

b4

14 T ui_%)/ZAx, which is a type of mass residual correction (being
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zerc when continuity is satisfied in the 2D case).
Zalesak (Ref._.225) notes that ZIP differencing of fluxes, i.e.,

representing (u¢)x as

(W), = [o) - (ue) ,1/ix &)
with

= 1

(08) gy = 5Cuybypy + vty (4

is equivalent to expanding the product derivative and then representing

each of the derivatives by central differences:

(u¢)x =udp, +ug
=gl -0y ) 20
+ qsi(ui+1 - ui~l)/2Ax (5)

An alternate representation uses averages of the product:
= %(u. ¢, +
(o) yyy, = %0y + Uy i) (6

The truncation error of the average-of-product form contains both odd

and even derivatives, while that of the ZIP form has only odd derivatives.
The formal order is the same in each case. The presence of the even
derivatives in the trumncation efror of the average-of-product form

results in numerical diffusion which may be negative and hence destabilizing,

A third form, product-of-average, is given below;
(Wh) .y =3, +u ), + 6. ) %
i+% 4 71 1M i i+l

This form is actually the average of the above two forms, and hence also
has the even derivatives in its truncation error, though half those of

the average-of-product form. Thus the ZIP form can be expected to be
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the most stable of the three, and the average-of-product the least stable.
The greater stability of the product-of-average form relative to that
of the average-of-product form was noted by MacCormack (Ref. 136) and
by Grammeltvedt (Ref. 87).

Higher-order ZIP representations require only higher-order representation
of thederivatives in the expanded product derivative. Specific versions
up to sixth order are given by Zalesak in Ref. 225.

MacCracken and Bornstein (Ref. 137) show that flux is better represented
on nonuniform grids by averaging the contravariant velocity, i.e.,
averaging the product of the geometric term and the velocity, than by
using the product of the individual averages.

Gresho and Lee (Ref. 90) argue that the answer to oscillations,
often called wiggles, that result from dispersion errors and are
induced by boundary conditions and at discontinuities in the solution
or grid, is to refine the grid, rather than to use methods with large
numerical dissipation. The use of centered time forms, i.e. Crank~
Nicholson, is also suggested. Oscillations in time are said to be
indicative that the time step is too large. The oscillations that ocecur
with central differences for all Reynolds numbers above 2 can be suppressed
by going to upwind differencing. However, in that case the solutien
becomes essentially independent of the cell Reynolds number for the larger
values thereof and hence only represents a solution with an effectively
increased diffusion, i.e., that injected by the numerical method rather

than the physical diffusion.

219



Curvilinear Coordinate Systems

Numerical grid generation has now become a fairly common tool for
use in the numerical solution of partial differential equatioms on
arbitrarily shaped regions. This is especially true in computational fluid
dynamics, from which came much of the impetus for the development of this
technique, but the procedures are equally applicable to all physical
problems that invelve field solutions.

Numerical grid generation is basically a procedure for the orderly
distribution of observers over a physical field in a way that efficient
communication among the observers is possible and all physical phenomena
on the entire continucus field may be represented with sufficient accuracy
by this finite collection of observations. This technique frees the
computational simulation from restriction to certain boundary shapes
and allows general codes to be written in which the boundary shape is
specified simply by input. The boundaries may also be in motion, either
as gpecified externally or in response to the developing physical solution.
Similarly, the observers may adjust their positions to follow gradients
developing in the evolving physical scluticn. In.aﬁy case the numerically
generated gridallows all computation to be done on a fixed square grid
in the computational field. (Computational field refers to the space of
the curvilinear coordinates, i.e., where these coordinates serve as
independent variables, rather than the cartesian coordinates. This field

is always rectangular by construction as explained in Ref. 209.)
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The area of numerical grid generation is relatively young in wide-
spread practice, although its roots in mathematics are old. This area
involves the engineer's feel for physical behavior, the mathematician's
understanding of functional behavior, and a lot of imagination, with
perhaps a little help from Urania. The physics of the problem at hand
must ultimately direct the grid points to comgregate so that a functional
relationship on these points can represent the physical solution with
sufficient accuracy. The mathematics controls the points by sensing the
gradients in the evolving physical solution, evaluating the accuracy of
the discrete representation of that solution, communicating the needs
of the physics to the points, and, finally, by providing mutual communication
among the points as they respond to the physics.

The basic techniques involved then are as follows:

(1) a means of distributing points over the field in an orderly.

fashion, so that neighbors may be easily identified and data
can be stored and handled efficiently.

(2) a means of communication between points, so that a smooth
distribution is maintained as points shift their positionms.

(3) a means of representing continuous functions by discrete values
on a collectionof points with sufficient accuracy, and a means
‘for evaluation of the error in this representation.

(4) a means for communicating the need for a re-distribution of
points in thelight of the error evaluation, and a means of
controlling this re-distribution.

It should be borne in mind that the requirements, e.g., smoothness,
orthogonality, ete., that must be met by the grid are ultimately determined
by the numerical algorithm to be run on the grid. Thus, at the same

time that effort is made to generate better grids, a like effort should

be made to develop hosted algorithms that are more tolerant of the grids.

Congiderable progress has been made im the past decade, especially

in the last few years, toward the development of these techniques and
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and toward casting them in forms that can be readily applied. A compre-
hensive survey of procedures and applications through 1981 has been
published (Ref. 212), and two conferences specifically on the area of
numerical grid generation have been held, the proceedings o¢f which have
been published (Ref. 189 and 210). Some expository papers are included
in the latter proceedings (Ref. 210) which can serve as an introduction
to the area. A later reviewand correlation is given in Ref. 211,

Derivative Representations

Derivatives of a function may be approximated on a discrete grid
either by interpolation or by mapping. In the first case the function
is approximated directly in the physical region by an interpolation
function which matches the given function at certain grid points. This
interpolation function then is differentiated, and the derivative is
evaluated at the point in question. The resulting difference expressions
are simple on uniform grids, but are usually complicated on nonuniform
grids, and may haveto be rederived as different grid comfigurations occur.
This is especially troublesome in higher dimensions.

In the mapping method, the derivative in the physical region (with
respect to the cartesian coordinates) is transformed analytically to be
expressed in terms of derivatives in the transformed region (with respect
to the curvilinear coordinates) and the metric coefficients, i.e., the
derivatives of the cartesian coordinates with respect to the curvilinear
coordinates (cf. Ref. 209). The derivatives in the transformed region are
then evaluated from an interpolation function as discussed above. Since
the grid in the transformed region is uniform by constructiom, the resulting
formulas are straightforward. Grid configuratioms and higher dimensions
present no problems in this procedure, since the transformation-relations

account for the general case through the metric coefficients. However,
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the accuracy of the difference representation obtained by the mapping
method depends on the smoothness of the grid, as well as on that of
the given function, as discussed in the following subsection.

Nonuniform Grid - Exact Metric

With the mapping method, the truncation error in a difference
representation is dependent not only on the higher derivatives of the
solution that appear in the coefficients of the Taylor series expansion,
but also on the distribution of the grid points, as reflectred by the
appearance of the metric coefficients, i.e., derivatives of the cartesian
coordinates with respect to the curvilinear coordinates. Therefore, as
is discussed in Ref. 212 and further in Ref. 142, the formal order of
accuracy of difference expressions may be reduced as the coordinate system
departs from uniform’spacing or from orthogonality. There are thus
elements of the truncation error that arise from the rate-of-change
of the grid spacing, and sudden transitions between regions of fine and
coarse grids can introduce significant error intc the mumerical solution,
in the form of a numerical diffusion which may even be negative and
hence destabilizing. This effect has been mentioned by a number of
investigators, but there still does not seem to be a complete awareness
of this need for smoothness in the grid.

As an example of this effect, consider the one-dimensional transfor-

mation of the first derivative f: _fx = fglxg (1)

Now if fE is represented by the usual two-point central difference
expression, the leading term of the truncation error of fE will be

2
%:fgggﬂg - However, it is clear that AZ will cancel from a difference

representation of the above expfession for fx’ and therefore may as well

be taken to be unity. (This cancellation is reflected also in the terms
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of the truncation error, since a multiplication of £ by any constant will
leave all terms inversely proportional te that constant, e.g.,

fgggAE - %u The division by xg that occurs in the expression for fX will
then cancel the constant).

Therefore it is not correct to ascribe second-order to the central
difference expression on the basis of the appearance of AEZ in the leading
term of the truncation error. In fact, the truncation of the Taylor
series expansion at this term is not evenr justified without further
consideration. The c¢rux of the matter is that truncation error is not
properly expressed in termsg of derivatives of the solution with respect
to the curvilinear coordinates since such derivatives, unlike the cartesian
derivatives, are grid-dependent. All derivatives in the Taylor series

must therefore be transformed back to the physical plane before a meaningful

expression of the truncation error can be obtained.

For the above one~dimensional example, the transformed expression

of £ is

EEE

f =

3
EEE xgggfx + 3x.x,  f _ + xf (2)

ETEE xx £ XXX

With A taken as unity, the leading term of the truncation error of the

difference expression of fx is then

X
EEE .
X X

1
° %

12
XEEfxx B Exifxxx (3)

_1
2

However, since the truncation error terms are not affected by a normalization

of £, there is no basis at this point for truncating the Taylor series.

The next non-vanishing term centains fggggg, which is transformed in

terms of products of the first five derivatives of f with respect to x

and derivatives of x with respect to £, in each term of which the total

number of differentiations with respect to & equals five. The successive
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terms of the Taylor series would involve odd derivatives of f and
successively higher total number of g-differentiations of x. (All
the terms with even derivatives of f with respect to £ vanish.) 1In
general, therefore, all of the terms of the series must be retained.
The severity with which the rate of change of spacing is limited can

be seen from the fact that the first term in the expressions above

x
causes a percentage error in fx of l%g qﬁég-. If the percentage
£

increase in xE from one point to the next is o, then the percentage
error in fx from this term is approximately a2/600. This means that

an 8% increase in spacing will cause a 0.1% error, while a 24% increase
in spacing will lead to a 1% error. Doubling the spacing at each point
will produce a 17% error in fx just from this term alone.

The crucial point then is how the higher derivatives of x are related
to xg. For the truncation error to be formally second order in general,
these higher derivatives must be proporticnal to the corresponding
powers of Xes i.e., X(q) - xg, where x(q) indicates the g-derivative of

2

x with respect to §. With this relationship we have XEE b xg and
2

XEEE/XE v KE in the leading term, and in the succeeding terms the products
involving a total of n differentiations with regpect to £ will be of order
Xn

g" £

and therefore the series can be truncated after the lead term shown above.

These succeeding terms will thus be of order greater thanm 2 in x

The representation is then second order. The above condition thus assures

the retention of order on a nonuniform grid in general. In fact, if

x(q) xg, where p < ¢, then the order of the difference representations
will be degraded by g-p onthenonuniform grid.

If the spacing increases by a fraction o at each point, we have,

~ uq'ng. It is then sufficient to have a ~ x,_ to get

approximately,

x(q) 13

second order. This can be accomplished, with correct dimensionality,
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if o = KE/At, where Ax  is the total range of x in the field. Thus
second order is assured in general if the fractional change in spacing
is limited to the ratio of the spacing to the total distance over the
field.
This, however, is not the case for some commonly used point distributions.

For instance, consider the exponential distribution

e
al
e

[+73 -1
x(E) = x, + (X2 - Xl) ————i—I (4)

where [xl, x2] is the range of x, and [0,I] is that of &, Then

227" qoe  q=1,2,... (5
(q) al
e =1
so that X ~ aq_lxg. If the slope, S, is specified at £ = 0 we have
X, - X
B!
S — ol o (6)

which determines the parameter a.
Now there are two ways of looking at order on a nomuniform grid.

For a difference representation to be -q-order, the truncation error must

g0 to zero with the spacing, xg, as xg. From the above expressions for
the minimum spacing, S, it is clear that x, can be driven to zero either

€

by adjusting the parameter o with a fixed number of points, or by increasing
the number of points, I, with fixed a. Since the latter case has no effect
T X,_ as x

() £ 12

sense of order all the difference representations are incomnsistent. In

on the parameter a, we have x + 0 in this case, and in this
the other sense we make 5, and therefore X, approach zero by having a

o ; . 1
approach infinity. In this case, « varies as #n E—for small S, so that

as the spacing approaches zeroc we have x(q) ~ (fn i%&q_lx so that

£ &

226



all difference expressions are inconsistent in this sense also.
In the first term of the truncation error expression, (3), for
2
/

the first derivative, we have x @ . This term alone will cause

: gee/ %
a (100/6)(a ) percent error in fx' That these limits are meaningful

is evidenced by the fact that thefxrterm in the leading term of the
truncation error, (3), causes a 0.1% error in fx when az = 0,6/100,

which corresponds to a minimum spacing of 9% of the average spacing

for 50 points. With more points the situation improves somewhat, with
the 0.1% error occurring for a minimum spacing of about 0.4% of the
average for 100 points. Thus the exponential distribution is not a
reasonable choice for cases in which the spacing is to have a wide
variation over the field.
The determination of a point distribution funetion for which the
order of difference representations will be retained on the nonuniform
grid is the subject of Ref. 217. The conditions obtained are less
. restrictive on the change in grid spacing than those given above, but,
unlike the above conditions, are dependent on the solution being done

on the grid. The results can be understood by consideration of the
truncationerrarfor a first derivative, using first-order derivatives with

respect to the curvilinear coordinates;

1 g
-5 f -

X x 2 ngxx

(7

Here the second term is first order in any case. For the first term

to be first order we must have
b4 X f
P fx ngxx or 2 —f';-—
xE x

£

Now the least restriction on the grid is made if we satisfy this condition

by requiring £
x
X X,  and x, "
£g g 3 fxx
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which are the conditions obtained in Ref. 217, It should be noted that
the second of these conditions implies a lower limit on the spacing, xg.
In the same way for the truncation error with second-order derivatives

with respect to the curvilinear coordinates, (3), to be second order we

must have

gge oL 2 -2
fx xg fxxx and xggfxx xg fxxx

The first of these is satisfied with least restrictiom on the grid

by requiring

P

2,
gEE ¢ £ £

x

These conditions, together with the conditions already imposed for
2
first order, (8), are sufficient to make x__f ~ %, f also. Therefore,
EExx £ XXX

the conditions for second order are

X v x X T x x,. ” EE—- and
EE £’ EEE £’ £t ?
2
x, fx (9)
fxxx

which, again, are those obtained in Ref. 217. The development of these
conditions in Ref. 217 follows a more abstract line which does not require
derivation of the actual truncation error expression.

The generalization to arbitrary higher order, @, is now clear:

f
x, and xq_l -~ X

e g =2,3,...,00 (10)
¢ ¢ f(q) :

X

(q)

where the subscript, (q), on X indicates differentiation with respect to
the curvilinear coordinate, while that on f indicates differentiation
with respect to the cartesian ccordinate. For higher derivatives, P,

the conditions for order Q are the same as the above except that q ranges
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up to ¢ + P.

Several distribution functioms, x(E), with specified slope {grid
spacing) at one end and zero curvature at the other are evaluated in
Ref. 217 4in regard to satisfactiom of the parts of the above conditions
that depend only on thegrid. This evaluation is based on examining
the behavior of the ratio, x(q)/xg, as the specified slope approaches
zero. Although this ratio becomes unbounded for all the functions
considered, some functions yield a logarithmic approach to infinity,
and .thus will have this ratio of much lower order at small nen-zero
spacing than will fumctions for which the approach to infinity is stronger.
Functions producing this stronger approach to infinity will provide the
specified small spacing at the clustered end, but will leave the other
end seriocusly depleted of points. In this respect, the hyperbolic
tangent and the error function were found to be satisfactory, with the
former having a lower value of the ratio at any given slope. The
exponential,'sine, inverse tangent, and inverse hyperbolic sine were all
unsatisfactory. These results apply also to.functions with individually
gpecified slope at each end and no curvature specification.

Also considered are functions having the zero curvature at the end
with the specified slope. Among these functions, the hyperbolic sine
was satisfactory, while the tangent, inverse gine, and inverse hyperbolic
tangent were not. These results apply also to functions having the slope
and zero curvature specified at a common interior point.

With zZero curvature specified at one end, the hyperbolic sine
function gives a more sparse point distribution at the unclustered end
than does the hyperbolic tangent fungtion for the same specified slope.

The maximum value of the ratio x(q)/xE occurs at the unclustered end
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with the former and at the clustered end with the latter. Therefore,
aside from consideration of the solution derivatives, the hyperbolic
sine would have the lower truncation error at the clustered end. TFor
specified slope (square root of the product of the slopes when gpecified
at both ends) that is greater than the average slope over the field,
the hyperbolic functions must be replaced by the corresponding circular
functions in each of these cases.

As noted above, these conclusions are based on consideration only

of the condition x(q) T x The other conditions given above are com-

£
ditions directly on the spacing, and therefore can be satisfied in any
given case by limiring the spacing. The conditions given by (18)

are probably more reasonable than those given earlier, i.e.,

x(q) - Xg, for general application. The latter condition guarantees

the order of the difference representations regardless of the function

to which they are applied, in the strict sense of order, i.e., that

the truncation error go to Zero as a power of the spacing. The former
conditions, however, actually relate to the behavior of the representations
at small but finite spacings, with a lower limit being imposed on the
spacing by the solution function te which the difference representations

are applied.

Nonuniform Grid - Difference Metrig

All of the above considerations have assumed that the derivatives
of x with respect to § are evaluated exactly. The use of difference
expressions, rather than analytical evaluations, for these derivatives
does not necessarily decrease the accuracy, but may in fact actually

reduce the truncation error. Returning to the central difference
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expression for the first derivative, we have by the Taylor expansion

f f - £,
L= i+12x i1 _ 2i [fx(ng +-% Xepe + ..) + other terms (11)
3 & 3

W

If Xy in the denominator is evaluated analytically we have for the first

1 Free
6 x

erroxr discussed above. However if xE in the denominator is evaluated

term, fx(l + ), which yields the first term of the truncation

by the central difference expression

.1 _x 41
xp = gl 0 —x 4) = Xe F g Xppp * e (12)
we will have for the first term above,
fx(ng + -]3: xggg+ .
T : = fx exactly
2 = + ...
(xg + 5 Xepr )

Thus, if the derivative xg in the expression fx = f£/x£ is evaluated
by the same difference expression used for fE’ rather than by amalytic
evaluation, then the fx term disappears from the truncation error.

Thus, even though analytical expressions for the metric coefficient
may be available, it is still generally better to evaluate the metric
coefficients by the difference representations used for the dependent
variables. This point is also noted in Ref. 217. Ref. 114 gives an
example of a case when such numerical evaluation gave smoother results
than analytical evaluation.

Nonorthogonality

The general two-dimensional case can be analyzed by the same
procedures used above, transforming all derivatives of the dependent
variable with respect to the curvilinear coordinates that appear in

the truncation error into derivatives with respect to the cartesian
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cocrdinates. The order is preserved with the nonuniform spacing in the
physical field provided the higher derivatives of the cartesian coordinstes
with respect to the curvilinear coordinates are proportional to powers
of the first derivatives of a total degree equal to the total order of
the derivative.

In this case an additional element of the error due to departure
from orthogonality appears in the following form for a sheared one-
dimensional system:

1
-X cote(i fxxcote + fxy) (13)

£g

where 6 is the angle between the coordinate lines. Thus for formal second

2
order it is necessary that x_,coté ™ x

(23 g

be satisfied when x(q) "-Kg, as already required for formal second order

Note that this condition will

above, provided the departure from orthogonality is less than 45°.
Reasonable departure from orthogonality is therefore of little concern
when the rate-of-change of grid spacing is reasonable.

Large departure from orthogonality may be more of a problem
at boundaries, where one-gided difference expressions are needed.
Therefore, grids should probably be made as nearly orthogonal at the
boundaries as is practical, as has been mentioned earlier.

Conservative Forms

When the partial differential equations to be solved on the grid
are differenced in conservative form, it is possible for the metric
coefficients to introduce spurious source terms into the equations, as
has been noted in several works cited in Ref. 212 and discussed also in
Ref. 209 and 196 . This occurs because in the conservative form, the
metric coefficients are brought inside the difference operators, and

if the differencing of these coefficients does not result in ‘exact numerical
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satisfaction of the metric identities, then non-vanishing terms will
remain in the expressions of the gradients of uniform physical quantities
These metric identities are obtained from the differential equations
when the dependent variables are all uniform.

This effect is illustrated simply by consideration of the following

conservative and non-conservative forms of a first derivative:
£o= gy ), - (Fy) 1= ey - £y) (16)
x J ne £'n JEn neg

If £ is uniform the non-conservative form clearly gives a vanishing
fx’ However, this is not the case with the conservative form unless the
differencing is such that (yn)E = (Yﬁ)n numerically. 1In particular,
if the metric coefficients are evaluated analytically, this identity
will not be satisfied numerically when these coefficients are differenced.
(This is true even in the simple case of cylindrical coordinates.)
This illustrates the importamt fact, also alluded to above, that it is
not how accurately the metric coefficients are evaluated that is
important, but how accurate are the overall difference expressions.

This effect extends also to metric identities between space and
time differences when the grid is time-dependent. Here the conservative
difference form of the continuity equation.wjillreduce to a metric
identity, which involves the time derivative of the Jacobian, when the
dependent variable is uniform. If this identity is not satisfied
exactly, this equation becomes an evolutionequation for the Jacobian.
It thus may be necessary to evaluate the Jacobian from this equation, rather
than directly from the coordinate derivatives, for use in some places
in the equation, while the direct evaluation isused in othgrs. Several

relevant references are cited in Ref.212.
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It is possible in many cases to achieve exact numerical satisfaction
of the metric identities through careful attention to the differencing
and the evolution of the metric coefficients. As noted above, thege
coefficients should be expressed by differences, not analytically. The
metric coefficients should be evaluated directly from coordinate values
wherever they are needed. The metric coefficients should never be
averaged, since use of average values will almost certainly result in
lack of satisfaction of themetric identities. Values of the coordinates
at points between the grid points that are needed to coustruct difference
expressions that will satisfy the metric identities-can be obtained
by averaging between the grid points. Another alternative is to generate
a coordinate grid with twice as many points in each direction as are to
be used in the physical solution. In Ref. 185 this direct evaluation of
the metric coefficients at all points needed in the difference expressions
did, in fact, eliminate problems with the metric identities.

The exact satisfaction of the identities becomes more difficult in
three dimensions and in schemes involving higher-order operators or
unsymmetric difference expressions. When exact satisfaction is not
achieved, the effects of the spurious source terms can be partially
corrected, as discussed in Ref. 196, by subtracting off the product of
the metric identities with either a uniform solution or the local
solution. The former amounts to using a kind of perturbation form, while
the latter is, in effect, expansion of the product derivatives involving
the metric coefficients and retention of the supposedly vanishing terms,
thus putting the equations into a weak comservation law form, Subtraction
of the product with the uniform free stream solutiom wasused in Ref. 34,

because of the difficulty insatisfying the metric identities exactly with
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flux vector splitting which involves directional differences.

Finally, Zalesak (Ref. 226 and .225) states that nonuniform
grids are best handled by coordinate transformation. Ciment, Ref. 49,
discusses the matching of difference schemes across grid interfaces
using overlapping points. Browning, Kreiss, and Oliger (Ref. 33)
note that waves that are poorly represented onm a coarse grid will change

phase speed when passing through an interface to a finer grid.
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VIII. CONCLUSION

The computer simulation of convection of concentration profiles having
large gradients requires a numerical scheme that has very low dispersion,
s0 that phase errors are reduced, and also low dissipation, so that con-
centration peaks are not eroded. Baker (Ref. 17) notes that the dispersion
inherent in the difference representations is the dominant source of error
in convection problems,

In finite difference solutions the true phase can be approximated
accurately only for the longer wavelengths, cf. Turkel (Ref. 214) and
Gottlieb and Turkel (Ref. 84). It is thus more important that a scheme
have small dispersion at longer wavelengths than at the shorter wavelengths.
The inaccurately represented shorter wavelengths are of little significance
and are appropriately damped or filtered to preserve stability. The
shortest wavelength mode, i.e., 2Ax, that can appear on the grid is, in
fact, stationary for all difference methods (Fromm, Ref, 74), and therefore
must be damped. Dissipation thus should be largest at the shorter wave-
lengths. Ideally a scheme should be highly selective in damping or filtering
only the shortest wavelength present.

Several investigations have indicated that there is no point in
searching for lower-order schemes with sufficiently good phase quality
and sufficiently small dissipation to repregent the convection of strong
concentrations over long time. It is necessary to use higher—order methods
with appropriate filtering of only the shortest wavelengths. As noted
by Forester (Ref. 74), higher-order schemes can handle steeper gradients
without introducing spurious oscillatioms, i.e., computational moise. The
steeper the gradient, the higher the order that is required. Both the

amplitude and the wavelength of the noise decrease as the order increases.
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The amplitude increases with the solution gradients. The wavelength
increases with the Courant number.

Since small phase error is of greatest importance, higher-order
schemes should be used. An increase in order seems to be more effective
than an increase in the number of grid points, cf. Williamson and Brouning
{Ref.223). Similarly, in finite element methods an increase in nodal
continuity is more effective than an increase in nodes, cf. Sobey
{(Ref. 190). However, extensions to continuity of second derivatives seems
to be beyond the point of diminishing returns with finite elements.

With no physical diffusion present, symmetric space differences can
lead to spatial oscillations, often called "wiggles," near sharp gradients
when the cell Reynolds number exéeeds 2. This is due to a nonlinear
instability that is essentially independent of the Courant number, cf.
Ref. 124. These oscillations occur with implicit methods as well as with
explicit. These oscillations can be suppressed by using methods with
large artificial dissipation, but this effectively lowers the Reynolds
number of the solution, It has been shown by several investigators that
proper grid resolution can remove these oscillations without adding
dissipation. Monotonic schemes, cf. Kholodov (Ref. 112) and van Leer (Ref.)
suppress the oscillations but at the expense of unacceptable dissipation.

Fromm (Ref. 72) notes that dissipation is absent from time-centered
schemes. However, since short wavelength components are never represented
accurately, there must he some dissipation, either inherent or artificial,
to damp these components,un}gsé the physical problem contains sufficient
diffusion to suppress the oscillations that result. First—order upwind
differences damp the oscillations quite effectively, but are entirely too

dissipative for use in modeling convection of strong concentration gradients.
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As noted by Lecnard in Ref, 130, higher-order polynomial interpolation
methods are progressively less diffusive, and odd-order methods tend to
be less dissipative than adjacent even-order methods. Dispersion
depends on the odd derivatives in the trumncation error, while dissipatiom
results from the even derivatives. In general, odd-order methods are
more dissipative, and even-crder methods are more dispersive. The increased
dispersion of the .even-order methods becomes worse at smaller Courant
numbers.

The phase error of the odd-oxder schemes reverses sign at a Courant
mumber of 1/2, leading at the lower values, while even-order schemes have
a phase lead for all values. Lagging phase errors cause oscillations
behind strong gradients, with upstream skewing of concentration, while
leading errors have the opposite effect. Both dissipation and dispersion
generally decrease with increasing order. Dispersion generally increases
with the Courant number especially for the even-order schemes which
have very low damping at low Courant number, cf. Davies (Ref. 58). The
use of symmetrically placed points, as in Chan (Ref. 39), eliminates all
even derivatives in the truncation error (with uniform velocity) and
hence removes the dissipafion even with an upwind bias,

In many schemes, improvements in phase error are accomplished at
the price of tighter limits on the time step, although there are exceptions.
In linear problems the effect of dissipation on the phasererror is not
independent of the dissipation introduced by the scheme. Turkel (Ref. 214)
notes that correct boundary treatment is less important for phase quality
than it is for stability. One way that higher-order schemes can be constructed
is through the use of successive lower-crder stages as in Abarbanel and

Gottlieb (Ref. 3) and Reddy (Ref. 169).
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For methods that are of equal order in both space and time, the
dispersion and dissipation generally decrease as the time step iIncreases,
cf. Turkel, Abarbanel and Gottlieb (Ref. 216). This is not necssarily
true when the temporal order is less than the spatial. Here the optimal
time step may depend on the error tolerance and on the wavelengths
present in the solution, Time step selection is thus more simple with
equal order. At high frequencies the unequal temporal and spatial order
methods are at a disadvantage.

In many cases with explicit methods, however, there is less need
for increased order intime than there is in space, cf. Turkel (Ref. 215),
and higher-order methods in time are more complicated algorithms requiring
more work per time step. The results of Forester (Ref. 74) and others .
show that both dispersion and dissipation can be controlled by the
spatial order aleone, with little effect from the temporal order. In
fact, Fisk (Ref. 69) notes that the spatial oscillations oceur even in
schemes in which time is treated continuously. These oscillations
occur as readily in implicit methods as in explicit, cf. Hirsh and Rudy
(Ref. 102). For explicit methods, where the time step is limited by
stability, high temporal order.isneeded only when high frequency physical
phenomena are involved.

The time step should be chosen small enough that the temporal and
spatial errors are about equal, ¢f. Turkel (Ref. 215), so that the low
spatial error isnot swamped by the temporal. It seems to be more
effective to restrict the Courant number to being less than unity from
accuracy considerations, and hence there is little podint in using implicit
methods, cf. Fischer (Ref. 68). With implicit methods the temporal and
spatial orders should be the same if the larger time steps that are

possible with such methods are to be used. Generally, the combination
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of a small time step and high spatial order seems to be the most effective
in reducing dispersion while still maintaining enough dissipation at lower
wavelengths, cf. Gottlieb and Turkel (Ref. 84).

Essentially infinite spatial order ig attained by the spectral and
pseudospectral methods, cf. Orszag (Ref. 154) and Gazdag (Ref. 77), but
these methods are still complicated and not as versatile as other methods.
The pseudospectral methods are faster than the spectral methods.

Fischer (Ref. 68) indicates that the achievement of higher order
through an increase in the number of dependent variables, i.e., use of
Hermite interpolation to produce compact schemes, rather than an increased
number of grid points seems to be more effective., This is confirmed by
Holly and Preissman (Ref. 104) in regard to both accuracy and ease of
application. The results improve with increasing Courant number. Sobey
(Ref. 190) states that compact methods are more effective in. resclving the
shorter wavelengths. The representation of boundary conditions may be
easier in operator compact methods, cf. Ciment, Leventhal and Weinberg
(Ref. 530), than in other compact methods, since the individual higher
derivatives do not have to be represented, but these methods tend to be
more ccomplicated overall.

Gottlieb and Turkel (Ref. 84) state that phase error for infinite
spatial order with second-order time is about the same as with fourth-
order space. In general, fourth-order methods in space are much more
efficient than second-order methods. Order, per se, is not always a complete
measure of accuracy since the higher multiplying derivatives involved
may be large. With shocks higher-order schemes offer no real advantage
at the shock, since all schemes are basically first order in the shock

region. The higher otder is still effective, however, in the smooth regions.
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Decreasing the time step greatly increases the phase error for second-
order space, second-order time methods, but decreases the phase error
for fourth-order space. Also, decreasing the dissipation of a scheme
does not necessarily increase the..accuracy. In many cases it may be
more desirable to decrease the phase error than the dissipation.
Dissipatidn may be reduced overall by alternating dissipative and
non~-dissipative schemes. Both phase error and dissipation generally
decrease as order increases. Ciment, Leventhal and Weinberg (Ref. 50)
note that many model problems have shown that higher-order methods
significantly decrease the storage and computer time required for a
desired accuracy, since fewer grid points are required with higher order.
This is confirmed by Turkel, Abarbanel, and Gottlieb (Ref. 216), especially
for more complicated equations and for smaller errar tolerance. For a
given order, more grid points per wavelength will be required the longer
the time of the simulation. It should be noted that the use of Hermite
interpolation, splimes, and Pade approximations can all be made to
produce the same overall representations on uniform grids. However, certain
useful relationships may not be obtained in some approaches, ef. Rubin
and Khosla (Ref. 180).

Symmetric schemes tend to be more dispersive than upwind-biased
schemes, and this effect becomes more pronounced at lower Courant numbers.
The use of an upstream bias and odd-ordered schemes improves the phase
properties, as noted by Chan (Ref. 39), Davies (Ref. 58), Fischer (Ref. 68),
van Leer (Ref. 124), Holly and Preissman (Ref. 104), and others, 1In
Ref. 125, van Leer states_that all second-order properly upstream-centered

schemes have maximum dissipation and zero phase error at Courant number 1/2.
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The simplest extensions to multiple dimensions is through time-
splitting (cf. Turkel, Ref. 215). Time-splitting does not reduce the
spatial order, nor does it increase the dispersion. Larger time steps
are made possible by the factoring into one-dimensional forms. It may
be degirable to time-split the convective terms from the diffusion terms,
using implicit schemes for the latter (cf. Gottlieb and Turkel, Ref. 84).
Van Leer (Ref. 126 and 121) also recommends that higher dimensions be
treated by time-splitting unless the temporal order is higher than two.
Time-splitting requires that there be a time derivative in each equation.
It is also recommended that diffusion be included through time-splitting,
i.e., by convecting and then diffusing the solution.

Reference should be made directly to the comparisons given in the
foregoing text, especially in regard to higher-order methods and filters.
The fallowing list provides a summary of some desirable features of
schemes for convecticn of strong concentrations using general curvilinear
coordinate systems:

1. Explicit, with Courant mumber well below unity.

2. 8Second order in time.

3. At least third order in space, preferably odd order. Order

higher than third may be necessary, but order beyond f£ifth
is probably past the point of diminishing returns.

4. Compact difference expressions.

5. Upwind-bias.

6. Symmetric time-gplitting into 1P schemes (factoring).

7. Strong, sharp filter on smallest noise wavelengths.

8. Non-orthogonal grid, but skewness not too great. Orthogomal
at boundary.

9. Grid lines concentrated in regions of large gradiemts, but
spacing not changing too rapidly.

10. Dynamically adaptive grid coupled with evolving physical solution.
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Some particular schemes of interest are listed below (without ranking).
These schemes do not exhibit all of the desirable properties, so reference
should be made to the specific discugsions in the text.

Davies third and fifth-order schemes {p. 62)

Chan fourth and sixth-order schemes (p. 69)

Leonard third-order QUICKEST scheme (p. 73)

van Leer third-order III and V schemes {p. 78)

MacCoxmack-type fourth-order scheme (p. 85)

Reddy fourth-order schemes (p. 90)

Holly and Preissman fourth-order schemes (p. 98)

Sobey finite element scheme 5 (p. 102)

Baker finite element scheme (p. 139)

Forester quintic spline scheme (p. 158)

The results of Forester (p.204) and Zalesak (p.186) show clearly
that very low dispersion and dissipation can be achieved by using a high-
order scheme with a filtering procedure for removing the short wavelength
computational noise.

The best course then seems to be either (1) to couple a high-order
scheme with one of low order in the hybrid form of FCT (p.185), gsing the
flux limiter that takes account of past history (p.187), or (2) to use a
high-order scheme with the Forester wavelength filter (p.204). In either
case the high-order scheme should have very low dissipation and dispersion.
The low-order scheme in the FCT framework should be very dissipative and
probably should simply be first-order upwind, As noted above, the high-
order scheme should be compact with upstream bias and preferably odd order,

The hybrid form may be better in principle than the filtered form.

However, the hybrid form must use a flux limiter based on past history,
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elge the dissipation will be too large for long-term Iintegrations, and

such a limiter is somewhat involved for multiple dimensions. The filtered
form is more straightforward to implement, and therefore might be preferable
from a practical standpoint at present.

Of the schemes mentioned above, those of van Leer, Holly and Preissman,
Baker, and Forester show considerable promise. The sixth-order Chan scheme
also shows promise, but this order is degraded with variable velocity.

The stronger the concentration peaks, the higher the order that will be
necessary. Several very high-order schemes have been applied with the
Forester filter and with hybrid FCT, as discussed in the foregoing text,
and these schemes should be considered when very high order is needed.
The quintic spline scheme of Forester, operating with the Forester filter,
has shown what seems to be the best published results for the Gaussian
concentration peak.

In conclusion, the general recommendation is the use of the highest-
order scheme that is reascnable from a programing standpoint with either
hybrid FCT, with a flux limiter dependent on past history, or the Forester

filter to control the computational noise at short wavelengths.
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