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SAMPLING DESIGN FOR RESERVOIR WATER QUALTTY INVESTIGATIONS

PART I: INTRODUCTION

RBackground

1. The US Army Corps of Engineers (CE) presently maintains and
operates over 400 reservoir projects for the purposes of flood control,
hydropower, navigation, water supply, and recreation. 1In an effort to
better define reservoir water quality problems and to develop technolog-
ical and managerial alternatives for ameliorating these problems in a
manner consistent with project purposes, the CE initiated the Environ-
mental and Water Quality Operational Studies (EWQOS) Program in 1978 and
completed it in 1985. A major portion of this program consisted of
limnological studies at four characteristic reservoirs. These reser-
voirs were Lake Red Rock, a flood control impoundment of the Des Moines
River in central Iowa; DeGray Lake, a large hydropower project located
in south-central Arkansas; West Point Lake, a large hydropower project
created by the impoundment of the Chattahoochee River approximately 100
km downstream from Atlanta, Georgia; and Eau Galle Lake, a small
eutrophic flood control reservoir in west-central Wisconsin.

2, Studies conducted at each of these sites since 1978 have been
of two basic types: long~term monitoring and short-term, process-—
oriented studies. Long-term monitoring studies provided data needed for
the calibration and evaluation of several numerical water quality models
as well as information concerning general water quality characteristics
and trends. Short-term studies, often conducted during specific seasons
of the year or under a predetermined set of hydrometeorclogical condi~
tions, were aimed at understanding processes impacting reservoir water
quality. These types of studies provided a means for improving existing
water quality models and have greatly increased the understanding of

reservoir ecosystem processes,



3. The reserveoir studies conducted under the EWQOS Program have
also fostered the development of an understanding of the problems and
concerns involved in reservoir water quality sampling. This manual
summarizes the findings of the EWQOS Program as they pertain to the

development of reservoir water quality sampling designs.

Purpose and Scope

4, The purpose of this report is to provide CE Division and
District perscmnnel a general introduction to the statistical concerns
involved in the formuilation and design of reservoir water quality
sampling programs. The major and most common concepts and techniques
involved in the development of water quality sampling designs will be
discussed. This report is not intended to replace reference works on
sampling design; rather it provides the necessary background for the
effective and efficient use of those references. Also, this report does
not provide specific guidance on the water quality variébles to be
measured, sample collection methods, or analytical techniques to be used
in the analysis of the samples collected, The application of specific
collection methods, the selection of parameter lists, and the analyses
to be performed will be dependent on the nature of the perceived or
expected water quality problem and site-specific features of the reser—
voir. Guidance on these topics can be found in the References and
Bibliography.

5. This report is intended for use by all persconnel involved in
the design, implementation, and data interpretaticn of water quality
monitoring pregrams in CE reservoirs. Most of the information contained
in this report is discussed in a more detailed manner in other sources.
A number of introductory statistics textbooks are identified in the
References and Bibliography, and it is suggested that at least one of
these be on hand as the report is read. These textboocks also contain
‘mathematical and statistical tables that will be required for the

implementation of the techniques presented in this report. This report



is also intended to serve as a companion manual to "Statistical Methods
for Reservoir Water Quality Investigations" (Gaugush 1986).

6. The presentation of material in this report is divided into
several parts. Part II presents the general statistical background
necessary for an understanding of the more specific material to follow.
Part III, which presents the core of the statistical treatment on
sampling design, deals with the determination of sample size and the
methods for allocating those samples with respect to space or time.
General spatial and temporal patterns in reservoir water quality and
their implications for sampling design are discussed in Part IV. Part V
describes three methods for the evaluation and possible modification of
various sampling designs. Appendix A lists all of the caleulation
formulae presented in the report and gives the page number where more

detailed information can be found.



PART 1T: STATISTICAL CONCERNS IN SAMPLING DESIGN

Statistical Inference and Sampling

7. Sampling and statistical data analysis make it possible, under
certain assumptions, to infer the characteristics of the whole from the
characteristics of a limited number of its parts. Sampling consists of
taking a very 1imited‘number of observations from the much larger set of
possible observations. The set of possible observations is referred to
as the target population, and the limited subset of observatioms is
called the sample population or, simply, the sample. Examples of target
populations may include all the reservoirs in a specified geographical
region, all of the coves in a given reservoir, or the water in a single
cove. Corresponding sample populations may be three of the reserveoirs
from the specified region, five selected coves, or 10 & of water from
the single cove. Sampling design is concerned with the methods for
determining the number of observations that comprise the sample and the
selection of those observations from the target population.

8. Sampling design and the statistical amalysis of the data
collected make two very important assumptions: (a} the values of the
target population are normally distributed and (b) the values of the
sample population are independent. The assumption of a normal distribu-
tion of the target population is required because most statistical
methods have been developed for normally distributed populations.
However, most statistical tests are robust with respect to deviations
from normality. The term "robust" implies that the tests may still be
applied with confidence if the distribution of the target population is
suspected of minor deviations from the normal distribution. Methods for
the analysis of nonnormal populations, called distribution-free or
nonparametric statistics, exist, and the reader can find an introduction
to the subject in Gaugush (1986). The assumption of independence is
also a requirement for statistical data analysis. Independence of the
values of a sample is assured if every possible observation of the

target population has an equal chance of being selected for the sample.



The lack of independence will usually result in estimates that are
seriously biased.

9. The major objective of sampling design is to provide a means
for obtaining an accurate and precise estimate of the target population
within the constraints of funding and time available for the study.
Accuracy refers to the relationship between the estimate and the actual
target population value. An accurate estimate will, on the average, be
centered on the population value, whereas an inaccurate estimate will
consistently tend to overestimate or underestimate the population value.
An inaccurate estimate is said to be biased. Precision refers to the
reliability of the estimate and to the variability between repeated
measures of the same quantity. An estimate that varies widely between
repeated measures is said to lack precision,

10. Accuracy is essentially a function of the analytical tech-
niques used to ascertain the value of a given observation. For example,
the phosphorus concentration of a given water sample is determined by a
colorimetric test, and the accuracy of the estimate is dependent on the
detection limit of the technique, the technician's competence, and the
quality of the analytical equipment. An estimate's accuracy can be
assured through quality control, technician training, and careful selec-
tion of the analytical technique. Precision, on the other hand, is a
function of the inherent variability of the target population and the
number of observations used to produce the estimate.

11. A discussion of basic statistics is presented in the follow-
ing section with the objective of providing the background required for
an understanding of the sampling design concepts to be presented in

Part III.

Basic Statistics

12, Sampling will most often be conducted to generate estimates
of the target population parameters. Sample estimates are referred to
as statistics., The two most common parameters of interest are the popu=-

lation mean 1y , which is a measure of central tendency, and the



. 2 . R . .
variance o , which is a measure of the dispersion about the mean. The
mean is the sum of all the individual observations v in the target
population divided by the total number of observations or units N in

the population

N
p=N—lE y (1)
i
i=1
while the population variance is
N
2 -1 2
o =N (v, - ) 2
i=t

13. The population parameters cannot be determined directly
(unless every y 1is known); rather they are estimated by their corre-
sponding statistics, the sample mean and variance. A sample, in its
simplest form, consists of n wunits selected at random from the N

units of the target population. The sample mean is

n
y=o2 )y (3)

i=1

and the sample variance is

n
SRR D7) @
i=1

where

sample mean

<t
[l

sample size



i
8 = sample variance

Using the (n - 1) term rather than n corrects for the bias intro-
duced by using § to estimate the population mean.

14. The standard deviation, the square root of the variance,
describes the variability of the target population values about the pop-
ulation mean. If the population values are normally distributed,

95 percent of the values lie between the bounds p —~ 1.96 (o) and

u + 1.96 (o). Figure 1 presents the normal distribution for a popula-
tion with p =0 and o% =1 . Since\/o_2=cr and Y1 =1, it can
easily be seen that the majority of the values (in fact, greater than
95 percent) lie in the interval bounded by -2 and +2. In other words,
greater than 95 percent of the values fall within twe standard devia-
tions of the mean.

15. One additional statistical concept, the distribution of the
sample mean, must be considered before proceeding to a discussion of
sampling design. A distribution of sample means would result if one
were able to take a number of independent samples (where a single sample
is a set of observations selected from the population) from the popula-
tion with each saﬁple producing its respective sample mean. The set of
sample means would then have a frequency distribution describing the
variability of the sample means. If the observations in the target pop-~

ulation are normally distributed, then the distribution of sample means

[

Figure 1. Standardized
normal

FREQUENCY

~3 . -2 -1 (] 1 2



will approximate the normal distribution. Even if the target population
is not normally distributed, the distribution of the sample means will
approximate the normal distribution, if the sample size is sufficiently
large.

16. 1If it is impossible to collect a sufficient number of samples
to determine directly the variability of the sample means, there must be
a method for estimating this variability. The variance of the sample

means can be estimated by

s. == (5)

2
where s~ = variance of sample means .
y

17. What is the purpose behind an estimate of the variance of the
sample mean? To answer this question, another statistic, the standard

error, defined as

1/2
2 1/2 g2
s_ = [s_ “\a (6)
y b

must be considered. The standard error describes the variability of the
sample means in the same manner that the standard deviation describes
the variability of the observations in the target population. It was
shown earlier that in a normal distribution 95 percent of the population
values are contained in the interval defined by approximately two stan-
dard deviations above and below the population mean. Knowledge of the
variance of the sample means and, in turn, the standard error allows the
construction of an interval about the population mean that contains

95 percent of all possible sample means. In other words, the standard
error determines an interval that, with high probability, 0.95 for

example, will contain the population mean.

10



18, The interval defined by the standard error is referred to as
a confidence interval. The confidence interval provides a measure of
the precision of the sample mean. A relatively small confidence inter-
val implies a very precise estimate of the population mean. The confi-

dence interval is defined by the confidence limits

LL =y - ts_ (H
¥y
LU =y - ts_ (8)
y
where
LL = lower confidence limit
t = Student’s t value for n - 1 degrees of
freedom and a specified probability
LU = upper confidence limit

19. The basic statistics presented above should provide suffi-
cient background for an understanding of the material to follow. Addi-
tional and more detailed information can be found in Gaugush (1986) or

any of the introductory statistical texts listed in the Bibliography.

11



PART IIT1: SAMPLING DESIGN

Introduction

20. The purpose of sampling theory is to make sampling more effi-
cient. Given that both dollars and manpower are in limited supply, a
sampling program must provide the most information possible per unit
cost and per man-hour expended. Sampling theory has developed methods
that, at the lowest possible cost, provide estimates that are suffi-
ciently precise to meet the objectives of the study.

21. Five distinct steps are involved in the design, implementa-
tion, and analysis of any sampling program:

a., Problem identificationm.

I |

. Statement of the objective.

. Formulation of the sampling design.

o |0

. Implementation of the sampling design.

. Data analysis.

|

This report will consider only the third step and will not address col-
lection techniques, analytical techniques, or the statistical analysis
of the data collected. These topics are adequately treated in the fol-
lowing sources:

a. Collection and analytical techniques:

(1) "Reservoir Water Quality" (Office, Chief of Engi-
neers (OCE) 1985).

(2} "General Guidelines for Monmitoring Contaminants in
Reservoirs" (Waide 1986). '

(3} "Handbook for Sampling and Sample Preservation of
Water and Wastewater" (US Enviroummental Protection
Agency 1982),

(4) Methods for Collection and Analysis of Aquatic Bio-
logical and Microbiological Samples (Greeson et al.
1977).

(5) Methods for Collection and Analysis of Water Samples
for Dissolved Minerals and Gases (Brown, Skougstad,
and Fishman 1970).

(6) Methods for Determination of Inorganic Substances in
Water and Fluvial Sediments (Skougstad et al. 1979).

12



(7) National Handbook of Recommended Methods for
Water-Data Acquisition (US Geological Survey (USGS)
1977).

(8) "Procedures for Handling and Chemical Analysis of
Sediment and Water Samples" (Plumb 1981).

(9) Recommended Methods for Water Data Acquisition (USGS
1972).

(10) Standard Methods for the Examination of Water and
Wastewater (American Public Health Asscciation
1980).

b. Statistical analysis:
(1) "Reservoir Water Quality" (OCE 1985).

(2) "Statistical Methods for Reservoir Water Quality
Investigations" (Gaugush 1986).

A geheral treatment of statistical data analyses can also be found in
any of the introductory statistics textbooks listed in the Bibliography.

22. The identification of an existing or expected water quality
problem is the first step in the development of a sampling design. A
problem statement serves to identify the specific water quality concern,
the possible causes of the problem, and the related water quality
responses to the problem situation. For example, if the occurrence of
algal blooms is identified as the water quality problem, then one possi-
ble cause may be excessive nutrient loading. Algal blooms may, in turn,
be the cause of other water quality problems, such as impaired recrea-
tional use of the reservoir or taste and odor problems in a water supply
reservoir.

23. Once a problem is identified, the objectives of the sampling
program can and should be explicitly stated. For the example above, the
objectives may be to:

. Determine the nutrient load to the reservoir.

o I

. Analyze the relationship between nutrient load and resul-
tant algal biomass.

. Determine the frequency of occurrence of algal blooms.

"R L]

Relate the observed frequency of algal blooms and their
magnitude to the impairment of recreational usage.

The explicit statement of objectives allows for their prioritization.

Prioritizing objectives makes it possible to decide which objectives

13



must be met and which objectives may be dropped as a result of funding
or manpower constraints. With a problem identified and the objectives
explicitly stated, sampling design can be considered.
24. The sampling design must provide the answers to four funda-
mental questions:
a. What to sample?

. How many samples?

o

. Where to sample?

. When to sample?

& o

The answer to the first question is a list of the parameters to be
measured. The formulation of this list is so problem and site specific
that little general information can be provided. If the problem identi-
fication and the objective statement phases are carried out properly,
the parameters of interest should be obvious. The Environmental Engi-
neer Manual "Reservoir Water Quality" (OCE 1985) and "General Guidelines
for Monitoring Contaminants in Reservoirs" (Waide 1986) can be consulted
for information on important water quality parameters. Answers for the
second, third, and fourth questions (i.e., sample size, sample place-
ment, and sampling frequency, respectively) are much more amenable to a
general treatment.

25, After determining the sample size, sampling design is essen—
tially a statement of where and when to sample. There are three funda-
mental methods for allocating samples in space or time: (a) simple
random sampling, (b) stratified random sampling, and (¢} systematic
sampling. All of the designs that one will normally encounter in reser-
voir sampling are either one of these designs or some combipation of the
above. The discussion of the three basic designs that follows applies
equally well to the allocation of samples in space (sample placement)

and to the allocation of samples in time (sampling frequency).

Determination of Sample Size

26. One of the most important steps in the design of a sampling

program is the determination of sample size, or the number of samples

14



that will be collected during the course of the study. If too many
samples are taken, then the program will not be cost-effective; and if
too few samples are collected, then the sampling program may not meet
the stated objectives of the study. How is the decision concerning the
number of samples to be made? Sampling theory provides the means to
address this problem.

27. An example will help to clarify the steps involved. Suppose
that an investigator wants to estimate the trophic state of a particular
reservoir and to do so he has decided to determine the mean summer chlo-
rophyll @ concentration. He has also decided to take a simple random
sample from the reservoir's epilimnion during the months of May through
September. How many samples should he collect? Before this question
can be answered, the investigator must be able to specify the precision
with which he desires to measure the chlorophyll a concentration.

Assume that the objectives of the study can be met if the final estimate
of the chlorophyll concentration is correct within *10 percent. That

is, if the mean of the sample is 15 ug/%, then the value for the reser-—
voir is expected to be between 13.5 and 16.5 ug/2 (i.e., 15 * 1.5 ug/4).

28. It is also necessary to specify the probability of error that
the investigator is willing to accept. No matter how large the sample
is, there is a chance that, once the samples are collected, the
parameter estimated is in error by more than the desired 10 percent.
Only by sampling the entire target population can the probability of
error be ignored. Most often a 5 percent probability of error is
chosen, but there may be cases in which a larger probability of error is
acceptable. '

29. Given the desired precision and the acceptable level of
error, the determination of sample size can be considered. Sample size
for a simple random sample can be calculated from the following

equation:

t2 2
n= =5 (9)

(ry)?

15



where r = the desired precision. In this formula there is a very basic
dilemma. In order to calculate the number of samples to be taken, some
very specific information (i.e., the mean and variance) about the popu-
lation to be sampled is required. Since this information is unknown (if
it were known, sampling would be pointless), the investigator must use
his background and expertise to provide these values,

30. There are essentially three methods for estimating the target
population's mean and variance: (a) conducting a pilot study, (b) using
the results from previous studies of the same population or a similar
population, and (c) making an educated assessment about the nature of
the population. A pilot study may be feasible if a large or long-term
sampling program is being planned, but in many cases the use of a pilot
study will be unavailable because of funding or time constraints. The
best methods for estimating the mean and variance rely on existing data.
Data from previous studies, even if extremely limited in scope, will
provide acceptable estimates if one very important assumption can be
made: that is, the target population has not undergone any serious
changes since the study was conducted. For example, this assumption can
not be made if the reservoir's watershed has been subjected to a major
increase in development since the time of the last data set. The limi-
tation of this assumption is even more significant if data from a simi-
lar, as opposed to the same, population are used. Rarely will the final
method, making an educated assessment of the population parameters, be
necessary.

31. In the example above, it can be assumed that the investigator
has appropriate data and that in previous years the chlorophyll a mean
was 15 pg/f with a standard deviation of 7 ug/f. The determination of
sample size is an iterative process because the t value is dependent
on the sample size. As a first approximation, a Student's t value of
2.0 is chosen because the value of t 1is approximately 2.0 at all but

the smallest sample sizes. So, the first approximation is

16
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32. Given this first approximation of éample size, the number of
samples can be recalculated using a t value with 86(n - I) degrees
of freedom (DF). The use of a ¢t table shows that a DF of 86 and a 5
percent probability of error result in a Student's ¢ of 1.987. Recal-

culating n gives

L _(esnimn?
[(0.10)(15.0)] 2

_ £3.95) (49)

o=
(1.50)

193.55
nE TS s
n = 86.02 = 86 (11)

A sample size of 86 will provide the desired 10 percent precision about
the mean with a 5 percent probability of error.

33. Rarely will a sampling program be designed to sample for a
single variable. How then is the sample size determined for a multi-
variable study? 1In determining the overall sample size, it is necessary

to prioritize the parameter list. Certain of the parameters to be

17



sampled will be critical to the objectives of the study, whereas others
will be of secondary importance. Using the critical variables, an esti-
mation of the sample size can be made separately for each of the vari-
ables. It may happen that all of the separate n's are reasconably
similar. If the largest of these n's can be handled within budgetary
and time constraints, then it can be used for all of the variables.

More often, there will be considerable disparity between the values of
the separate sample sizes. In such a case if the largest n is chosen
for all the variables, the sampling program may exceed the project fund-
ing level, and some of the variables will be measured with a higher pre-
cision than required. At this point two options are available:

(a) each variable can be measured using its own sample size, or (b) a
smaller overall n can be chosen with the knowledge that the precision
of some of the variables will be reduced. The first option will rarely
be feasible because of the demands it places on the personnel conducting
the study. To randomly sample for a number of variables, each with its
own sample size, requires a separate sample design for each of the
variables. Each of the variables must have its own set of sampling sta-
tions and/or times of sampling. The second option results in much more
tractable designs. Selecting a smaller overall n will reduce the
precision of those variables where the original value of n 1is larger.
The precision that will result from using the smaller sample size can be

determined by rearranging the equation for sample size. Given

o2,2
n=—2 (12)

(ry)

then

2.2
=L (13)

2

ny
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and

T = (14)

If the value of the precision is within acceptable limits, the smaller
value of n can be chosen.

34. The use of decision matrices to determine overall sample size
in a multivariable sampling program will be discussed in a later section
after the presentation of the use of simple random, stratified random,

and systematic sampling.

Simple Random Sampling

35. Simple random sampling is a procedure for selecting n units
out of the N possible units of the target population so that all
possible samples have an equal chance of being selected. This selection
process is carried out by selecting units one by one. The units in the
target population_are numbered from 1 to N ; then a series of random
numbers between 1 and N is selected from either a table of random
numbers or from a computer program that produces such a series. Any
selection during the process must give an equal chance of selection to
any unit in the target population not already selected. The set of
units that bears these n numbers comprises the simple random sample.
Since a number that has been selected is removed from the target popula-
tion, this method of sample selection is also referred to as random
sampling without replacement.

36. Selection of a simple random sample most often makes use of a
table of random numbers, which is a table of the digits 0-9 with each
digit having an equal probability of selection. Tables of random num-—
bers usually appear in standard statistical texts. Table 1 presents a
table of 1,000 random digits.

37. To illustrate the use of a random number table to select a

simple random sample, consider the data presented in Table 2. The first
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step in the selection process is to number the units of the target popu-
lation from 1 to N; the numbers in Table 2 represent a target population
where N = 100, Assume that a sample size of 10 (i.e., n = 10 )} is
wanted. Select two adjacent columns from Table 1, perhaps columns 10
and 11, and select the first 10 distinct numbers between 1 and 100. If
the number 00 is encountered, select unit 100 from the target population
because the number 100 cannot be selected from two-digit numbers. The
selection process results in the numbers 30, 01, 00, 73, 38, 24, 07, 61,
62, and 65. Referring to the target population, the values 17.65, 13.09,
2.44, 18,08, 5.42, 12.04, 9.36, 18.22, 9.35, and 10.66 make up the ran-
dom sample. If another random sample is to be selected, it will be

necessary to choose two different columns in the table of random numbers.

Table 1
One Thousand Random Digits

00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45~-49

00 84224 73865 30215 16205 37120 42108 70666 85264 61135 10612
Gr 06863 21047 01207 73612 44320 14862 04105 38665 13366 54756
02 04254 06221 00473 64110 32157 77377 84184 50283 73037 73326
03 88805 82344 73303 67081 76278 72646 38005 53704 72371 70532
04 28468 38604 38542 81650 81537 46088 83220 41650 24404 37740

05 67521 43813 24205 51611 75740 22304 42776 37700 50706 84413
06 76275 38554 07081 30322 15314 14405 73811 40456 21115 10242
07 81745 64828 61274 28860 28231 33543 54836 70361 73104 51138
08 86485 76066 62183 33286 65101 11833 37552 62068 76344 54352
09 01270 26336 65848 10814 80625 84144 64148 33164 60273 07147

10 44113 81582 75013 77542 41872 17434 30302 71678 56468 56420
11 04688 85443 40645 12111 27885 15301 11828 04705 15736 51780
12 61534 43205 75207 87186 86340 24224 05309 33345 12467 48466
13 40751 43168 75714 41700 88212 44251 03641 61041 51830 25384
14 16285 74357 08705 28733 04486 73328 37074 12360 86075 65636

15 45521 66638 86411 61501 70852 88812 50215 33415 45145 22211
16 81326 38380 66026 22453 65554 44188 74738 83872 85848 20735
17 56037 05256 86205 08832 53844 46280 80112 26226 85741 74458
18 67252 01512 60821 26176 15528 21636 81180 16837 33352 50643
19 80625 40062 21582 52621 24154 57132 25133 53778 88311 65280
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Table 2
- Target Population Values

01-20 21-40 41-60 6180 81-100

1 13.09 18.17 5.50 18.22 6.50

2 5.13 11.92 10.13 9.35 6.75

3 6.08 17.10 7.53 10.62 17.24

4 4.84 12,04 5.15 9.08 6.04

5 2.29 2.59 8.64 10.66 13.35

6 17.94 7.24 15.43 2.97 12.92 :
7 9.36 15.86 9.53 6.41 12.62 S
8 3.94 G.31 6.78 17.62 8.90 3

9 4.42 11.91 6.96 13.76 10.25

10 12.27 17.65 10.75 11.68 13.22
11 8.39 9.47 3.40 16.17 4.89
12 10.11 12.44 8.50 11.19 6.45
13 1.81 10.96 10.98 18.08 5.74
14 3.96 - 6.01 17.44 12.76 8.77
15 3.01 14.44 20,17 15.11 9.77
16 5.01 18.47 12.37 17.02 0.83
17 11.67 12.87 9.59 1.53 8.23
18 5.13 5.42 6.75 7.96 16.03
19 6.35 9.69 9.44 3.02 4.11
20 11.93 9.54 1.98 10.58 2.44

38. A simple random sampling can be undertaken for a number of
objectives, and most often the purpose or interest centers on the deter-
mination of the mean, variance, and the standard error or precision.

The sample mean is

n

-

y =n E s (15)
i=1

where ¥y = the ith value of the sample . The sample variance is
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e

52 = (n - 1)_1 E (Yi - 37)2 (16)

i=1

and the standard error is

52 1/2
S_ = 'ﬁ'— (17)
Y .

39. An example will help to illustrate the concepts presented
above. Figure 2 represents the frequency distribution of a target popu-
lation with a mean of 50.70 and a standard deviation of 16.16. Assume
that the objective is to randomly sample this population and produce an
estimate of the mean within an error of *10 percent. Assuming a
Student's t wvalue of 2.0, the necessary sample size can be calculated

from

__(2.0)%(16.16)"
[(0.10) (50.70)12

(4.0)(261.15)
n= 7
(5.07)
o = 1:044.60
25.71
n = 40.63 = 41 (18)

To illustrate the relationship between sample size and the resulting
precision, sample sizes of 90, 45, and 21 are used. For each of these
sample sizes, four different random samples from the target population
are selected. The results:of this series of samplings are presented in

Table 3. For the mean to be within the desired precision of 10 percent,
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Figure 2, Target population frequency distribution

the standard error of the mean must be less than or equal to 5.07 (0.10
x 50.70). Note that all three sample sizes result in standard errors
below 5.07. The occurrence of precision greater than the desired pre-

cision will often result when the variance of the target population is

overestimated.

Stratified Random Sampling

40. Stratified random sampling consists of dividing the target
population into a distinct set of subpopulations. The target population
with N units is divided into subpopulations of Nl » N2 s N3 seens
NL units where the subpopulations do not overlap, and together they

make up the entire target population or

Nl + N2 F+...+ NL =N

The subpopulations are referred to as strata. If a simple random sample
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is drawn from each stratum, then the sampling design is referred to as
stratified random sampling.

41. Stratified random sampling has two important advantages over
simple random sampling. First, it can be advantageous to have data on
separate subsets of the target population. For example, in a reservoeilr
sampling program with the purpose of determining the annual water qual-

ity, it would also be useful to have data on the seasonal differences in

Table 3

Target Population Estimates for Simple Random Samples

Sample Size Sample Mean Sample Variance Standard Error
a0 51,22 227.59 1.59
51.32 195.48 1.47
49.84 290.92 1.80
54.55 219.81 1.56
45 50.28 225,47 2.24
51.50 333.77 2.72
49.51 256.52 2.39
53.23 318.49 2.66
21 48.50 263.97 3.55
5¢.75 232.38 3.33
51.22 214.23 3.19
52.71 317.63 3.89

water quality. In this situation, the year could be divided into sea-
sonal strata. Second, stratified sampling may produce an increase in
the precision (i.e., reduce the error) of the estimates for the entire
population. The concept behind stratification involves dividing a
heterogeneous population into more homogeneous subpopulations. If the
measurements within a stratum vary little from one unit to another, a
precise estimate of the stratum mean can be obtained with relatively few
samples. The estimates for the strata can then be combined into a pre-
cise estimate for the target population. The total number of samples
used in such a design will often be less than would be required by a

simple random sampling design.
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42. The mean, variance, and standard error (or precision) are not
calculated in the same manner, as those estimates were derived from a
simple random sample. The following notatiom will be used throughout
the remainder of this section. The subscript h refers to the stratum

and the subscript i refers to a unit within that stratum.

=
|

total number of units in the target population
N, = number of units in stratum h

= gample size for stratum h
"n

i ™ value of the ith unit in stratum h
W, = NhIN » stratum weight
£ = nthh , sampling fraction in stratum h
™y
§h = n;1 E Yhi ° stratum mean
i=1
“h
32 = - 1)—1 E ( -3 )2 tratum vari
h (nh yhi yh s S Um varliance
i=1
I =

number of strata

43, The concept of the stratum weight needs some explanation
before proceeding to the calculation of the estimates. Since the target
population is divided into strata that may differ in size, it is neces-
sary to weight the estimates in the calculation of the characteristics

of the entire target population.
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44. The target population mean derived from a stratified sampling

program can be calculated from

Vst = 2 : Ynh (19)

where the subscript st refers to stratified. The mean §st is not,

in general, the same as the sample mean calculated from all of the Yi ==

values. The sample mean would be

y=na" Z oy, B (20)

where

n=mn, %+ n2 +. ..t nL

1

45. The variance of the target population is the weighted sum of

the strata variances, or

2R

h=1
The precision of the target population mean (i.e., the standard error)

can be calculated from

(22)
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and

L (wz)(sz) 172
s = Z—u (23)
Gg) o B

46. Developing a stratified sampling program proceeds through
three steps: (a) identifying and weighting the strata, (b) determining.
the total sample size n_. o and {c¢) allocating the samples to the

strata or determining the sampling fraction f A complete discussion

of strata identification will be deferred:untii the discussion of reser-—
voir water quality patterns in Part IV, but the basics can be presented
here. For stratification to lead to an increase in the precision of the
final estimates, relatively homogenecus subsets of the ‘target population
must be identified., With a reservoir as the target population, the epi-
limnion, metalimnion, and the hypolimnion can be defined as the strata
of interest. The weights of these strata are calculated from the pro-
portion of the total reservoir volume represented by each stratum. For
temporal sampling, such as sampling the inflow concentration of a
nutrient in order to calculate nutrient loading, the duration of the
stratum with respect to total duration of the sampling program defines
the stratum weight. For example, because it is known that the nutrient
load varies with the hydrologic flow, the strata can be defined on the
basis of flow. One approach is to define a high flow stratum to cover
that portion of the year, usually early spring, when flows are elevated
and a low flow stratum for the rest of the year when flows are at or
near base flow conditions. The weights will then be calculated by
dividing the number of days in each stratum by 365. To reiterate,
strata definition consists of identifying nonoverlapping subsets of the
target population with variances less than the target population as a
whole. These strata can then be weighted by dividing the number of

units in each stratum by the number of units in the target population.
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47. With the strata defined, the total number of samples can be
estimated in a manner analogous to that used for simple random sampling.

The sample size for a simple random sample was calculated from

2 2
n=L2% (24)

(9?2

The total sample size for a stratified random sample is

tzsi .
fge = = (25)
(ryst)

which can be expanded to

2 Y W22
h=1 (26)

fsr L 2

r “Ih
h=1
From the expression above, it can be seen that the determination of
total sample size requires.estimates of the mean and variance for each
of the strata. These can be obtained in the same manner as were the
estimates for simple random sampling. It should be apparent that the
increase in precision that can result from stratified sampling is not
without cost. Whereas simple random sampling required only a single
mean and variance, stratified sampling requires an estimate of the mean
and variance for each stratum.

48. Given the total sample size, the fimal step in the develop-
ment of the stratified random design requires the allocation of the sam-

ples to the strata. The three options available for the allocation of
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samples are: (a) equal, (b) proportional, and (c¢) optimal. For equal

allocation

n
st

T L 27

where L = number of strata . In proportional allocation, the samples

are assigned to the strata relative to the strata weights

B = Vil (26)

Optimal sample allocation considers not only the size of the strata
(i.e., the strata weights), but also the variances of the strata and the
cost of sampling each stratum, The cost of sampling can be estimated by

a linear cost function

L :
C=Cy+ E oy (29)
h=1
where
= total cost
C0 = fixed cost or overhead
Ch = cost per sample in stratum h

The objective of including cost estimates in the sample design formula-
tion is to allocate samples in such a way as to minimize costs. Using
the cost function described in Equation 29, samples can be allocated

optimally in the following:
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(30)

In most cases, the cost per sample will not vary among the strata, and
samples can be allocated optimally using a simplification of Equa-
tion 30:

b T (31)

2 (w,s,)

h=1

From Equations 30 and 31, it can be seen that more samples will be allo-

cated to a stratum if:
a. It is larger ( vy term) .
. It is more variable ( S term).
. It costs less to sample (ll\fﬁg-term).

49, 1In order to demonstrate the usefulness of stratification,

(L=

|2

reconsider the example that was presented in the section on simple ran-
dom sampling. Figure 2 presented the population's frequency distribu-
tion, and it was determined that 41 samples would be required to
estimate the mean with an error of 10 percent. Assume that three strata
with the frequency distributions shown in Figure 3 can be defined. Each
of these strata has a considerably lower variance than the target
population. Table 4 provides the mean and variance for each stratum.
50. With these data, the number of samples required to estimate
the mean with a precision of 10 percent can be determined. The total

nurber of samples in a stratified design is given by
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Figure 3. Strata frequency distributions for the sub-—
populations with means of 38.61 (a), 49.71 (b), and

63.79 (c)
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Table 4

Estimated Means and Variances for the Defined Strata

Stratum Mean Variance Weight
1 38.61 158.51 0.25
2 49,71 154.71 0.50
3 63.79 152.42 0.25
L
2 E : 22
t Wi S
_ h=1
st L 2 (32)
r E : “hWh

For the data

22
Z “hoh

L
h=1

I

and

L
Z "wh T
he=1

1

As a first

in Table 4

(0.25)2(158.51) + (0.50)2(154.71) + (0.25)%(152.42)

step, assume an initial

58,11 (33)
(0.25)(38.61) + (0.50)(49.71) + (0.25)(63.79)
50.46 (34)

t value of 2.0; then n

is
st
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(2.0)%(58.11)
[(€0.10) (50.46) ]2

st

0

9.13 = 9 (35)

Given that the t value with a DF of 8 {n - 1) is 2.306, recalculate

n as follows:
st

(2.306)2(58.11)
[(0.10)(50.46)1°

n =
st

12.14 = 12 (36)

Since the value of n has not converged yet, calculate it again using
the t wvalue for 11 DF (i.e., 2.201); thus

(2.201)%(58.11)
[0.10) (50.46)1°

1)
st

[}

One further iteration with 10 DF and a t value of 2.228 gives

(2.228)%(58.11)
[(0.10) (50.46)1°

n =
st

11,33 = 11 (38)

and sample size converges on ll samples. The total sample size for the
stratified design is almost one fourth the sample size for simple random
sampling. Stratification in this case would lead to a considerable

reduction in effort while still providing the same level of precision.
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.51. The example above can also be used to demonstrate the alloca-
tion of samples to the strata. For a program using equal allocation, it
would be necessary to increase sample size by one and allocate four
samples to each of the strata. Using proportional allocation, the

stratum sample sizes would be

n, =wmn. = (0.25)(11) = 2,75 = 3
n, = w,n_ = (0.50)(11) = 5.50 = 6 =
ng = wan_ = (0.25)(11) = 2,75 = 3 (39)

Here again it would be necessary to add one sample to the total sample
size. Stratum sample sizes using optimal allocation and assuming that

costs are constant among strata would be

Yhoh

t 3 (40)
2 @y,
h=1

o 7 T

with

L
' EE: (thh) = (0.25)(12.59) + (0.50)(12.44) + (0.25)(12.35)
h=1

= 12.46
B (0.25) (12.59)
o, = A1)537%
= 2.87 = 3 ,
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B (0.50) (12.44)
2 (11) 12.46

5.49 = 5

25) (12.35)

- (11)(0.12.46

=]
1

= 2.73 23 (41)

In this example the use of optimal allocation does not produce a design
that is any different from the design resulting from proportional
allocation, This lack of a difference between the two designs is the

result of the nearly equal variances of the three strata (see Table 4).

Systematic Sampling

52. Systematic sampling is considerably different from simple
random sampling. Given that the N units of the target population are
numbered from 1 to N in some order, then to obtain a sample of n
units, a unit is selected at random from the first %k units and every
kth unit thereafter. The value k is defined as the closest integer
to N/n . For example, if N is 500 and a sample of 20 units is

wanted, then

=300 _
20

(42)

B

k= 25

To obtain a systematic sample of 20 units with 2 k of 25, a number
between 1 and 25 is selected at random. If this random number is 12,

then the systematic sample consists of the units

12, 37, 62, 87,..., 437, 462, 487
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The selection of the first unit determines the entire sample. This type
of sample is called an every kth systematic sample.

53. Systematic sampling is a very common sampling method, par—
ticularly considering temporal sampling. For instance, a biweekly sam-—
pling program is an every kth systematic sample with k = 14 days.

The first sampling date can be chosen at random, and all the remaining
samples are taken at 14 day intervals. Cochran (1977) has identified
two apparent advantages of systematic sampling over simple random sam-
pling. First, systematic sampling is an advantageous design because the
development of the sampling program is relatively simple and easy to
execute. It is for this reason that systematic sampling is so popular.
For example, if an investigator wishes to sample the epilimnion of a
40-km-long reservoir, it will be much easier to select 20 samples spaced
at 2-km intervals than to select 20 samples randomly scattered along the
length of the reservoir. Second, it at first appears that systematic
sampling is probably more precise than simple random sampling. System—~
atic sampling can be considered to stratify the target population into
n strata, with the first stratum made up of the first k units, the
second stratum made up of the second k units, and so on. Given this
view of systematic sampling, it may be expected that the systematic sam-
ple will be nearly as precise as the corresponding stratified random
sample with one unit sampled per stratum. But there is a difference.

In the systematic sample, the sampled units occur at the same relative
position in the stratum, whereas in the stratified random sample, the
position of the sampled unit in the stratum is randomly selected. As a
result, the systematic sample is spread more evenly throughout the popu-—
lation {(a function of the k wvalue), and this more even distribution
sometimes leads to systematic sampling being considerably more precise
than stratified random sampling.

54. With these advantages, why would anyone choose to conduct
more difficult sampling programs using either simple random sampling or
stratified random sampling? There are very obvious disadvantages to the
use of a systematic design. Whereas simple random and stratified random

samplings are primarily directed at providing estimates of the target
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population as a whole (i.e., developing an estimate of the population
mean and variance), providing these estimates can be very difficult from
the data collected from a systematic design. The sample mean from a

systematic sample can be calculated in a straightforward fashion from

n
71 )y (43)
k=1

but it is much more difficult to determine the sample variance and the
standard error or the precision cf the mean. If the sample values can
be assumed to be random with respect to their order, the variance and
standard error can be calculated in the same manner as a simple random

sample

n
e @- ™ - 7Y (44)
s n 1 E;; (?k y)

and the standard error is

1/2
- n
y

Complications arise if the sample values display a trend or periodicity
as a function of their order. If a trend is evident, such as a nearly
linear decrease in chlorophyll a concentration from the headwaters to
the dam of a reservoir, the calculation of an unbiased sample variance
becomes very difficult. The problem arises because the successive
values in the sample are no longer independent and the lack of indepen-
- dence violates one of the major sampling assumptions. Formulae for the

caleulation of the sample variance from systematic designs exist, but
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they are beyond the scope of this manual. The reader can consult
Cochran (1977) to pursue this subject.

55. With the above limitations in mind, a systematic sampling
design can be effectively used to meet three different objectives.
First, if the assumption of the independence of the observations can be
made (i.e., samples are effectively random with respect to their order
and no trends exist), then systematic sampling can represent an effec-
tive approach with execution being easier than simple random sampling.
Second, systematic sampling can be used in a pilot study to define or
identify stratum boundaries and provide the initial estimates for the
determination of the total sample size in a stratified design. Third,
the disadvantage of a stratified design can be turned to an advantage if
the objective of the study is to detect trends or patterns. Whereas the
random sampling designs are well suited to estimating the overall mean,
they are poorly suited to providing a "picture" of the changes over time
or space. A systematic design is much better suited to detect patterns

in the behavior of the variable.

Decision Matrices

56. A decision matrix is an aid to the determination of sample
size for multivariable sampling programs and can be used for either
simple random or stratified random sampling designs. The decision
matrix is simply a table that incorporates the necessary factors that
determine sample size: (a) cost, (b) desired precisiom, (c) probability
of error, (d) an estimate of the mean, and (e) an estimate of the
variance.

57. Consider a sampling program with the objective of providing
the annual means of three wvariables X , Y , and Z wusing a simple
random sampling design. The information required to produce the deci-
sion matrix can be extracted from previous studies and is presented in
Table 5. From these data, a decision matrix can be calculated using

the equation for the sample size of a simple random sample
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Estimated Means, Variances, and Unit Costs

Table 5

Variable Mean Variance Unit Cost
X 12 100 15.00
Y 38 500 3.00
yA 72 650 20.00
n = tzfzz (46)
(ry)

The decision matrix is presented in Table 6.

58. The decision matrix for the example presents a number of
important features concerning the determination of the sample size in a
nultivariable sampling design. WNote the differences in sample sizes as
a function of precision and probability of error for any given variable.
For example, the sample size for variable X ranges from 269 to 30 sam-
ples depending upon the desired precision and the probability of error.

These data also help to illustrate the relationship between sample size,

precision, and the probability of error. Accepting a reduced precision -

(i.e., accepting greater variance about the mean) has a much greater
~effect on sample size than allowing for a greater probability of error.
For variable X , with an error probability of 5 percent, a desired pre-
cision of *10 percent results in a sample size of 269, whereas if a
precision of *20 percent is acceptable, the sample size is reduced to
69. At a precision of %10 percent, increasing the error of probability
from 5 to 10 percent only reduces the sample size from 269 to 190. The
effects of changes in precision and error probability are more apparent
if the equation for sample size is considered. Sample size for a simple
random sample is given in Equation 46 and can be rearranged to
1 t252
r2 2
y

n=

(47)
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Table 6

Decision Matrix for Variables X, Y, and Z

Precision

Probability

Number of samples

Total cost

Precision

Probability

Number of samples

Total cost

Precision

Probability

Number of samples

Total cost

Variable X
107 207
5% 107 207 5% 107 207
269 190 115 69 49 30
$4,035 2,850 1,725 1,035 735 450
Variable Y
107 207
5% 10% 207 57 107 207
135 96 58 36 25 16
$ 405 288 174 108 75 48
Variable 7
107 2072
5% 107 20% 5% 107 207
51 36 22 15 10 7
$1,020 720 440 300 200 140
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to account for effect of changes in precision or to

2 32

(n)?

(48)

to account for the changes in the probability of error. The limited
range of t values ( t ranges between 0.675 and 2.57 for error
probabilities between 0.05 and 0.50 with DF > 5) restricts the effect of
the error probability om sample size.

59. The decision matrix also displays the disparity of sample
sizes among variables at a given precision and error probability. In
the example matrix at a %10 percent precision and a 5 percent probabil-
ity of error, sample size ranges from 269 for variable X - to 51 for
variable Z . The occurrence of considerably different sample sizes for
different variables is gquite common and serves to complicate the deci-
sion to be made concerning sample size in a multivariable sampling
program.

60. The decision matrix can also be used to examine the conse-
quences of accepting any given sampling design. Cost estimates for the
maximum and the minimum designs can be evaluated to provide a range of
costs for the possible designs. The maximum design results from using
the largest sample sizes from the decision matrix, and the minimum sam—
ple design results from using the smallest sample sizes. In the example
decision matrix, the largest sample sizes are those for variable X ,
and the smallest sample sizes are from variable Z . Cost estimates for
the maximum and minimum designs are presented in Table 7.

61. The maximum and minimum designs can also be examined for
their influence on the precisions that will result from adopting either
of these designs. The resulting precision can be calculated given the
sample size, estimates of the mean and variance, and the probability of

error, as follows:
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Table 7

Maximum and Minimum Designs Based on the Decision Matrix of Table 6

Maximum Design

Precision® 107 207

Probability 5% 10% 207 57 107 207
Number of samples 269 190 115 69 49 39
Total cost $10,222 7,220 4,370 2,622 1,862 1,140

Minimum Design

Precision* 107% 207

Probability 5% 10Z 207 5% 107 207
Number of samples 51 36 22 15 10 7
Total cost $ 1,938 1,368 856 570 380 266

* The level of precision refers only to that variable on which the
design is based. For the maximum design only the precision of vari-
able X is specified, and in the minimum design only the precision of
Z 1is specified. The precisions of the remaining wvariables would have
to be recalculated using the given number of samples.
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- (49)

Using the data in Tables 5 and 7, the resultant precisions can be calcu-
lated and are presented in Table 8.

62, The maximum design oversampleé variables Y and Z , and as
a result the precisions for these variables are greater {lower error
about the mean) than the desired precisions specified in Table 6. If
the maximum design is acceptable in terms of cost, this consequence does
not in any way impair the design. On the other hand, the consequence of
accepting the minimum design can seriously impair the sampling program.
The minimum design undersamples variables X and Y , and the preci-
sions are lower {greater error about the mean) than the desired preci-
sions given in Table 6. If the mean of variable Z 1is the primary
concern of the study, then the minimum design may be acceptable, but if
X or Y is the variable of importance, then the minimum design will
not provide the means of these variables within the desired bounds.
4 63. Decision matrices can also be produced for stratified random
designs. If the cost of sampling each stratum is constant, the total

sample size for variable Y is

(50)

and the samples are allocated to the strata (assuming an optimal alloca-

tion) by
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Table 8

Precisions of Variables X, Y , and Z Based on the Maximum

and Minimum Designs

Maximum Design

Probability 57 107 207 5% 10% 207
Number of samples 269 190 115 69 49 29 )
Variable Precision, %
X 10 20
Y _ 7 14
A 4 9

Minimum Design

Probability 5% 107 207 5% 107 207
Number of samples 51 36 22 15 10 7
Vardiable Precision, 7%
X 23 46
Y 17 34
YA 10 20
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The maximum and minimum designs, and their associated costs, can be cal-
culated in the same manner as those for a simple random sample. The
precisions resulting from either the maximum or minimum design can be

calculated from

B L - 1/2
2 § : 2 2
t whsh
r= h=i - (52)
1 .
nY Ynhn
8 h=1 i

64. Decision matrices will not, in themselves, solve the problem
of determining sample size in multivariable sampling programs. However,
the matrices can be used to examine the consequences, in terms of cost
and precision, of using any particular design. They are an aid in the
development of a sampling design and can be an integral part of the

decisionmaking process.
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PART IV: RESERVOIR WATER QUALITY PATTERNS—
IMPLICATIONS FOR SAMPLING DESIGN

Frequency Distributions

65. One of the basic assumptions of sampling design is that the
values of the target population are normally distributed. A problem
arises in that a number of variables typically collected in a reservoir
sampling program will frequently deviate from a normal distribution.
Figures 4 and 5 present the percent frequency distributions for total
phosphorus (TP), total nitrogen (IN), and chlorophyll a for samples
collected from DeGray Lake, a flood control, hydropower reservoir in
south-central Arkansas, and Eau Galle Lake, a flood control reservoir in
west—central Wisconsin, respectively.

66. 1In DeGray Lake (Figure 4) the TP and TN distributions are
positively skewed, whereas the chlorophyll g distribution is
platykurtic. A skewed distribution has a concentration of values on one
side of the distribution and a "tail” of less frequent values on the
other. If the tail is on the right, the distribution is said to be
positively skewed, and if the tail is on the left, the distribution is
negatively skewed. As a result of the positive skew for TP and TN, the
sample mean would be "pulled" away from the most frequently observed
values of the sample. Therefore, the sample mean may not adequately
characterize the target population. A platykurtic distribution, such as
that of chlorophyll g, is defined as a distribution with a greater
frequency of values between the mean and the tails than in a normal
distribution. This results in a flatter distribution when compared with
the bell-shaped normal distribution. All of the wvariables for Eau Galle
Lake exhibit considerable positive skew (Figure 5).

67. A number of alternatives are possible for the treatment of
deviations from normality, depending on whether or not the data have
already been collected. If the data have been collected and deviations
from normality are evident, the problem is one of data amalysis. With

nonnormally distributed data, data analysis can proceed by one of three
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approaches. One, it may be possible that the desired analyses are suf-
ficiently robust that the deviations from normality will not impair the
results. Two, a data transformation procedure can be applied to the
data to produce more normal distributions. Three, if the deviations
from normality are considered substantial and camnot be easily corrected
by transformations, then nonparametric analyses can be applied to the
data. The use of these three approaches is discussed in detail in
Gaugush (1986).

68. If the sampling program is in the developmental stage and
deviations from normality can be expected, then the problem is one of
sampling design. Deviations from normality for water quality variables
may result from the existence of distinct subpopulations of the target
population. Each subpopulation may be normally distributed, but their
combination may deviate from normality. The implication is that a
stratified design with each stratum having a normal distribution is a
beneficial approach. If stratification does not produce a normal dis-
tribution, then the investigator will have to rely on the data analysis

methods discussed above.

Spatial Patterns

69. TIn reservoir water quality sampling, three spatial dimensions
are of concern: (a) vertical, (b) lateral (along an axis perpendicular
to the major hydrologic flow), and (c) longitudinal (along an axis par-
allel to the major hydrologic flow). Before proceeding to a discussion
of these patterns, it is worthwhile to consider a study conducted under
the EWQOS Program that was designed to assess the contribution of each
of these dimensions to the overall variance.

70. Documenting the spatial variability in DeGray Lake was the
objective of three intensive sampling efforts in 1978 and 1979. Dis-
cussion will center on the July 1978 sample; the reader can consult
Thornton et al. (1982) for a complete discussion, Sampling transects
were established from the dam to the headwaters (to account for longi-

tudinal variability). Stations were located on each transect to sample
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over the old river channel, along the littoral area on each side, and at

intermediate distances between these locations (to account for lateral

variability). Fifteen transects, with five statioms per transect, were

established along the length of the reservoir. Water samples were col-

lected at depths of 0, 2, 4, 6, and 10 m and at 5-m intervals thereafter

to within 0.5 m of the bottom (to account for vertical variability).

Water samples were analyzed for chlorophyll ¢ and TP concentrations and

for turbidity. During July the lake was thermally stratified, and the

data were divided into three depth strata: the epilimnion, the e
metalimnion, and the hypolimnion. |

71. A variance component analysis of the data was used to deter—
mine the contribution of each dimension to the overall variability.
Table 9 presents the results of the analysis. Lateral variability was
low and rarely contributed a major portion of the variance. Longitudi-
nal variability, except in the hypolimnion, contributed most of the
variability. Vertical variability within each depth stratum contributed
a significant fraction of the total variability. Exceptions to this
pattern (i.e., little lateral variability and significant longitudinal
and vertical variability) may occur in wide and shallow reservoirs with
relatively long residence times (i.e., low flushing rates). Exceptions
may also occur in reservoirs with extremely short residence times (lon-
gitudinal patterns do not develop because of rapid flushing) and in
unstratified reservoirs (vertical patterns do not develop because of
mixing). Most reservoirs can be expected to exhibit significant longi-
tudinal and vertical variability with lateral variability contributing a
small and often insignificant portion of the overall variance.

72. The implications of this study should be obvious. The possi-
ble existence of significant vertical and longitudinal gradients in
water quality must be accounted for in the development of a sampling
design. Consideration of lateral variability is less important, and the
remainder of the discussion of spatial patterns in water quality will
focus on vertical patterns and longitudinal gradients.

73. Vertical patterns are established in response to vertical

gradients in light and temperature. The establishment of thermal
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stratification effectively divides the reservoir into three depth strata

(Figure 6). The effective isclation of the hypolimmion can lead to

TEMPERATURE N
. -
MIXED
LAYER EPILIMNION
THERMOCLINE METALIMNION

DEPTH

> HYPOLIMNION

—

v 7

Figure 6. Typical pattern of thermal stratifi-
cation and its ability to divide the reservolr
into three vertical strata
oxygen depletion and the subsequent release of reduced constituents.
The distribution of light with respect to depth is a major determinant
of primary productivity, and this effect, in turn, influences the verti-
cal distribution of plant nutrients. Figure 7 presents some typical
vertical patterns and illustrates the influence of changes in light,
temperature, and dissolved oxygen concentrations on the vertical dis-
tribution of chlorophyll a, soluble reactive phosphorus, and dissolved
metals. For a detailed discussion of vertical stratification patterns,
the reader can consult "Reservoir Water Quality" (OCE 1985), Wetzel
(1975), and Rutner (1963).
74. The vertical patterns in water quality imply that a sampling

design should be stratified with respect to depth, The vertical
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distributions of light, temperature, and dissolved oxygen can be used to
define depth strata. The strata that might be defined with these vari-
ables are listed in Table 10. The selection of strata or combinations

of strata will depend on the specific objectives of the study.

Table 10
Depth Strata Defined by Vertical Patterns of Temperature, Light,

and Dissolved Oxygen

Stratification Variable Strata Defined
Temperature epilimnion, metalimnion, hypolimnion
Light photic, aphotic

Dissolved Oxygen oxiec, anoxic

75. Reservoirs can exhibit significant longitudinal gradients in
physical, chemical, and biological parameters. The relatively long,
dendritic morphometry, the location of the major inflow a considerable
distance from the ocutflow, and the generally unidirectional flow from
the headwaters to the dam foster the development of longitudinal gradi-
ents. The potential for longitudinal gradients is a complex function of
hydrology and morphometry (Figure 8). Reservoirs with long residence
times, high sedimentation, and a flow regime dominated by advective
transport will have a greater potential for longitudinal gradients than
reservoirs with short residence times, low sedimentation, and dispersive
transport.

76. These gradients are continuous, but three characteristic
zones can be identified (Thornton et al. 1980): a riverine zone, a zone
of transition, and a lacustrine zone (Figure 9). The riverine zone can
be characterized as a zone with high flow velocities, high concentra-
tions of suspended matter and nutrients, and limited light availability.
High concentrations of allochthonous organic matter may lead to a con-

siderable oxygen demand, but anoxia is prevented from developing because
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Figure 8., Potential for longitudinal gradients in res-
ervolirs as function of sedimentation, flow regime, and
residence time

the riverine zone is relatively shallow and well mixed. The zone of
transition is characterized by reduced flow velocities resulting from
the widening and deepening of the reservoir in this zone. Reduced flow
velocities allow for greater sedimentation of suspended matter, and, as
a result, light availability improves. Given the relatively high nutri-
ent concentrations and the light availability, both phytoplankton pro-
ductivity and biomass may peak in this zone. The characteristics of the
lacustrine zone of the reservoir are similar to the conditions observed
in natural lakes. Flow velocities are minimal, light availability is
relatively high, and nutrient availability will most likely limit pri-
mary productivity. The deposition and subsequent decomposition of
autochthonous organic matter in the hypolimmion of this zone may result
in the depletion of oxygen in portioms of the hypolimnion.

77.  The presence and extent of these zones can readily be incor-
porated into a stratified sampling design. A combination of flow

velocity and light availability profiles could be used to define the
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longitudinal strata. The vertical strata discussed earlier could be

combined with the longitudinal strata to form a two-dimensional strati-

fication of the reservoir. A sampling design using both vertical and

longitudinal stratification should account for the majority of the spa-

tial variability in reservoir water quality.
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Temporal Patterns

78. Just as spatial patterns in reservoir water quality are ulti-
mately determined by the flow regime and the vertical and longitudinal
changes in light and temperature, significant temporal patterns are
determined by the temporal dynamics of the the flow regime and the sea-—
sonal changes in temperature and incident solar radiation. Temporal
patterns of interest will be related primarily to changes in thermal
stratification. The annual cycle of changes in thermal stratification
is well documented in limnology texts, such as Wetzel (1975) or Rutner
(1963). In dimictic lakes, the periods of mixing, spring and fall turn-
over, are preceded and followed by perlods of stratification ({i.e.,
winter and summer stratification). The duration and extent of these
seasonal events can be used to stratify a sampling program temporally.
In the warm monomictic reservoirs of the Southeast, the stratified
period is preceded and followed by a period of winter circulation. In
such a case, stratification of the temporal variability into only two
strata may not be sufficient to account adequately for the temporal com-
ponent of variability in reservoir water quality.

79. Temporal changes in the flow regime can aid in the temporal
stratification of reservoir sampling designs. Figure 10 presents the
seasonal dynamics of the mean daily flow into DeGray Lake contributed by
its major tributary, the Cadde River. The flow regime can be divided
into a high flow stratum (March ~ May) and a low or base flow stratum
(July — February). The combination of thermal and flow stratification
can be used to develop a design to account for a greater proportion of
the temporal variability (Table 11).

80. The allocation of samples with respect to time or the sam-
pling frequency can pose serious problems if a systematic design is
used. A major assumption of statistical analyses is that the values of
the sample are independent, meaning that each value in the target popu-
lation has an equal probability of being chosen for the sample. 1In a
systematic design, only the first sample value is randomly chosen; the

remaining values are selected at constant intervals of time (see the
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Table 11

Temporal Strata Defined by Seasonal Changes in Flow

Regime and Thermal Stratification

Stratum Months
Winter circulation, high flow March - May
Stratified June - September
Winter circulation, low flow October — February

section on systematic sampling in Part ITI}. Such a design can result
in the lack of independence if the successive sample values are
correlated.

8l. Serial correlation implies that the successive values are not
independent and, in fact, successive wvalues can be expressed as a func-—
tion of the preceding values. Assume that daily samples for chloro~
phyll a were obtained from a reservoir (Figure 1la). From the data the

correlation between the values can be calculated for

i and Yi-1 where 1 = 2, 3, 4,..., k
Yg and Y59 where 1 = 3, 4, 5,..., k
Yi and yi—n where i =n, n+1, n+ 2,..., k

Computing the correlation between a variable and the preceding values of
the same variable produces autocorrelation coefficients that describe
the dependence of the v; values on the preceding values. Figure 11b
presents the autocorrelation coefficients for the chlorophyll a data.
Successive values of chlorophyll g are highly dependent on previous
values. At a lag of 7 days, the autocorrelation coefficient is greater
than 0.75. The term "lag" refers to the separation between successive

observations.
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Therefore, a lag of 7 days implies successive observations of
chlorophyll a at 7-day intervals.

82. The existence of autocorrelation or serial dependence in
water quality data implies a very serious limitation to the use of sys—
tematic designs. At low sampling frequencies, less than one sample per
month, serial dependence should not pose a problem. If higher sampling
frequencies are to be used, a systematic design can be a liability.
Systematic designs are commonly used because of their convenience, and
this advantage can be retained by combining aspects of both random and
systematic sampling. For example, assume that weekly samples are to be
collected. The systematic nature of the design can be retained by sam-
pling every week, but the day that the sample is taken can be chosen at
random. This sampling design effectively treats each week as a separate
stratum from which one unit is collected at random. This modification

of the systematic design should result in an independent sample.

Interaction Between Spatial and Temporal Patterns

83. It should be intuitively obvious that spatial and temporal
variability in reservoir water quality is not independent. Spatial
patterns can be expected to change with time. The size or extent of
both vertical and longitudinal strata varies with time. The size of the
epilimnion will generally increase during the course of the stratified
period while the hypolimnion will undergo a concomitant decrease in
size. Longitudinal strata will also expand and contract in response to
seasonal changes in the flow regime. During the period of high flow,
the riverine zone will extend further downstream, displacing the transi-
tion zone downstream and shrinking the lacustrine zone. Under low flow
conditions, the riverine zone may be very limited in extent, shifting
the transition zone upstream and expanding the lacustrine zone.

84. A few examples from DeGray Lake will illustrate the inter-
action of spatial and temporal dynamics. The spatial distribution of
chlorophyll a concentrations changed drastically with time (Figure 12).

In May, a period of high flow, high concentrations of chlorophyll a
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extended much farther downstream than in July or October when flows were
lower. Also, chlorophyll a was vertically stratified in May and July,
but not in October. The spatial extent of anoxia changed with time,
which influenced the spatial distribution of TP concentrations (Figure
13). The zonre of anoxia increased in size and moved downstream from May
to November. Phosphorus release from the sediments under anoxic condi-—
tions resulted in a zone of elevated phosphorus concentrations increas-—
ing in size and moving downstream during the same period. Longitudinal
gradients in turbidity, TP, and chlorophyll a also changed with time
(Figure 14). Changes in light, temperature, and flow regime altered

both the steepness of the gradient and the position of the peak.

A Generalized Reservoir Sampling Design

85. Reservoir sampling designs must consider both spatial and
temporal sources of variability when attempting to generate precise and
cost—effective estimates of water quality. The spatial strata portrayed
in Figure 15 can form the basis of a generalized reservoir sampling
design. This design accounts for both vertical and longitudinal vari-
ability in water quality. The design can also account for temporal
variability if the time-dependent changes in the size and position of
the vertical and longitudinal strata are considered. This design will
not be suitable for all water quality sampling programs on all reser-
voirs. Sampling designs must be tailored to meet the stated objectives
within the site-specific conditions of a given reservoir. The general-~
ized reservoir sampling design is offered as a conceptual starting point
for the development of specific reservoir sampling designs.

86. The proposed generalized design can he thought of as a mini-
mal design for sampling reservoir water quality. The term "minimal™
refers to the fact that this design is the simplest that can be used to
characterize reservoir-wide water quality conditions. Many water qual-
ity studies will require more complex designs with a greater number of
longitudinal and/or vertical strata. Even in those cases where the min-

imal design is acceptable, an increase in the complexity of the design
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Figure 15. A generalized reservoir sampling design
with both vertical and longitudinal stratification
(after Thornton et al. (1980))

(if possible within manpower and funding comstraints) will result in
increased precision or reduced error in the water quality estimates.
The minimal design considers three vertical strata (the epilimnion,
metalimnion, and hypolimnion) and three longitudinal strata (the
riverine, transition, and the lacustrine zones) for a total of nine
cells (i.e., combinations of strata, 3 vertical v 3 longitudinal =
9 cells).

87. Strata boundaries can be defined by either a pilot study or
an examination of existing data. Most often, water temperature and dis-
solved oxygen concentrations can be used to define the vertical strata.
A series of vertical profiles taken along the major axis of the reser-
voir will identify the epilimmion, metalimnion, and hypolimnion. Longi-
tudinal strata will be best defined by the longitudinal gradients in
phosphorus, chlorophyll ¢ and turbidity or suspended solids. Once the
strata boundaries are defined, the total sample size can be determined
using the formulae presented earlier. Given total sample size, the

samples can be allocated to the strata equally (equal allocation), as a
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function of their relative size {(proportional allocation), or as a

function of their variance (optimal allocation).
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PART V: EVALUATION OF SAMPLING DESIGN

Introduction

88. Once the data have been collected from a sampling program,
the data analysis phase of the program can be initiated. There are fun-
damentally two types of data analysis: (a) data analysis directed at
characterizing the target population and (b) data analysis with the
objective of evaluating the effectiveness of the sampling design. The
first type of analysis will not be considered in this work, but an
introduction to the subject with an emphasis on reservoir water quality
data aﬁalysis can be found in Gaugush (1986). The second type of data
analysis is rarely considered, and methods for the evaluation of sam-
pling design will follow.

89. There are two important reasons for evaluating a sampling
design. First, if the sampling design is to be used again, as in a
long~-term monitoring program, it is essential to determine if the design
can be modified or improved to increase the precision of the estimates
or reduce the cost of sampling. It may be possible to reduce the sample
size of a particuiar variable with relatively low variance, or a vari-
able may be dropped from the sampling program if it exhibits little
variance with respect to the important water quality concerns. Second,
even if the sampling will not be repeated, it is worthwhile to evaluate
the effectiveness of the design to aid the development of future sam-
pling programs. '

90. The remainder of this report will consider the following
three questions concerning sampling design and the three corresponding
methods for addressing the questions:

a. How well does the sampling design "explain" or account
for the observed variance?

Method: Variance Component Analysis
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b. Are there redundancies in the data that can be removed to
improve the sampling design?

Method: Cluster Analysis

How can a sample design be modified to improve the
precision of the estimates?

kel

Method: Error Analysis

Variance Component Analysis

91. Variance component analysis is a technique for quantifying
the sources of variability in the data resulting from,a-given sampling
design. The data analysis of the spatial variability in DeGray Lake
presented in Part IV is an example of a variance component analysis.
The analysis results in the determination of each design component's
contribution te the overall variance. Based on the results of a vari-
ance component analysis, sampling effort in a given stratum can be
reduced or even eliminated. In the DeGray example, it was shown that
lateral variability contributed very little to the overall variability.
In future sampling, lateral sampling could be eliminated to reduce sam-
pling effort without seriously affecting the precision of the estimates.

92. The computational details of variance component analysis are
beyond the scope of this work, but the reader can consult Winer (1971)

for an excellent treatment of the method.

Cluster Apalysis

93. Cluster analysis is a classification technique that may be
used to group or identify similar objects.' In the more typical data
analysis situation, cluster analysis may be used to group a set of
reservoirs according to their trophic state or by the composition of
their phytoplankton. The use of cluster analysis in a typical data
analysis mode can be found in Gaugush (1986). In the evaluation of a
sampling design, cluster analysis can be used to identify redundancies

in the design. For example, if a stratified random sampling design
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requires the collection samples from 12 strata, cluster analysis may be
able to identify groups of strata that can be combined to reduce sam—
pling effort. The remainder of this section will provide a conceptual
introduction to the method and the necessary background to interpret the
results of a cluster analysis in a sampling design framework. Computa-
tional details of cluster analysis can be found in Gaugush (1986).

94, Cluster analysis is a ﬁultivariate technique that can be used
to identify the possibility of reducing sampling effort. The term "mul-
tivariate" refers to the fact that cluster analysis can operate on a set
of variables. Tt is the multivariate nature of cluster amalysis that
gives it a considerable advantage over variance component analysis as a
method for the evaluation of sampling design. Whereas variance compo-
nent analysis can suggest a reduction of effort based on one variable at
a time, cluster analysis can use all of the variables sampled to suggest
an improvement of the design. Cluster analysis has a second advantage
over varlance component analysis in that it identifies specific samples
that can be combined in future sampling to reduce sampling effort.

95. Cluster analysis may identify groups of similar observations
(i.e., the clusters) based on a number of criteria, but in most applica-
tions the criterion is either the éorreiation between groups of obser-
vations or the similarity of their means. At the start of the cluster
analysis, each group of variables comprises its own cluster. At each
step of the analysis, clusters are joined based on their similarity
until all of the observations form a single cluster. The objective of
the analysis is to find how manf clusters between one cluster for each
observation and one cluster for all observations best describe the data.
An indicator referred to as the cubic clustering criterion (CCC) is

probably the best available method for identifying the number of clus-

ters within the data set (Gaugush 1986). During the cluster analysis, a

CCC is calculated for each set of clusters between n clusters (where
n  is the number of observations) and one cluster. A local peak value
of the CCC identifies the number of clusters that may define an accept-

able grouping of the data.
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96. As an example of the usefulness of cluster analysis, consider
the following sampling design. A stratified random sampling program was
used to estimate the annual mean concentrations of chlorophyll a, TP,
TN, total organic carbon, and dissolved silica. Strata were defined
both vertically and temporally. The epilimnion, metalimnion, and hypo-
limnion were defined as the vertical strata, and the months of the year
were chosen as the temporal strata. One randomly selected sample was
taken from each combination of depth and time strata for a total sample
size of 36.

97. Cluster analysis can identify the number of clusters between
1 (i.e., all observations are similar) and 36 (i.e., all observations
are dissimilar) that best describes the data. It should be obvious that
if the analysis finds a number of clusters less than 36 that can ade-
quately describe the data, a reduction in future sampling effort cam
result. TFor the sake of the example, assume that the CCC has identified
eight clusters as an acceptable grouping of the data. The results of
the clustering can be depicted graphically using az dendrogram or tree
diagram (Figure 16). Along the bottom of the figure, the 36 strata sam—
pled are listed and the y-axis of the diagram is the number of clusters.
The clusters identified by the CCC are also numbered from ! to 8 from
left to right.

98. By an inspection of which strata fall inte particular clus-
ters, the clusters can serve to define new strata (Table 12). The clus-
ters that result from the analysis appear to fall into logical groupings
when one considers typlcal spatial and temporal patterns in water qual-
ity. The strata comprising the winter months (November-February) all
fall into a single cluster. This cluster includes all depth strata dur-
ing these months, which is intuitively reasonable because of the
expected lack of significant wvertical stratification during this period.
The clusters for the summer {July-September) indicate that depth strata
are significant during the thermally stratified period.

99. The results of the cluster analysis indicate that it may be
possible to reduce the number of strata from 36 to 8. With this consid-

erable reduction, it may also be possible to increase the total sample
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Table 12
New Strata Defined by the Results of the Cluster Analysis

Existing Strata

Cluster Months Depths New Strata
1 1, 2, 1}, 12 epi, met, hyp* Nov-Feb, no vertical strata
2 4, 5 epi, met, hyp Apr-May, no vertical strata
3 6 epi, met, hyp Jun, no vertical strata
4 7, 8, 9 epi Jul-Sep, epilimnion
5 10 epi, met, hyp Oct, no vertical strata
6 7, 8, 9 met Jul-Sep, metalimnion
7 epi, met, hyp Mar, no vertical strata
8 7, 8, 9 hyp Jul-Sep, hypolimnion

* Epl = epilimnion; met = metalimnion; hyp = hypolimnion

size, allocate more than one sample per stratum, and increase the pre-
cision of the estimates without increasing costs. After a cluster amal-
ysis is performed, it would be important to develop a decision matrix
for the sampling design suggested by the cluster analysis. Only through
the use of the matrix can one be assured of an improvement in the sam—

pling design.

Error Anmalysis

100. Error analysis is a method for the improvement of a sampling
design that uses the observed distribution of variance to redefine a
sampling program. The result of error analysis is a redistribution of
samples to the existing strata to produce the minimum variance about the
mean. Error analysis can be applied to the data of a stratified sam-
pling design or to the data from a simple random or a systematic sample
that has been subjected to poststratification (i.e., defining strata a

posterdiori),
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101, To illustrate the use of error analysis, consider the fol-
lowing stratified random sampling design. The objective of the study
was to estimate the annual mean epilimnetic chlorophyll @ concentration.
Based on limited previous data, a seasonal stratification was used with
the strata defined by the durations of spring mixing, summer
stratification, fall mixing, and winter stratification. A proportional
allocation of 25 samples was used because of the limited data concerning
variance within the specified strata. The results of this study are

presented in Table 13.

Table 13
Results Derived from Sampling Epilimnetic Chlorophyll Concentrations¥

2

8
Stratum n wt i s2 E
Spring 4 0.16 73.30 4852.65 1213.16
Summer 9 0.36 41.81 341.80 37.98
Fall 4 0.16 31.93 45.08 11.27
Winter 3 0.32 13.93 93.41 11.68
¥ 5 =36.35; 82 = 37.47

Yee = .35; 87 = .
Vst

102. Error analysis considers the contribution of each stratum's

2
error variance (variance about the mean s ) to the error variance

h
about the stratified sample mean ( sE }. The error variance contrib-
Vst
uted by a given stratum is
wﬁs% (53)
n
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and the percentage contribution to the stratified sample error variance
is

(54)

vhere VhZ = distribution of varlance. Error analysis also considers the
distribution of sampling effort among the strata. The percentage con-

tribution of each m  to the n is given by

st

T

NZ=100 — (55)
n
st

where NhZ = distribution of samples. Based on the observed distribution
of variance, error analysis calculates the optimal distribution of the

samples to the strata from the following:

1/2
100 Wh nhs_
n
OPThZ =1 ; 172 (56)
E ¥h | "n®-
h=1 Th

where OPThZ = optimal distribution of samples., This can be simplified

because

si = nhsE -(57)
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which gives

100 w, s
OPT, % = —— BB (58)

h L
2 "%
h=1

The NhZ s th , and OPThZ for the example data set are presented in
Table 14.

Table 14
Distribution of Sampling Effort, Error Variance, and Optimal Sampling
Effort for the Chlorophyll Data of Table 13

Stratum _fhf th_ ‘ OPThz
Spring 16.0 82.9 50.8
Summer 36.0 13.1 30.3
Fall 16.0 0.8 4.9
Winter 32.0 3.2 14,1

103. An examination of the disparity between the NhZ values and
the VhZ values indicates there is considerable room for improvement of
the sampling design. For example, the spring stratum was allocated only
16 percent of the samples, and yet it contributed over 80 percent of the
error variance. The OPTh% values account for both the stratum size
and its contribution to the error variance.

104. Error analysis can also estimate the error variance of the
stratified sample mean if future samples are allocated according to the
optimal distribution. The error variance of the optimal design can be

estimated by
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N, %
VOPT = :E: WZSE b (59)

For the example data set
VOPT = (0.16)2(1213.16)(16.0/50.8) + (0.36)2 (37.98)(36.0/30,3)
+ (0.16)2‘(11.27)(16.0/4.9) + (0.32)2 (11,68) (32.0/14.1)

VOPT

1l

9,78 + 5,85 + 0,94 + 2.71

VOPT

19.28 (60)

The optimal design results in an expected error variance of 19,28,
whereas the existing design resulted in an error variance of 37.47. If
the optimal design were to be adopted for future sampling, the error
variance would be expected to be nearly one half the error variance
resulting from the original design.

105. From the above, it is apparent that error analysis can lead
to a significant reduction in error variance (i.e,, an increase in pre-
cision) without an increase in cost. The only assumption that is neces-
sary 1s that the distribution of variance remains fairly constant over
time. That is, if the optimal design is adopted, the distribution of
strata variances must be similar to those observed in the past for the
estimated reduction in error variance to occur. Since this assumption
is made in the development of all sampling designs, it does not limit

the usefulness of error analysis as an evaluation method.
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APPENDIX A: SAMPLING DESIGN FORMULAE

1. SAMPLE MEAN (p 8)

n
- _ n_l
y ¥y
i=1
where
; = an estimate of the population mean
n = sample size
y, = individual observations

2. SAMPLE VARIANCE (p 8)

s2 = an estimate of the population mean

3. SAMPLE VARIANCE OF SAMPLE MEANS (p 10)

4. STANDARD ERROR (p 10)

Al

(A1)

(A2)

(A3)

(A4)



5. CONFIDENCE LIMITS FOR THE SAMPLE MEAN (p 11)

LL =y - ts_
¥
Ly = y + ts_ (A5)
y
where
LL = lower confidence Iimit
L = upper confidence 1imit TS s

a2 ]
1]

Student's t value for n - 1 degrees of freedom and a

specified probability
6. SAMPLE SIZE FOR A STMPLE RANDOM SAMPLE (p 15)

22
n=2Ls (A6)

(ry)?

where r = the desired precision .

7. SAMPLE MEAN FOR STRATUM h (p 25)

"h

- _ -1

Yo = "n E ;Yhi (A7)
1=1

where
n, = sample size for stratum h
th

i = value of the 1 unit in stratum h

A2



8. SAMPLE VARIANCE FOR STRATUM h (p 25)

o)L b

9. STRATIFIED SAMPLE MEAN (p 26)

10.

11.

li

Nh/N, stratum weight
total number of units in the target population

number of units in stratum h

STRATIFIED SAMPLE VARIANCE (p 26)

-3 @)

h=1

STRATIFIED SAMPLE STANDARD ERROR OF THE MEAN (p 27)

e @)
6y |E

A3

(48)

(49)

(A10)

(All)



12. STRATIFIED SAMPLE SIZE (p 28)

n = 3t (A12)

or

1.
2 2 : 22
t LA
_ h=1
n, = I 5 (A13)
T VY
h=1
13, STRATUM SAMPLE SIZE - EQUAL ALLOCATION (p 29)
n
n, = —Et (AL4)
14. STRATUM SAMPLE SIZE - PROPORTIONAL ALLOCATION (p 29)
n o=wn_ (Al5)
15. LINEAR COST FUNCTION (p 29)
L
C=Cy+ 2 oy (Al6)
h=1
wvhere
C = total cost
C0 = fixed cost or overhead
C, = cogt per sample in stratum h
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16. STRATUM SAMPLE SIZE -~ OPTIMAL ALLOCATION (p 30)

a. Costs differ among strata

"7 e T @

EI

S (418)

17, SYSTEMATIC SAMPLE MEAN (p 37)

j=at Z Yy (A19)

18. SYSTEMATIC SAMPLE VARIANCE (p 37)

e = (n - 1)'1‘:: (yk - 5)2 (A20)
k=1

19, SYSTEMATIC SAMPLE STANDARD ERROR (p 37)

2 1/2 ‘
s = (g") (A21)
¥y

A5



20, ERROR ANALYSIS (pp 74-76)

- a. Percentage contribution of stratum h to overall error
variance

V.7 = 100 h (A22)

b. Percentage contribution of stratum h to overall sample size

N %Z = 100 "h (A23)
n
st .

c. Optimal percentage contribution of stratum h to overall
sample size

or (A24)

100 W Sy

E : 55

=1

OPT. Z =

A6



d. Error variance of the optimal design

L N3
VOPT = wzsz _b7 (A25)
h™= OPThZ :
h=1 4 .
A7





