US Army Corps

of Engineersg
Engineer Research and
Development Center

ERDC SR-07-1

System-Wide Water Resources Program

eXtensible Model Data Format (XMDF)

Cary D. Butler, David R. Richards, Robert M. Wallace, January 2007
Norman L. Jones, and Russell Jones

Engineer Research

—
()
)
-
O
&)
-+
-
(D)
&
o
O
()
>
()
)]
©
-
©

Approved for public release; distribution is unlimited.

System-Wide Water Resources Program

eXtensible Model Data Format (XMDF)

Cary D. Butler, David R. Richards

Information Technology Laboratory

U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road

Vicksburg, MS 39180-6199

Robert M. Wallace

Coastal and Hydraulics Laboratory

U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road

Vicksburg, MS 39180-6199

Norman L. Jones, Russell Jones

Environmental Modeling Research Laboratory
242 Clyde Building

Brigham Young University

Provo, Utah 84602

Final report

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Projects 122401 and 122425

ERDC SR-07-1
January 2007

Abstract: The U.S. Army Engineer Research and Development Center, in
conjunction with the Environmental Modeling Research Laboratory
(EMRL) at Brigham Young University (BYU), is developing an efficient
Application Programming Interface (API) for handling multidimensional
data produced for water resource computational modeling. This API, in
conjunction with a corresponding data standard, is being implemented
within ERDC computational models to facilitate rapid data access,
enhanced data compression and data sharing, and cross-platform
independence. The API and data standard are known as the eXtensible
Model Data Format (XMDF), and version 1.0 is available for public use
and free dissemination. This report presents the purpose and architecture
of the XMDF API and data format.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

PrEFBCE......ececeee e Vi
L INErOTUCTION ...t n e 1
2 OVEIVIBIW ...ttt bbb et b bbbt n e 2
2.1 Overcoming Binary Portability ISSUES..........ccoceririirieieeirenescieeeeeins 2

2.2 HDF5 MethOdolOgYccccrvermeieininieninesiesieseesee e 3

2.3 HDFS VIBWEN ...t 3

24 XMDF OrganiZationccooererereeneeieeisesessessesseseeseeesessessessessessenns 3
241 MESN GrOUPS.....ceeieeieieeeer e 4

242 Grid GIrOUPSoveeieeieieeieeie sttt st 4

2.4.3 CroSS-SECON GrOUPS. .. .cuveueereruerrereesressesseseeessessesseseesseseesseseenens 5

244 GeOMELriC Path groUPS.......cccviririireriesieeeesese s 6

245 DalarSet QrOUDRSccceecverrerieeiesieeee st ssessee st st sre e e sne s 7

2.4.6 Coordinate SyStemM groUPS........ccerverrerrerrereeieesiesiesee e seeseeseeneas 7

2.5 AP OVEIVIBW ..ot 8
3—Quick Start for Model DEVEIOPEN'Scoveieeeeiriere s 9
31 XMDF FIEPENS......c.ocoiiiiiieiieeee e 9
3.2 ReAdiNG GEOMELTYc.oouiriiiiirierieieiee ettt 9
321 MESNES ..o 10

322 GlIOS it 13

3.3 WIItING DAA SELS. ..ot 18
4—Implementation DESIONcccoiiiiirieeeeeee s 22
4.1 XMDF FUNCtioNS/SUDIOULINES.......c.oiviieiriiieieieesiesie s 22
411 Cl/CHH INEITACE ..o 22

412 FORTRAN INtErfaCe......ccooiririririniesieieeeeeee e 22

4.2 COMPIESSION.....euiitireiatirtestestesseeesessessessessessessese s eseesessesbessesbesnesenneneas 22
4.3 Version NUMDENcociiiiiieieeieieee et 23
4.4 Creating and Opening FilES.........cccooiiiiiiniieeeeeeeee e 23
45 Float Variable TYPES. ..ottt 24

4.6 XM DF GIrOUPS.....ccceeieiitirueeneisteeie st sieesre st see st re e e sre e e e sns 24

4.7 Determining All Entitiesin aFile.......cocoooiiiiinciceeeee 26
4.8 PrOPEITIES ..ottt n e 27
4.8.1 Reserved property NAMES........coererereereeieresese e 28

4.8.2 APl functionsfor Properties..........coeeeeeeereneneneseseeeeenens 28

.9 MESNES ... 31
4.9.1 Nodal COOTdINALESceeueruiriiriiriesieieeee et 31

4.9.2 ElEMENTS....coiiiiieieeeeeese e 32

4.9.3 CoOordiNate SYStEM........ecceereeier e e e et see e e 34

4.9.4 Group OrganiZationcccceveerieesieeeseeseeseeseeseeseeeneeeseeenns 34
4.95 APl FUNCLIONScceiiiiiee et 34
R I = (0] 0= 1 (== 38

0 O I o TSRS 39
4.10.1 Grid PrOPerti€S.....ccccecceeecreeieeseeseeseesee e e esee e e sreesreesee e 39
4.10.2 APl FUNCHONS ..ot 41
4.10.3 Grid gEOMELIY ...veeivercee ettt 45
4.10.4 Grid coordinate ValUES.........cccevueeeeriiieeiesieeee e 46
4.10.5 EXIruded [QYErSccoeieeeciece et 47
4.10.6 Cell and Node Properties......ccccvveeiceeceeseesee e eee e 48

4.11 CroSS-SECHON DAcceeieiieeeieiie et 50
4.11.1 CrOSSSECLONS.....coiiiuieierieeeerie ettt ee e 50
4.10.2 Profil€S...oiieeeeeeeee e 50
G T = o] 0 o 0 o= = 51
I A I [TN o 0 0= g 1= 51
4.11.5 Group OrganiZationccccceveeeieesieeeseeseeseeseeseeseeeseeeseeenns 51
4.11.6 APl FUNCHONSooeiiiee e 54

4.12 GeOMELriC Paths........cooiiiieee e 59
4.12.1 Group Organi Zationcccceeveerieesieeeseeseeseeseeseesnseeseeeseeesns 59
4.12.2 APl FUNCHONS ..ot 60
4.12.3 Spatial DINS......ccoiiieeeeeres e 61

.13 DAASELS ..oveeeeeieieeieee et ee e 62
4.13.1 APl FUNCHONS ..o 64
A (0] 0= (== 74

4.14 CoOrdinate SYStEIMS.......cccveieerieerieeseeseesee e esreesreesreesee e e eeeeneeenree e 76
ApPPendiX A: COOId GIOUPciueeiueeirrireeieesieesteeseeseeesseesseesseessesssessnsesnsesssesssnes Al
Appendix B: API Typesand FUNCLIONS...........cccoccveieenien e Bl

SF 298

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.

MESh group 1@Y0OUL........ccueieeieciecie et 4
DA VAIUE.......c.oiiiiirieice e 5
SaMPle CroSS SECHIONeeviieee e 6
Geometric path group 1ayoUt..........ccovveeeere e 7
Schematic of coordinate system group.........cceeveeeeeereseeceeseee 7
XMDF file containing amesh created by SMS.............cccceee. 10
2-D Cartesian grid with boundary locations.............ccccoveeecuenene 40

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

2-D curvilinear grid........cccceeveeieiner e 41

Setting attributesS for grid.........ccooveviiiieneeee e 42
2-D curvilinear grid that branches.........cccccceveeevieevevceveeceeen, 49
CrOSS SECHIONS. ...ttt 50
Profilelines for center line and banks...........cccccoovninincicnnnn. 50
XSECS group layOutc.cooveiiiririereneeeeeeeese e 51
Schematic including data set folders........cocevevvivvce e cce e, 63

List of Tables

Table 1.
Table 2.
Table 3.

Table 4.
Tableb.
Table 6.

Grouptypes Defined as Part of XMDF.........cccooovvieveveieciee 25
Reserved Attribute Names and Descriptions..........ccccocveeeeveennee. 28
Possible Property Types and the Number Associated With

TREML .. 30
ElemMent TYPES. ..o e 32
GIid PrOPErti€S.....ccuiivieeecie ettt s 39

Default Valuesfor Coordinate Systems.........cccceveevereeeeenennnnnn 77

Vi

Preface

The work described herein was sponsored by Headquarters, U.S. Army
Corps of Engineers (HQUSACE), as part of the System-Wide Water Resources
Program. The Program Manager was Dr. Steven L. Ashby, Environmental
Laboratory, Vicksburg, MS, U.S. Army Engineer Research and Development
Center (ERDC). The research was performed under Project 122401, entitled
“Data Management,” for which Mr. James T. Stinson, Engineering and
Informatic Systems Division, Information Technology Laboratory (ITL),
Vicksburg, MS, ERDC, was the Principal Investigator, and Project 122425,
“Model Integration,” for which Dr. Robert M. Wallace, Flood and Storm
Protection Division, Coastal and Hydraulics Laboratory (CHL), ERDC, was
Principal Investigator. The HQUSACE Technical Monitor was Mr. M. K. Miles,
CECW-EE.

This report was prepared by Dr. Cary D. Butler and Mr. David R. Richards,
both Technical Directors, ITL; Dr. Wallace; Dr. Norman L. Jones, Professor of
Civil and Environmental Engineering and Director of the Environmental
Modeling Research Laboratory, Brigham Y oung University, Provo, UT; and
Mr. Russell Jones, Research Assistant, also of the Environmental Modeling
Research Laboratory. The work was conducted under the general supervision of
Dr. Jeffery P. Holland, Director, ITL; and Mr. Thomas W. Richardson, Director,
CHL.

COL James R. Rowan, EN, was Commander and Executive Director of
ERDC. Dr. James R. Houston was Director.

Chapter 1

1 Introduction

Multidimensional numerical modeling studies have traditionally necessitated
asubstantial number of large data files (both input and output). The shear number
of datafiles can lead to confusion, misplaced or lost data, and poor communica-
tion. Also, each numerical model uses and generates data filesin its own format,
making the sharing of data and coupling of models difficult. Add to this the fact
that files typically need to be ASCII (inefficient) in order to be passed across
platforms, and the result is that too much computer time, computer space, and
human interaction are needed in the modeling process.

To address these prablems, the U.S. Army Engineer Research and
Development Center (ERDC) has taken the initiative to develop a standard file
format to be used in modeling studies. In the first phase of this project, the
Environmental Modeling Research Laboratory (EMRL) at Brigham Y oung
University, Provo, UT, has developed a standard format for geometry data
storage. In this context, geometric datainclude

e River cross sections.
e Two-dimensional (2-D)/three-dimensional (3-D) structured grids.

e 2-D/3-D unstructured meshes (including sets of scattered data points
triangulated into atriangulated irregular network (TIN)).

o Geometric paths through space with associated time data.

The data file will be able to store multiple instances of each of these data
objects along with data sets associated with the object. Data sets represent scalar
and vector arrays such as model solution data. In addition to developing the
standard format, EMRL has provided an application programming interface
(API) that developers of numerical codes can useto quickly and easily access
this format without minimal difficulty. This standard is available to all of ERDC,
and everyone is encouraged to adopt it.

Chapter 2 gives background, motivation, and an overview of the approach
being used. Chapter 3 describes how to incorporate the eXtensible Model Data
Format (XMDF) into a specific model and introduces the most commonly used
functions. Chapter 4 includes technical implementation details for programmers.

Appendix A lists the constants used to store coordinate system information
inside an XMDF file, and Appendix B summarizes the types and functions
defined for the XMDF API.

Introduction

2 QOverview

The long-term goal of this project isto create afast, efficient, and simple
methodology for storing, accessing, and sharing data used in a numerical
simulation. In developing a strategy, the format (both general and specific) must
first be defined. The general format question isthat of binary versus ASCII. The
specific format issues include detailed data access and storage methods.

Binary files have size and speed performance advantages over ASCI| files.
However, because binary files are difficult to view and use, and vary from one
platform to another, ASCII files are often utilized for clarity and portability, thus
becoming cumbersome when large simulations are considered.

2.1 Overcoming Binary Portability Issues

A number of libraries have been developed to read and write cross-platform
binary files. Two popular libraries include NetCDF and HDF5. After a search
was performed for other alternatives, it was concluded that these two libraries
have the most stability and support. NetCDF and HDF5 were evaluated. Both
libraries have similar input/output (10) performance times. HDF5 has more
flexibility for data storage, compression, and data mining. HDF5 supports data
folders and data structures, making it more customizable. Therefore, it was
decided to utilize the HDF5 library for generic model data API.

HDF5 was developed at the National Center for Supercomputing Applice-
tions (NCSA) at the University of Illinois at Urbana-Champaign (see
http://hdf.ncsa.uiuc.edu/HDF5/). HDF5 has many users in both government and
private organizations. HDF5 is afree library developed primarily with funding
from the Department of Energy and the National Aeronautics and Space
Administration. It is a powerful library that includes the following features:

a. Dataareorganized in a structure similar to adirectory system. This
makes it possible to easily store related datain asinglefilein an
organized manner.

b. Dataare stored in abinary format for fast file 1 O.
c. Largefiles(> 2 GB) can be managed easily.

d. Dataare platform- and language-independent due to automatic
conversions performed by the HDF5 library. Platformsinclude Al X,

Chapter 2

Overview

http://hdf.ncsa.uiuc.edu/HDF5/

Chapter 2

Cray, FreeBSD, HP-UX, IRIX, Linux, OSF1, Solaris, ASCI TFLOPS,
and Windows.

e. Thedatacan be easily compressed using tools embedded in HDF5.

f. Dataarestoredin arraylike entities called data sets. A data set can be
read whole or data-mined for specific elements, dlices, etc.

g. Datasetscan include metadata, called attributes by HDF5, to describe
the data.

2.2 HDF5 Methodology

The HDF5 library stores datain individual data sets that can be single values,
arrays, bitstreams, or tables. These HDF5 data sets will be referred to as variables
to avoid confusion with the term data set as it applies to a numerical solution.
Each variable has its own identifying name. The variables can be organized into
“groups’ to define adirectorylike structure. Attributes can be created and associ-
ated with individual variables or groups. Attributes are generally used to explain
the use of the array in question. HDF5 files are random access and have optional
compression algorithms.

The generic data format will be referred to as XMDF. The geometry formats
(or types) supported will include one-dimensional (1-D) cross sections, 1-D
meshes, 2-D meshes, 2-D grids, 3-D meshes, and 3-D grids. Both cell-centered
and mesh-centered grids and both Cartesian and curvilinear grids will be
supported.

2.3 HDF5 Viewer

One of the disadvantages of using abinary format is that the data can be
difficult to view and edit compared with those for ASCII files. However, a
generic viewing and editing tool is available for HDF5 that can viewed to
traverse the hierarchical tree associated with an HDF5 file and edit any of the
information in the file. The viewer iswritten in JAVA so it can run on multiple
platforms. The viewer can be downloaded at http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/.

2.4 XMDF Organization

An XMDF file consists of one or more groups. Each group represents an
unstructured mesh (or set of scattered data points), a structured grid (either
Cartesian or curvilinear), aset of cross sections, or agroup of geometric pathsin
space (such as particle paths). Each of these groups may include one or more
subgroups with functional data sets for the group. Also associated with each
group, the XMDF file stores a subgroup that contains a set of variables that
define the properties of the group. Each group type has a set of required proper-
ties that must be specified in order to define the group. Additional properties can

Overview

http://hdf.ncsa.uiuc.edu/hdf-java-html/hdfview/
http://hdf.ncsa.uiuc.edu/hdf-java-html/hdfview/

be added to the group for specific applications. Properties can include asingle
value for the group (such as atype of structured grid), or avalue for each node,
cell, or element in the group (such as anode id or name).

2.4.1 Mesh groups

Meshes will include 1-, 2-, and 3-D unstructured finite element meshes. For
models that have multiple mesh types for the same simulation, 1-, 2-, and 3-D
components are allowed to be stored in separate groups or as part of the same

group.

Meshes consist of two main types of data: nodes and elements. For the nodes
the nodal coordinates need to be defined. For elements, the element type and the
element topology (connectivity) are defined. An option to store the coordinate
system associated with amesh is also included. The mesh group layout is shown
in Figure 1. It includes two subgroups, one for elements and the other for nodes.

- ﬁ] Meshname 2.4.2 Grid groups
4. [u
= ﬁ] Elerments group
B MumElems Grids differ from meshes in that they are
--B Modelds structured. Each cell hasan ij or ijk index. Both
% MaxNumnodes 2- and 3-D grids are supported. Data sets with
_ solutions at cell centers, cell corners (mesh
- ﬁ] Properties centered), as well as cell faces are supported
EEE raterials (Figure 2).
EEE Types
ﬁ] , ¥F 2-D grids have rows and columns, and 3-D
= Modes grids have rows, columns, and layers. These
@ MurnModes dimensions are referred to both as u, v, and w as
E Locations well asi, j, and k. Thefirst direction of agrid
- ﬁ] Properties (row direction) isthe u direction. Theindex in

that direction isi. Changing thevalueof uoriis
equivalent to moving back and forth between the

EEE ids

Figure 1.

different rows of agrid. The second direction of
Mesh group layout the grid isthe v direction. This represents the
grid columns, and theindex isj. The third

direction (for 3-D grids) isthe w direction. Thisisthe grid layers, and the index
in this direction is k. Different models make different assumptions concerning
how the uvw or ijk axes are configured. All possible configurations are repre-
sented with an orientation and a rotation. There are optional parameters to define
acomputation origin, and for 3-D grids there is another optional parameter that
defines the orientation of the uvw axes at the computational origin. The orienta-
tion parameter defines whether the grid axes follow the right-hand rule or left-
hand rule (for 2-D, thisis viewed from above). The rotation includes two angles.
Thefirst isarotation about the x-axis or the angle between the z-axis and third
grid direction. This angle would be set to 90 to stand a 2-D grid on edge for verti-
cally averaged simulations (such as CEQUAL-W2) and zero for depth-averaged
simulations (such as STWAVE, M2D, and BOUSS2D). The angle also allows

Chapter 2

Overview

Chapter 2

» »
[] [] [] [] []
s
[] [] [] [] []
-
L] - [] [] []
° @ . ® °
° @ . ® °
° . . . °
a. Mesh-centered data values b. Cell-centered data values

Figure 2. Data value

inclined planes for 3-D grids. The second angle defines the angle from the x-axis
to thefirst grid direction. This can be thought of as a bearing or azimuth adjust-
ment. It should be noted that these rotations are primarily for visualization since
the models perform computations in local space. Numbering for data sets,
attributes, etc., isdoneinijk order. Both angles default to zero and are included
as optional grid definition values.

2-D grids can be either Cartesian or curvilinear. 3-D grids can be Cartesian,
curvilinear, or extruded 2-D grids. Optionsto specify 3-D layers on extruded
2-D grids include sigma stretch, Cartesian, specifying each corner z-value for
every layer (curvilinear at corners), and specifying each column z-value for every
layer (curvilinear at midsides/cell centers). Sigma stretch grids have varying
z-values for the top and bottom of each column. Every layer in asigma stretch
grid has a constant percent thickness of the column thickness. All of the extrusion
options are available regardless of the type of 2-D grid. For example,
MODFLOW uses a 2-D Cartesian grid extruded using the curvilinear at cell
centers option.

The datarequired to define agrid consist of global parameters and the grid
geometry. The grid geometry consists of the row, column, layer dimensions
(coordinates), or, in the case of curvilinear grids, the coordinates of the node
corners.

2.4.3 Cross-section groups
Cross-section data include the typical cross sections that define channel

bathymetry and profile (longitudinal) lines that can be used to represent center-
line, bank line, or other “stream” paths within the channel defined by the cross

Overview

sections. Important line (material) and point (thalweg, bank) properties associated
with cross sections, as well as other attributes, are stored.

A 1-D cross section consists of a set of distance (station) and elevation values
(Figure 3). If the cross section is to be used in conjunction with terrain data, it
must also be georeferenced. This means that the distance or station value can be
converted into x- and y-values, and the elevation is assumed to be a z-value. The
georeferencing can be provided on a point-by-point basis, in which case each
point of the cross sections has an x- and y-coordinate defining its Cartesian
location. Georeferencing also can be established using one or two points on the
cross section. Single point georeferencing provides the x- and y-values associated
with a distance along the section as well as an azimuth. Two-point georeferenc-
ing requires the specification of two (X, y) pairs as well as two distances along
the section.

T T
[+ 250 SO0 TS0 1000 1250 1500

Figure 3. Sample cross section

A cross-section group in XMDF includes a set of cross sections, georeferenc-
ing parameters, and other properties associated with portions of or positions on
the cross section.

2.4.4 Geometric path groups

A geometric path isalist of points (X, y, z) that are connected to form a
series of line segmentsin space. The path represents the motion of an object
through space. Each entry in the path is associated with atime. Additional data
values may be associated with each entry in the path as well. For example, this
could include the velocity of the object at this point in time, or the size of the
object at this point in time.

Generally, there will be many paths grouped (or computed) together. For a
group of geometric paths, each path would be defined from a shared set of time
values. This allows the data to be stored as one 3-D array and a series of 2-D
arrays. The 3-D array includes the coordinates (x, y, z) for a point on a path in

Chapter 2

Overview

Chapter 2

one direction, the point index in the second direction, and the time valuesin the
third direction. The 2-D arraysinclude a value for each point on the path at each

time.

Also, the geometric path group will support an optional spatial mapping
object that includes spatial bins of the area covered by any path in the group
(Figure 4). Each bin will contain alist of the paths that intersect that bin and the

time ranges for which that path isinside the bin.

2.4.5 Data-set groups = @GeomechathGroupName

A data set is agroup of datathat containsa
functional value (scalar or vector) for each
entity in amesh or grid. Data sets on cross
sections are handled separately.

The data sets are generally stored in agroup
below the group for the mesh or grid to which
the data set belongs. The exception to thisis
when afile contains data sets for only an
outside mesh or grid.

Scalar data sets have one value for each

- L‘g’] Properties

B NumPaths

% NumTimes
EE Times

= bﬂ Paths

= fBPathroints
= f¥) Properties
FE Source (String)

- {¥! Spatial Bins

BH Intersecting Paths

entity in amesh or grid. Vector data sets may
have either two (X, y) or three components (x,y, Figure 4.
and z) depending on whether the data are 2- or

3-D.

Like XMDF files themselves, data set folders are
organized into directory-like group folders. In each group all
subfolder names must be unique. Every scalar or vector data
set has its own folder.

A data set may be steady state or time varying. Time-
varying data sets may begin at a specific reference time or
be relative times from an arbitrary zero hour. Reference
times are specified in Julian days. Time values for specific
time-steps are given as time offsets from either zero or from
the reference time. The units for the offset times can be
given in days, hours, minutes, or seconds.

2.4.6 Coordinate system groups

The coordinate system group contains several items that
define the coordinate system. Not all of the items are neces-
sary to define a coordinate system. Figure 5 shows the group
members.

Overview

Geometric path group layout

=¥ Coord

BEE PP |akitude
EEE _PF longitude
EEE Ellip=e

EEE HPGM

BEE Horizonkal datum
EEE Horizontal uniks
EEE |atitude

EEE Longitude

EEE Majork.

EEE MinorR.

BEE 5P Fone

EEE UTM Zone

EEE YYertical datum
BEE Yertical uniks

Figure 5. Schematic of
coordinate
system group

2.5 API Overview

The API defined in this report provides a set of C function calls and
FORTRAN subroutines that can be used by model developersto store and
retrieve data used in their model from an XMDF file. The use of these function
callswill beillustrated by sample utility programs. The API includes functions/
subroutines to open and close project files, add and retrieve groupsin a project,
and add and retrieve variables or parts of variablesin agroup. The APl is con-
structed as alayer that operates on top of the HDF5 API. While the user will
need to be familiar with the HDF5 organizational structure and methodology, he
or she will not make direct callsto the HDF5 library.

The XMDF API consists of both a FORTRAN module and a C module. This
will allow model developersto utilize XMDF from C, C++, or FORTRAN
analysis engines. A complete list of the C function and FORTRAN subroutine
names can be found in Chapter 4.

Chapter 2

Overview

Chapter 3

3 Quick Start for Model
Developers

The XMDF library contains a large amount of functions because it has to
handle the needs of various model definitions aswell as pre- and postprocessors.
The developer of amodeling code generally will need to use only a small subset
of these functions. This chapter will discuss the general strategy to incorporate
XMDF in a specific model and will introduce the most commonly used
functions.

3.1 XMDF File Paths

HDFS5 files are organized in a directory-like structure. Files created by the
XMDF library are not required to have a specific organization. Figure6 isa
screenshot of an XMDF file created by Surface-water Modeling System (SMS)
visualized inside NCSA’s HDFView browser. An attribute is written to files
written by XMDF within each group that identifies the type of data stored in the
group. Generic groups have no specific type of data associated with them and are
used to organize the file. Specia group types include mesh, grid, multiple data
sets, scalar data set, vector data set, and property groups. Multi-data-set groups
are special groups that hold data sets that all must belong to a corresponding
spatial data object (mesh or grid). The other group types should be self-
explanatory. Models relying upon XMS, the overarching modeling environment
that supports the three modeling systems—SMSS, the Groundwater Modeling
System (GMYS), and the Watershed Modeling System (WM S)—to create XMDF
files for geometry input should not expect a specific file organization because the
file format may change without warning. Instead, the model developer should
work with EMRL to have the XM S package write out paths to required objects to
an external file or use command line arguments. For models without a specific
XMS interface, the necessary information can be determined for an individual
file using an HDF5 browser.

3.2 Reading Geometry

Models reading geometry from XM DF files need to know the filename and
the path inside the file to the geometry group. In the example in Figure 6, this

Quick Start for Model Developers

&1 Sampletesh h5
¢ @ 2DMeshiModule <

Seneric Group for Organization

@ @ meash - Mesh Group
¢ @ Datasets< Multi-datasets Group
& Guid
§ @ Solution- Generic Group for Organization
@) Velocihy - Scalar and Wector Dataset Groups
&) Velocity Magnitude t""/7
¢ @ \Water Surface Elevation/
B Maxs
B Mins
&) PROPERTIES
B Times
H Values HOFS arrays (called datasets) managed by XMOF
& 2 Elements — Groups that store mesh data (managed by XMDF)
& 2 Mode
&) PROPERTIES= Mesh properties group
 File Type
Figure 6. XMDF file containing a mesh created by SMS

path is 2DM eshM odule/mesh. The path is case-sensitive and uses the forward
slash similar to a UNIX file path.

3.2.1 Meshes

This section is intended to be a quick overview of reading and writing
meshes. For more detailed function descriptions see Section 4.9. The mesh

10

geometry in XMDF filesis relatively straightforward. The mesh contains nodes
with x-, y-, and z-coordinates. The mesh also contains information about how the
nodes are connected to form elements. Each element has an element type and a
list of nodes belonging to the element. The nodes are referenced by their location
in the node data set. Note: The node locations used in this context are always
one-based (i.e., start at 1 rather than 0). The types of elements and number of
nodes associated with each type are discussed in 0. The following steps are used
to read a mesh:

a. Open thefile and the mesh group using the functions xfOpenFile and
xfOpenGroup.

Chapter 3

Quick Start for Model Developers

b. Read the number of nodes, number of e ements, and the maximum
number of nodesin an element. These values are retrieved using the
functions xfGetNumber OfNodes, xfGetNumber OfElements, and
xfGetM axNodes| nElem.

c. Allocate arraysto store the node locations, element type, and connec-
tivity arrays.

d. Read the node locations, element types, and connectivity arrays. These
arrays are read using the functions xfRead X NodeL ocations,
xfReadY Nodel ocations, xfReadZNodel ocations, xfReadElemTypes,
and xfReadElemNodel ds.

e. Closethe file and mesh group using xfCloseFile and xfClaseGr oup.

f. Convert the arrays to native model data definitionsif necessary.

C++ code

The following sample C++ code illustrates how to read a mesh using XM DF:

int fg nElems;

int fg nNodes;

int fg nNodesPerElem;

int *fg ElemTypes;

double *fg XNodeLocs, *fg YNodeLocs, *fg_ ZNodeLocs;
int *fg NodesInElem;

int xfReadMesh (const char *FileName, const char *PathToMesh) {

xid xFileId, xGroupId;
int nElemType, nNodeId;
int status;

// Open the file and the mesh group
status = xfOpenFile(FileName, &xFileId, TRUE) ;
if (status < 0) {

return -1;

}

if (status >= 0) {
status = xfOpenGroup (xFileId, PathToMesh, &xGroupId) ;

if (status < 0) {
// group was not opened successfully
xfCloseFile (xFileId) ;
return -1;

}

// Get the number of elements, nodes, and Maximum number of nodes per element
status = xfGetNumberOfElements (xGroupId, &fg nElems) ;
if (status >= 0) {
status = xfGetNumberOfNodes (xGroupId, &fg nNodes) ;
if (status >= 0) {
status = xfGetMaxNodesInElem(xGroupId, &fg nNodesPerElem) ;

}

if (status < 0) {
return -1;

}

fg_ElemTypes = new int[fg nElems];

Chapter 3 Quick Start for Model Developers 11

if (fg ElemTypes == NULL) {
printf ("Memory Error") ;
return -1;
}
status = xfReadElemTypes (xGroupId, fg nElems, fg ElemTypes) ;
if (status < 0)
return -1;
}

// Nodes in each element
fg NodesInElem = new int[fg nElems*fg nNodesPerElem] ;
xfReadElemNodeIds (xGroupId, fg nElems, fg nNodesPerElem, fg NodesInElem) ;

// NodeLocations
fg XNodeLocs = new double[fg nNodes] ;
fg_YNodeLocs = new double[fg nNodes];
fg_ZNodeLocs = new double[fg nNodes];
if (fg _XNodeLocs == NULL || fg YNodeLocs == NULL || fg ZNodeLocs == NULL) {
if (fg XNodeLocs != NULL) {
delete fg XNodeLocs;
fg XNodeLocs = NULL;

if (fg ¥YNodeLocs != NULL) {
delete fg YNodeLocs;
fg YNodeLocs = NULL;

if (fg ZNodeLocs != NULL) {
delete fg ZNodeLocs;
fg ZNodeLocs = NULL;

printf ("Memory Error!");
return -1;

}

status = xfReadXNodeLocations (xGroupId, fg nNodes, fg XNodeLocs) ;
if (status >= 0) {
status = xfReadYNodeLocations (xGroupId, fg nNodes, fg YNodeLocs) ;
if (status >= 0)
status = xfReadZNodeLocations (xGroupId, fg nNodes, fg ZNodeLocs) ;

else {
return -1;

else {
return -1;

FORTRAN

INTEGER fg_nElems

INTEGER fg_nNodes

INTEGER fg nNodesPerElem

INTEGER, ALLOCATABLE :: fg ElemTypes

REAL (DOUBLE) , ALLOCATABLE :: fg XNodeLocs(:), fg YNodeLocs(:), fg ZNodeLocs(:)
INTEGER, ALLOCATABLE :: fg NodesInElem(:)

SUBROUTINE READ MESH (Filename, PathToMesh, error)
CHARACTER (LEN=*) , INTENT (IN) :: Filename, PathToMesh
INTEGER, INTENT (OUT) :: error

INTEGER (HID T) xFileId, xGroupId

INTEGER nElemType, nNodeId

Chapter 3 Quick Start for Model Developers

Chapter 3

! Open the file and group
call XF _OPEN FILE(Filename, XTRUE, xFileId, error)
if (error .LT. 0) then
return
endif

call XF_OPEN GROUP (xFileId, PathToMesh, xGroupId, error)
if (error .LT. 0) then

return
endif

! Get the number of elements, nodes, and Maximum number of nodes per element
call XF_GET_NUMBER_OF ELEMENTS (xGroupId, fg nElems, error)
if (error >= 0) then

call XF_GET_NUMBER_OF _NODES (xGroupId, fg nNodes, error)

if (error >= 0) then

call XF_GET_MAX NODES IN ELEM (xGroupId, fg nNodesPerElem, error)

endif

endif

if (error < 0) then
return
endif

! Element types
allocate (fg ElemTypes (fg nElems))

call XF_READ ELEM TYPES (xGroupId, fg nElems, fg ElemTypes, error)
if (error < 0) then

return
endif

! Nodes in each element
allocate (fg_NodesInElem(fg nElems*fg nNodesPerElem))
call XF_READ ELEM NODE IDS (xGroupId, fg nElems, fg nNodesPerElem, &
fg NodesInElem, error)

! NodeLocations
allocate (fg XNodeLocs (fg nNodes))
allocate (fg YNodeLocs (fg nNodes))
allocate (fg ZNodeLocs (fg nNodes))

call XF_READ X NODE_LOCATIONS (xGrouplId, fg nNodes, fg XNodeLocs, error)
if (status >= 0) then
call XF_READ Y NODE LOCATIONS (xGroupId, fg nNodes, fg YNodeLocs, error)
if (status >= 0) then
call XF_READ Z NODE_LOCATIONS (xGrouplId, fg nNodes, fg ZNodeLocs, error)
endif
endif

error = TRUE
return

END SUBROUTINE

3.2.2 Grids

The XMDF library supports many different types of grids. Grids can be 2- or
3-D. Two-dimensional grids may be Cartesian or curvilinear. Three-dimensional
grids may be Cartesian, curvilinear, or extruded 2-D Cartesian or curvilinear
grids. Extruded grids may be sigma-stretch, curvilinear, curvilinear at corners, or
curvilinear at midsides. Grid properties include the origin, orientation, dip, and
bearing. The way the grid geometry is specified depends upon the type of grid.

Quick Start for Model Developers 13

14

For a Cartesian grid, the gridline locations along each axis (1, J, and K if applic-
able) must be specified. These locations are defined as the distance along the axis
from the grid origin. For a curvilinear grid, the locations of each grid corner must
be defined. The locations are given in world coordinates.

To read agrid from an XMDF file:

a. Openthefile and the grid group using xfOpenFile and xfOpenGroup.

Make sure that the grid type and properties are valid for the particular
model. If the model requires a 3-D curvilinear grid, abort if the grid is
any other type. Functions that may be used include xfGetGridType,
xfGetExtrusionType, xfGetNumber OfDimensions.

c. Get the number of cellsin each direction using xfGetNumber Cellsinl,
xfGetNumber CellslnJ, and xfGetNumber CellsInK .

d. Allocate the arrays for the grid geometry definition. Remember that the
size of the arrays depends not only upon the number of cellsin the grid
but also the type of grid.

e. Read the grid geometry using xfGetGridCoordsl, xfGetGridCoor dsJ,
and xfGetGridCoordsK.

f. Closethefileand grid group using xfCloseFile and xfCloseGroup.

g. Convert grid information into native model data definitions if necessary.

The following examples have a function to read data for a model that
requires a 3-D Cartesian grid for input. The model uses a bearing, but dip and roll
values areignored. The filename and path to the grid are given, and the data are
stored in variables accessible outside the function (file globalsin C/C++,
common blocks in FORTRAN). The function follows the XMDF convention of
using negative values to indicate errors.

CIC++
int fg_nCellsI, fg_nCellsd, fg_nCellsk;
double fg Origin([3], fg Bearing;

double *fg CoordI, *fg CoordJ, *fg CoordK;

int ReadGrid (const char *a Filename, const char *a_ GridPath)

xid xFileId, xGroupld;

int nGridType = 0, nDims = 0;
int nValsI = 0, nValsd = 0;
int nValsK = 0;

xbool bDefined = XFALSE;

int i = 0, error = 1;

// open the file and group
error = xfOpenFile(a Filename, &xFileId, TRUE) ;
if (error < 0) {

printf ("Unable to open file.");

return -1;

}

error = xfOpenGroup (xFileId, a GridPath, &xGroupId) ;

Chapter 3 Quick Start for Model Developers

if (error < 0) {
printf ("Unable to open the group.");
xfCloseFile (xFileId) ;
return -1;

}

// Grid type
error = xfGetGridType(a_ Id, &nGridType) ;
if (error < 0) {

return error;

if (nGridType != GRID TYPE CARTESIAN) {
printf ("Unsupported grid type. Must be a Cartesian Grid");
return -1;

// Number of dimensions
error = xfGetNumberOfDimensions(a Id, &nDims) ;
if (error < 0)

return error;

if (nDims != 3) {
printf ("Exrror: The grid must be a three-dimensional grid.");
return -1;

}

// Origin
error = xfOriginDefined(a_Id, &bDefined);
if (error < 0) {

return error;

if (bDefined) ({
error = xfGetOrigin(a Id, &fg Origin[0], &fg Origin[l], &fg Origin([2]);
if (error < 0) {
return error;

}

// Bearing
error = xfBearingDefined(a Id, &bDefined) ;
if (error < 0) {

return error;

if (bDefined) ({
error = xfGetBearing(a_ Id, &fg Bearing) ;
if (error < 0) {
return error;

}

// number of cells in each direction

error = xfGetNumberCellsInI(a Id, &nCellsI);

if (error >= 0) {
error = xfGetNumberCellsInJ(a_ Id, &nCellsd) ;
if (error >= 0 && nDims == 3)

error = xfGetNumberCellsInK(a Id, &nCellsK) ;

1

!

if (error < 0) {
return error;

}

nvValsI = fg nCellsI;
nValsJd = fg nCellsJ;
nValsK fg nCellsk;

fg_CoordI = new double[nValsI];
fg Coordd new double[nValsJ];

Chapter 3 Quick Start for Model Developers 15

16

fg CoordK = new double[nValsK];

error = xfGetGridCoordsI(a Id, nValsI, fg CoordI) ;

if (error >= 0) {

error = xfGetGridCoordsJ(a Id, nValsd, fg CoordJd) ;

if (error >= 0 && nDims == 3)

error = xfGetGridCoordsK(a Id, nValsK, fg CoordK) ;

1

!

if (error < 0) {
printf ("Error reading coordinates.\n") ;
return -1;

}

// if we got here, everything read in fine
return 1;
} // ReadGrid

FORTRAN

INTEGER fg nCellsI, fg nCellsd, fg nCellsk

REAL (DOUBLE) , DIMENSION(3) :: fg Origin

REAL (DOUBLE) , ALLOCATABLE :: fg CoordI(:), fg CoordJ(:), fg CoordK(:)
REAL (DOUBLE) :: fg Bearing

SUBROUTINE READ GRID(a_ Filename, a GridPath, error)

CHARACTER (LEN=*) , INTENT (IN) :: a Filename, a_ GridPath

INTEGER, INTENT (OUT) :: error

INTEGER (XID) xFileId, xGroupId

INTEGER nGridType, nDims;
INTEGER nValsI, nValsJ, nValskK
INTEGER bDefined

call XF OPEN FILE(a Filename, XTRUE, xFileId, error)

if (error < 0) then
return
endif

call XF_OPEN GROUP (xFileId, a GridPath, xGroupId, error)

if (error < 0) then
XF CLOSE _FILE (xFileId, error)
return

endif

! Grid type
call XF_GET_GRID TYPE(a_ Id, nGridType, error)
if (error < 0) then
return
endif
if (nGridType .EQ. GRID_TYPE CARTESIAN) then

Write(*,*) 'Unsupported grid type. Must be a Cartesian Grid'

return
endif

! Number of dimensions

call XF_GET_NUMBER_OF DIMENSIONS (a_Id, nDims, error)

if (error .LT. 0) then
return

endif

if (nDims .NE. 3) then

WRITE(*,*) 'The grid must be a three-dimensional grid'

error = -1
return
endif

Chapter 3

Quick Start for Model Developers

Chapter 3

! Origin
call XF_ORIGIN_DEFINED (a_Id, bDefined,
if (error < 0) then
return
endif
if (bDefined /= 0) then

call XF _GET _ORIGIN(a_Id, fg Origin(1l),

if (error < 0) then
return
endif
endif

! Bearing

error)

fg Origin(2),

call XF_BEARING DEFINED (a_Id, bDefined, error)

if (error < 0) then
return

endif

if (bDefined /= 0) then

call XF _GET_BEARING(a_Id, fg Bearing, error)

if (error < 0) then
return
endif
endif

! number of cells in each direction

call XF_GET NUMBER CELLS IN I(a Id, fg nCellsI,

if (error >= 0) then

call XF_GET NUMBER CELLS_IN J(a_Id, fg nCellsJ,

if (error > 0) then
call XF_GET NUMBER CELLS_IN K(a_Id,
endif
endif
if (error < 0) then
return
endif

nValsI fg nCellsI
nValsJ = fg nCellsJd
nValsK = fg nCellsk

ALLOCATE (fg_CoordI (nValsI))
ALLOCATE (fg_CoordJd (nvValsJ))
ALLOCATE (fg_CoordK (nValskK))

call XF _GET GRID COORDS I (a_Id, nValsI,
if (error >= 0) then

call XF_GET_GRID_COORDS J(a_Id, nValsd,

fg_nCellskK,

fg CoordI,

if ((error > 0) .AND. (nDims == 3)) then

call XF _GET GRID COORDS K(a_Id, nvValsk,

endif
endif
if (error < 0) then

WRITE (*,*) 'Error reading coordinates'

error = -1
return
endif

! Return successful if we got here
error =1

return

END SUBROUTINE TG READ_ GRID

Quick Start for Model Developers

fg_Coordd,

fg CoordK,

error)
error)

error)

error)

fg Origin(3),

error)

error)

error)

17

18

3.3 Writing Data Sets

This section gives a quick overview of reading and writing data sets. For
more detailed function descriptions see Section 4.12. Setting up amodel to write
data sets to an XMDF file requires more information than is needed for reading
geometry. Part of the reason more information is required is because more of the
file organization is created by the model. Another source of complexity is that
data sets can be written to either new or existing files.

Individual data sets are grouped in specia foldersthat hold al the data sets
for a specific geometry. These folders are called multi-data-set groups. Multi-
data-set groups may or may not be in the same file as the geometry. In Figure 6
the multi-data-set group for the mesh has the path 2DM eshM odule/mesh/
Datasets. Multi-data-set groups store the globally unique identifier (GUID) of
the geometry to which they belong. Within a multi-data-set group, generic groups
may be used to organize the data sets. In Figure 6 the folder named Solution
under the multi-data-set group is an example of using generic groups to organize
data sets. These generic groups would be especialy useful for stochastic
simulations and could be used to organize the data sets belonging to individual
runs.

When writing data sets using XM DF the following items of information are
necessary:

The filename to write the data to.
The path for multi-data-set group to write the data sets.
The GUID for the geometry that the data sets belong to.

The path to a generic group inside the multi-data-set group (may be
blank).

e. What existing datato clear before saving. If the model iswriting to afile
that isintended only for solutions for the particular simulation, the entire
file should be overwritten. If the data sets are to be written to an existing
XMDF file, either the folder to write the data sets should be cleared or
only existing data sets with the same name as the data sets that will be
written should be cleared. Each of these optionsis supported.

o 0o T @

Inside XMDF thereis afunction to make it easier for models to set up the
paths to begin writing data sets. This function takes for arguments the five items
mentioned previously and returns the File ID and the ID of the group to begin
writing data sets to. This function should always be used to set up amodel to
begin writing data sets using XMDF because it ensures that everything is set up
regardless of whether or not the file or the required paths exist. The functionis
named xfSetupToWriteDatasets.

Oncethe File ID and Group ID to start writing data sets has been obtained
from xfSetupT oWriteDatasets, the following steps are used to add each data set
to thefile:

Chapter 3 Quick Start for Model Developers

a. Create the data set using xfCreateScalar Dataset or
xfCreateVector Dataset.

b. If desired, use the function xfDatasetReftime to specify the reference
time for the data set. The reference time is the Julian date for time zero
for the data set. Each time-step is treated as an offset from this reference
time.

c. For each time-step, set the data using xfWriteScalar Timestep. If
necessary, use xfWriteActivityTimestep to set active element
information for each time-step.

d. Closethe data set using xfCloseGroup.

e. When all data sets are closed, close the group that al the data sets are
written to using xfCloseGroup and close the file using xfCloseFile.

Often steps 1 and 2 will be done together for all of the data sets to be written
at the beginning of the model execution. Then when time-steps are computed,
step 3 will be performed for each data set. When all the time-steps are compl eted,
steps 4 and 5 are used to close the file and all the resources.

The following example has a function to write a scalar data set to an XMDF
file. The arguments to the function are those included in the
xfSetupToWriteDatasets, a compression level (-1 for none). The number of
times, time values, number of values per time-step, and the values for the data set
are stored in file globals. The function follows the XM DF convention of using
negative valuesto indicate errors.

C/C++

static int fg nTimes;
static double *fg Times;
static int fg nvalues;

static float **fg Values;

int WriteDataset (const char *a Filename,
const char *a MultiDatasetsGroupPath,
const char *a SpatialDataObjectGuid,
int a_OverwriteOption,
int a_Compression)

xid xFileId, xDsetsId, xScalarId;
int iTimestep, iActive;

double dTime;

int status;

status = xfSetupToWriteDatasets(a Filename, a MultiDatasetsGroupPath,
a_SpatialDataObjectGuid, a OverwriteOption, &xFileld, &xDsetsId);
if (status < 0) {
printf ("Error initializing files to write datasets.");
return status;

// Create the scalar A dataset group

status = xfCreateScalarDataset (xDsetsId, "Concentration",
"mg/L", TS HOURS, a_Compression,
&xScalarId) ;

if (status < 0) {

Chapter 3 Quick Start for Model Developers 19

printf ("Error creating scalar datasets.");
xfCloseGroup (xDsetsId) ;

xfCloseFile (xFileId) ;

return FALSE;

}

// Loop through timesteps adding them to the file

for (iTimestep = 0; iTimestep < fg nTimes; iTimestep++)
// We will have an 0.5 hour timestep
dTime = fg Times[iTimestep];

// write the dataset array values
status = xfWriteScalarTimestep (xScalarAId, dTime, fg nValues,
fg Values[iTimestepl) ;
if (status < 0) {
xfCloseGroup (xScalarId) ;
xfCloseGroup (xDsetsId) ;
xfCloseFile (xFileId) ;
return status;
!
!

// close the dataset
xfCloseGroup (xScalarId) ;
xfCloseGroup (xDsetsId) ;
xfCloseFile (xFileId) ;

return FALSE;
} // tdwriteScalarA

FORTRAN

INTEGER fg nTimes;

REAL (DOUBLE) , ALLOCATABLE :: fg Times(:)
INTEGER fg nvalues

REAL, ALLOCATABLE :: fg Values(:,:)

SUBROUTINE WRITE DATASET (a_Filename,
a_MultiDatasetsGroupPath,
a_SpatialDataOjbectGuid,
a_OverwriteOption,
a_Compression, error)

CHARACTER (LEN=*) , INTENT(IN) :: a Filename, a MultiDatasetsGroupPath
CHARACTER (LEN=%*) , INTENT (IN) :: a SpatialDataObjectGuid

INTEGER, INTENT (IN) :: a OverwriteOption, a Compression
INTEGER, INTENT (OUT) :: error

INTEGER (HID_ T) xFileId, xDsetsId, xScalarId

INTEGER iTimestep, iActive

REAL (DOUBLE) dTime

REAL, ALLOCATABLE :: Values (:)

call XF_SETUP_TO_WRITE_DATASETS (a_Filename, a_MultiDatasestsGroupPath, &
a_SpatialDataObjectGuid, a OverwriteOption,
xFileId, xScalarId, error)

if (error .LT. 0) then
WRITE(*,*) 'Error initializing files to write datasets.'
return

endif

! Create the scalar A dataset group
call XF_CREATE_ SCALAR DATASET (xDsetsId, 'Concentration', 'mg/L', &
TS HOURS, a Compression, xScalarAd, error)
if (error .LT. 0) then
! close the dataset

Chapter 3 Quick Start for Model Developers

Chapter 3

call XF_CLOSE GROUP (xScalarId, error)
call XF_CLOSE_GROUP (xDsetsId, error)
call XF CLOSE FILE (xFileId, error)
return

endif

! allocate the values for an individual timestep
allocate (Values(fg nValues))

! Loop through timesteps adding them to the file
do iTimestep = 1, fg nTimes

! We will have an 0.5 hour timestep

dTime = fg Times (iTimestep)

do ival = 1, fg nValues
Values (ival) = fg Values(iTimestep, iVal)
enddo

! write the dataset array values
call XF WRITE SCALAR_ TIMESTEP (xScalarId, dTime,
Values, error)
if (error .LT. 0) then
deallocate (Values)
call XF _CLOSE GROUP (xScalarAId, error)
call XF _CLOSE GROUP (xDsetsId, error)
call XF_CLOSE_FILE (xFileId, error)
return
endif
enddo

deallocate (Values)

! close the dataset

call XF_CLOSE_GROUP (xScalarAId, error)
call XF CLOSE GROUP (xDsetsId, error)
call XF CLOSE FILE (xFileId, error)

return
END SUBROUTINE

Quick Start for Model Developers

fg nValues,

&

21

22

4 Implementation Design

The following sections describe the implementation of the API for XMDF.

4.1 XMDF Functions/Subroutines

All function/subroutine names begin with the letters xf to avoid likely
conflicts with other function names. The memory for all variables must be alo-
cated outside the library. Thisis done so users can reuse memory, and users are
more likely to deallocate memory if they haveto alocate it.

41.1 C/C++ Interface

All functions return an integer status value. A zero or positive values indicate
success and negative values indicate failure.

All arraysin the C library must be contiguous blocks of memory. This means
that 2- and 3-D arrays must be allocated with a single allocation with the size
necessary to store al the information at one time.

41.2 FORTRAN Interface

The entire FORTRAN interface uses subroutines rather than functions. The
final argument is always an integer that is set to a negative number if an error
occurs. The FORTRAN interface is available as a modul e to other model codes.

4.2 Compression

All functions that write arrays provide a compression option represented by
an integer. A value of —1 for the compression option is no compression. A com-
pression option between 0 and 9 indicates the compression level where 0 isthe
minimum compression and 9 is the maximum compression. Higher compression
levelsresult in smaller files but are slower.

Chapter 4 Implementation Design

Chapter 4

4.3 Version Number

When afileis opened to write XMDF data, aversion number is written out.
Future versions of the XMDF API will allow backward compatibility to previous
versions. A function exists to retrieve which version of the library is being used
(currently linked library). Another function existsto retrieve which version of the
library wrote a specific file. Both items are important because athough future
versions of the library will read files written by older versions of the library, it
cannot be guaranteed that older versions of the library will read files generated
by future versions of the library correctly.

C/C++

int xfGetLibraryVersion (float *Version) ;
int xfGetLibaryVersionFile(xid File, float *Version) ;

FORTRAN

SUBROUTINE XF GET LIBRARY VERSION (Version, Error)

REAL, INTENT (OUT) HH Version

INTEGER, INTENT (OUT) HN Error

SUBROUTINE XF_GET LIBRARY VERSION FILE(File, Version, Error)
INTEGER (XID), INTENT (IN) :: FileId

REAL, INTENT (OUT) HH Version

INTEGER, INTENT (OUT) HN Error

4.4 Creating and Opening Files

The library provides functions to create, open, and close files. Each function
uses or fillsin avariable of type xid that identifies the file to the API.

The xid type isthe same type asHDF5' s hid_t. Variables of type xid are
used to access dl files, groups, and arrays stored in XMDF files.

C/C++

int xfCreateFile (const char *Name, xid *FileId, xbool Overwrite) ;
int xfOpenFile (const char *Name, xid *FileId, xbool Readonly) ;
int xfCloseFile (xid FileId) ;

FORTRAN

SUBROUTINE XF CREATE FILE (Name, Overwrite, FileId, Error)
CHARACTER (LEN=%*) , INTENT (IN) :: Name

LOGICAL, INTENT (IN) H Overwrite

INTEGER (XID), INTENT (OUT) :: FileId

INTEGER, INTENT (OUT) HH Error

SUBROUTINE XF OPEN FILE (Name, FileId, Error)
CHARACTER (LEN=*) , INTENT(IN) :: Name
LOGICAL, INTENT (IN) :: ReadOnly

Implementation Design

23

24

INTEGER (XID), INTENT (OUT) :: FileId
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF CLOSE FILE(FileId, Error)
INTEGER (XID), INTENT(IN) :: FileId
INTEGER, INTENT (OUT) :: Error

4.5 Float Variable Types

HDF5 automatically performs necessary conversions between different types
of floats. For example, if afileis being read on a UNIX computer that represents
floats with big-endian notation and the floats in the file are represented using
little-endian notation, HDF5 will convert to big-endian. This conversion takes
extratime when reading the data. Since data are likely going to be read more
times than it was written (data are written only once), it is generally preferable to
write the datain the format that it will be postprocessed in. The XMDF library
provides afunction that can be used to specify how the floats should be repre-
sented in thefile (little-endian is the default). Call the function and pass XFALSE
to write floating point numbers in big-endian notation.

C/C++

int xfWriteFloatsAsLittleEndian (xbool LittleEndian) ;

FORTRAN

SUBROUTINE XF_WRITE FLOATS AS LITTLE ENDIAN (LittleEndian, Error)
CHARACTER (LEN=*) , INTENT (IN):: Name

LOGICAL, INTENT (IN) :: LittleEndian

INTEGER, INTENT (OUT) :: Error

4.6 XMDF Groups

As mentioned previoudly, the file structure for HDF5 files consists of a
hierarchical tree of groups. Each group may contain variables or other groups.
This section defines the variables that a group must include for a particular type
of data (2-D mesh geometry, grid geometry, data sets, etc.). A particular path that
these items must be stored in (like /M eshes/2D/M eshA) is hot specified since
these locations may change in the future (in order to include multiple scenarios,
etc.). Instead, functions have been created inside the API to determine paths for a
group. Every group includes a“ Grouptype string” that identifies the type of
information contained in the group. The grouptypes and their meanings are given
inTable 1.

All functions that read from or write to a group use an identifier to the group.
Thisidentifier is of type xid and is obtained by creating or opening a group.

Chapter 4 Implementation Design

Table 1

Grouptypes Defined as Part of XMDF

Grouptype Description

MESH Any mesh type including 0D, 1-, 2-, and 3-D elements. Meshes are
allowed to contain mixtures of elements of different dimensions

GRID Any grid including Cartesian, curvilinear, and composites of the two

XSECS Cross-section information

PROPERTIES Properties belonging to meshes, grids, elements, nodes, etc.

GENERIC A group used for organization. Is not tied to a particular type of data

The following API functions are used to create groups for meshes, grids, and
cross sections. Creating data set and attribute groups will be discussed |ater
because they are associated with a specific grid or mesh. The path is a string with
dashes (/) to specify the groups. Theidentifier isthe file identifier received
from the open file or close file command. The create group operation for data
sets should be used only when writing data sets for a mesh, grid, or cross sections
that are not defined in thefile.

C/C++

int
int
int
int

xfCreateGroupForMesh (xid FileId,
xfCreateGroupForGrid (xid FileId,
xfCreateGroupForXsecs (xid Fileld,
xfCreateGenericGroup (xid Fileld,

const char *Path, xid *GroupId) ;
const char *Path, xid *GroupId) ;

const char *Path, xid *GroupId) ;
const char *Path, xid *GroupId) ;

FORTRAN

SUBROUTINE XF CREATE GROUP_FOR MESH(FileId, Path, GroupId, Error)

INTEGER (XID), INTENT (IN) FileId

CHARACTER (LEN=*) , INTENT (IN):: Path

INTEGER (XID), INTENT (OUT) GroupId

INTEGER, INTENT (OUT) Error

SUBROUTINE XF CREATE GROUP FOR GRID (FileId, Path, GroupId, Error)
INTEGER (XID), INTENT (IN) FileId

CHARACTER (LEN=%*) , INTENT (IN) Path

INTEGER (XID), INTENT (OUT) GroupId

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ CREATE GROUP_FOR_XSECS
Error)

(FileId, Path, Groupld,

Chapter 4

INTEGER (XID), INTENT (IN) FileId
CHARACTER (LEN=%*) , INTENT (IN):: Path
INTEGER (XID), INTENT (OUT) GroupId
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ CREATE GENERIC_GROUP (FileId,

Path, GroupId, Error)

INTEGER (XID), INTENT (IN) FileId
CHARACTER (LEN=*) , INTENT(IN):: Path
INTEGER (XID), INTENT (OUT) GroupId
INTEGER, INTENT (OUT) Error

Implementation Design

25

Thefollowing API function is used to open existing groups for reading/
writing:

C/C++

int xfOpenGroup (xid FileId, const char *path, xid *GroupId);

FORTRAN

SUBROUTINE XF_OPEN_GROUP (FileId, Path, GroupId, Error)
INTEGER (XID), INTENT (IN) :: FileId

CHARACTER (LEN=*) , INTENT (IN) :: Path

INTEGER (XID) , INTENT (OUT) :: Groupld

INTEGER, INTENT (OUT) i Error

When the group is no longer needed, the following call must be made to
close the group:

C/C++

int xfCloseGroup (xid GroupId) ;

FORTRAN

SUBROUTINE XF_CLOSE_GROUP (Groupld, Error)
INTEGER (XID), INTENT(IN) :: GroupId
INTEGER, INTENT(OUT) :: Error

4.7 Determining All Entities in a File

Sometimes the program reading the XMDF file will have the path where data
reside given to them. When the user is not looking for a specific entity or does
not know the path for the group, the API provides the following functions to get
paths to specific groups. These functions traverse the groupsin the file and look
for the grouptype flags. The first function in each set is used to determine the
required size of the character arrays that hold the paths. The path passed into the
second function in each set must be allocated to a size Num* MaxSize. Data-set
groups beneath meshes or grids will not be returned and must be accessed
through the mesh or grid to which they belong.

C/C++

int xfGetGroupPathsSizeForMeshes (xid FileId, int *Num, int *MaxSize) ;
int xfGetAllGroupPathsForMeshes (xid FileId, int Num, int MaxSize, char *path);

int xfGetGroupPathsSizeForGrids (xid FileId, int *Num, int *MaxSize) ;
int xfGetAllGroupPathsForGrids (xid FileId, int Num, int MaxSize, char *path) ;

Chapter 4 Implementation Design

int xfGetGroupPathsSizeForXsecs (xid FileId, int *Num, int *MaxSize) ;
int xfGetAllGroupPathsForXsecs (xid FileId, int Num, int MaxSize, char *path);

FORTRAN

SUBROUTINE XF GET ALL GROUP_PATHS SIZE FOR MESHES (FileId, Num, Maxsize, Error)
INTEGER (XID), INTENT (IN) :: FileId

INTEGER, INTENT (OUT) :: Num, Maxsize, Error

SUBROUTINE XF GET ALL GROUP_PATHS FOR MESHES (FileId, Num, Size, Paths, Error)

INTEGER (XID), INTENT (IN) :: FileId

INTEGER, INTENT(IN) :: Num, Size

CHARACTER (len=Size), DIMENSION (Size, Num), INTENT (INOUT) :: Paths
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET ALL_ GROUP_PATHS SIZE FOR GRIDS (FileId, Num, Maxsize, Error)
INTEGER (XID), INTENT (IN) :: FileId
INTEGER, INTENT (OUT) :: Num, Maxsize, Error

SUBROUTINE XF GET ALL GROUP_PATHS FOR_GRIDS (FileId, Num, Size, Paths, Error)

INTEGER (XID), INTENT (IN) :: FileId

INTEGER, INTENT(IN) :: Num, Size

CHARACTER (len=Size), DIMENSION (Size, Num), INTENT (INOUT) :: Paths
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_ALL_GROUP_PATHS_SIZE_FOR_XSECS (FileId, Num, Maxsize, Error)
INTEGER (XID), INTENT (IN) :: FileId
INTEGER, INTENT (OUT) :: Num, Maxsize, Error

SUBROUTINE XF_GET ALL GROUP_PATHS FOR_XSECS (FileId, Num, Size, Paths, Error)

INTEGER (XID), INTENT (IN) :: FileId

INTEGER, INTENT(IN) :: Num, Size

CHARACTER (len=Size), DIMENSION(Size, Num), INTENT (INOUT) :: Paths
INTEGER, INTENT (OUT) :: Error

4.8 Properties

Properties are defined generically and can be assigned to any type of entity.
Property groups are created under groups of other types (meshes, elements,
nodes, grids, cells, etc). Properties can be integers, floats (single or double pre-
cision), bit on/off (stored as unsigned characters), or strings. The length of the
array in the property variable can be the number of cells or elementsin the group
(one value per cell or element), the number of nodes in the group (one value per
node), or asingle value (one value for the group or the same value for all objects
in the group). Properties must be in the same order in the array as the data objects
in the group.

Only one property with a given name may exist in a property folder (for a

particular group). The name is case-sensitive so be careful. String properties are
passed as character arrays along with their length.

Chapter 4 Implementation Design 27

28

4.8.1 Reserved property names

Some property names are reserved for specific meanings. Thisisto ensure
conformity for commonly used properties. The reserved names and their
meanings are given in Table 2.

Table 2

Reserved Attribute Names and Descriptions

Property Name Type Description

Ids Integer Ids belonging to an entity (nodes, elements, etc.)
Material Integer Material properties for a list of elements, or cells
Activity bit (on/off) Whether an element, cell is part of computation

4.8.2 API functions for properties

Each of the functions returns a negative value for failure and a positive value
for success. The following functions will retrieve the entire array of valuesfor a
property specified by its name. The id must be theid for the property group. The
method to get the property group id will be given later.

4.8.2.1 Writing

The following functions are used to write properties. Property arrays are
always one-dimensional arrays but can be any size. The size should be appro-
priate for the type of data stored. For example, if the property array storesthe
material property for adata set of elements, the size of the property array should
be the same as the number of elements.

C/C++

int xfWritePropertyInt (xid GroupId, const char *Name, int Num, int
*Property, int Compression) ;

int xfWritePropertyFloat (xid GroupId, const char *Name, int Num, float
*Property, int Compression) ;

int xfWritePropertyDouble (xid GroupId, const char *Name, int Num, double
*Property, int Compression) ;

int xfWritePropertyString(xid Groupld, const char *Name, int Num, char
**Property, int StringLength, int Compression) ;

FORTRAN

SUBROUTINE XF WRITE PROPERTY INT (GroupId, Name, Num, Property, Compression,
Error) ;

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (IN) :: Name
INTEGER, INTENT (IN) :: Num
INTEGER, INTENT (IN) :: Property (¥)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

SUBROUTINE XF WRITE PROPERTY FLOAT (GroupId, Name, Num, Property, Compression,

Error) ;

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (IN) :: Name
INTEGER, INTENT (IN) :: Num

REAL, INTENT (IN) :: Property (*)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_WRITE_PROPERTY_DOUBLE(GroupId, Name, Num, Property, Compression,

Error) ;

INTEGER (XID), INTENT(IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Name
INTEGER, INTENT (IN) :: Num

REAL (DOUBLE) , INTENT (IN) :: Property(*)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF _WRITE PROPERTY STRING (GroupId, Name, Num, Property, Compression,

Error) ;

INTEGER (XID), INTENT (IN) :: GroupId

CHARACTER (len=*), INTENT(IN) :: Name

INTEGER, INTENT (IN) :: Num

CHARACTER (len =*), INTENT (IN) :: Property (*,*)
INTEGER, INTENT (IN) :: Compression

INTEGER, INTENT (OUT) :: Error

4.8.2.2 Reading

The following functions are used to determine what property names are used
in the group or to see whether a property exists. The names of all properties are
limited to 256 characters.

C/C++

int xfDoesPropertyWithNameExist (xid GroupId, const char *Name, int *Exists);
int xfGetPropertyNumber (xid GroupId, const char *Name, int *Num) ;

// Names must be a 2D array size NumberOfProperties by 256 (max should be 256)
int xfGetPropertyNames (xid GroupId, char **Names) ;

FORTRAN

SUBROUTINE XF_DOES_PROPERTY WITH_NAME_ EXIST (GroupId, Name, Exists, Error);
INTEGER (XID) , INTENT (IN) :: Groupld

CHARACTER (len=*), INTENT (IN) :: Name

LOGICAL, INTENT (OUT) :: Exists

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_NUMBER_OF_PROPERTIES(GroupId, Number, Error) ;
INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Number, Error

SUBROUTINE XF_GET_PROPERTY_NAMES(GroupId, Number, Names, Error) ;

INTEGER (XID), INTENT(IN) :: GroupIld
CHARACTER (len=%*), INTENT (OUT) :: Names (*, Number)
INTEGER, INTENT (OUT) HH Error

Chapter 4 Implementation Design 29

30

There may be times when the type of a property is unknown. The following
function allows the user to get the type of datathat is stored in a property. The
function sets the integer ‘type’. The types, associated constants, and associated
numbers are given in Table 3.

Table 3
Possible Property Types and the Number Associated With Them
Number Constant Type
1 XF_TYPE_INT integer
2 XF_TYPE_FLOAT single precision float (4 bytes)
3 XF_TYPE_DOUBLE double precision float (8 bytes)
4 XF_TYPE_STRING string
11 XF_TYPE_OTHER other — not used directly using XMDF. Have to
use HDFS5 calls to work with data

C/C++

int xfGetPropertyType (xid Groupld, const char *Name, int *Type) ;

FORTRAN

SUBROUTINE XF GET PROPERTY TYPE (GroupId, Name, Type, Error);
INTEGER (XID), INTENT(IN) :: GroupIld

CHARACTER (len=*), INTENT(IN) :: Name

INTEGER, INTENT (OUT) :: Type, Error

If the property type is a string, the maximum string length used in the array is
needed. The following function gets the maximum length for a string data set.

C/C++

int xfGetPropertyStringLength(xid GroupId, const char *Name, int *MaxLength) ;

FORTRAN

SUBROUTINE XF_GET_PROPERTY_STRING_LENGTH(GroupId, Name,
MaxLength, Error) ;

INTEGER (XID), INTENT(IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Name
INTEGER, INTENT (OUT) :: MaxLength, Error

All of the functions to retrieve properties must aready be allocated to the
correct size. The correct size can be determined using the
xfGetPropertyNumber function.

Chapter 4 Implementation Design

Chapter 4

C/C++

// get the number of items in the attribute
int xfGetPropertyNumber (xid GroupId, const char *Name, int *Size);

int xfReadPropertyInt (xid Groupld, const char *Name, int *Property) ;
int xfReadPropertyFloat (xid GroupId, const char *Name, float *Property) ;

int xfReadPropertyDouble (xid GroupId, const char *Name, double *Property);

int xfReadPropertyString(xid GroupIld, const char *Name, char **Property,
int StringLength) ;

FORTRAN

SUBROUTINE XF GET_ PROPERTY NUMBER (Groupld, Name, Size, Error);
INTEGER (XID), INTENT(IN) :: GroupIld

CHARACTER (len=*), INTENT(IN) :: Name

INTEGER, INTENT (OUT) :: Size, Error

SUBROUTINE XF_READ_PROPERTY_INT(GroupId, Name, Property, Error);

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (IN) :: Name
INTEGER, INTENT (OUT) :: Property(*), Error

SUBROUTINE XF_READ_PROPERTY_FLOAT(GroupId, Name, Property, Error);

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=*), INTENT(IN) :: Name
REAL, INTENT (OUT) :: Property (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ PROPERTY DOUBLE (Groupld, Name, Property, Error);

INTEGER (XID), INTENT(IN) :: GroupIld
CHARACTER (len=*), INTENT(IN) :: Name

REAL (DOUBLE) , INTENT (OUT) :: Property (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_READ_PROPERTY_INT(GroupId, Name, Property, Error);

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Name
LOGICAL, INTENT (OUT) :: Property (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ PROPERTY STRING (Groupld, Name, Property, Error);
INTEGER (XID), INTENT (IN) :: GroupId

CHARACTER (len=%*), INTENT(IN) :: Name

CHARACTER (len=%*), INTENT (OUT) :: Property (*, *)

INTEGER, INTENT (OUT) :: Error

49 Meshes

The mesh group must store the information associated with the nodes and
elements. Details of the information stored are contained in the following
sections.

4.9.1 Nodal coordinates
Nodes are defined by an integer element ID and a set of coordinates. For 3-D
meshes, each node will have x-, y-, and z-coordinates. For 1-D and 2-D meshes,

nodes will always have x- and y-coordinates and in some cases will have z-
coordinates as well.

Implementation Design

31

32

49.2 Elements

Elements are defined by an integer ID, atype, and the element topology. The
topology consists of alist of the nodes that define the element. The element type
defines the dimension of the element (1-, 2-, 3-D), the number of nodes, and the
shape/structure of the element. The supported element types are shown in
Table 4. Thislist may be extended in the future based on feedback from users.

Table 4
Element Types
Type Description #nodes | Topology
003-008 | Junction 3-8 Three to eight nodes at the
This is a OD element that joins several 1-D same location connected
elements. to 1-D elements.
The number of elements is the same as the
type. The nodes in a junction element are
all at the same position and are attached to
other 1-D elements
100 1-D linear 2
1 2
—a
101 1-D quadratic 3
1 2 3
—r—
110 Transition element (1-D-2-D) (RMA2 | 5 5
definition)
1is connected to a 1-D element 1 2
3, 4, 5 are connected to a 2-D element 3
4
200 2-D linear triangle 3 3
1 2
201 2-D quadratic triangle 6 5
4
6
1 2 3

(Continued)

Chapter 4 Implementation Design

Table 4 (Concluded)
Type Description #nodes | Topology
210 2-D linear quadrilateral 4 4 3
1 2
211 2-D quadratic quadrilateral 8 7 5
8 ¢ 44
1 2 3
212 2-D quadratic quadrilateral with center | 9 7 6 5
node .
8 ¢ 09 44
1 2 3
300 3-D linear tetrahedron 4 4
3
1
2
310 3-D linear prism 6 Iﬂ
5
4
2
1
320 3-D linear hexahedron 8) b7
|
1
5 [6
|
P Y)
s 4 3
/
1 2
330 3-D linear pyramid 5 5
3
1
2

Chapter 4

Implementation Design

33

34

Element activity and material 1Ds can be stored as properties under the
element group. Management of property groups is described in Section 4.8. The
reserved names for element activity and material IDs are Activity and Material.

4.9.3 Coordinate system

The options for storing the coordinate system for a mesh are discussed in
Section 4.14.

4.9.4 Group organization

Element group descriptions. The organization of element groups includes
the following:

e NumElems—Thisisasingleinteger representing the number of elements
in the mesh.

e Nodelds—Thisisa?2-D array of integers that specifies the node indices
that make up each element. The node indices are the array indices of the
node locations in the nodes group. The array has an attribute,
MaxNumnodes, which is the maximum number of nodesin any element.
The size of the Nodelds array is NumElems X MaxNumnodes.

e Types—Thisistheinteger ID defining the type of each element as given
in Table 4. Thismay be either an array of size NumElems where each
item in the array is the element type for its corresponding element, or a
singleinteger if all the element types are the same.

Node group descriptions. The organization of node groups includes the
following:

¢ NumNodes—Thisisasingle integer representing the number of nodesin
the mesh.

e Locations—Thisisa?2-D array of doublesfor the x-, y-, and z-locations
of the mesh nodes. The size of the array is 3 X NumNodes.

4.9.5 API Functions

When an API function is called that fillsin an array, the array must already
be alocated. The path used in al of these functions is the path to the mesh folder,
not the path for the element or node folder.
4,951 Writing

Thisfunction is used to set the number of elements for a mesh. Anyone using

this API to read the mesh will have to know thisin order to properly allocate
their arrays.

Chapter 4 Implementation Design

C/C++

int xfSetNumberOfElements (xid GroupId, int NumElems) ;

FORTRAN

SUBROUTINE XF_SET NUMBER_OF ELEMENTS (Groupld, NumElems, Error);
INTEGER (XID), INTENT(IN) :: GroupId

INTEGER, INTENT (IN) :: NumElems

INTEGER, INTENT (OUT) :: Error

Setting the element types. These functions are used to set the element types.
If al of the elements have the same type, a single value can be passed rather than
an entire array.

C/C++

int xfSetAllElemsSameType (xid Groupld, int type);
int xfWriteElemTypes (xid GroupId, int *type, int Compression) ;

FORTRAN

SUBROUTINE XF_SET ALL ELEMS_ SAME_TYPE (GroupId, Type, Error);
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: Type

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_WRITE_ELEM_TYPES(GroupId, Types, Error);

INTEGER (XID) , INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: Types (*)
INTEGER, INTENT (OUT) :: Error

Setting the node I Dsfor the elements. This function sets the node IDs for
the elements (must be numbered consistently with diagramsin Table 4). The
“IDs’ array must be a contiguous array of size MaxNumNodes X NumElems.
The IDs of the nodes start at one, which represents the first array index in the
node array. Since C arrays are zero-based, the actual index of the node in the
array when using C is decremented by one.

C/C++

int xfWriteElemNodeIds (xid GroupId, int MaxNumNodes, int *Ids, int Compression) ;

FORTRAN

SUBROUTINE XF_WRITE_ELEM NODE IDS (GroupId, MaxNumNodes, Ids, Compression,
Error) ;

INTEGER (XID), INTENT(IN) :: GroupIld

INTEGER, INTENT (IN) :: MaxNumNodes, Ids(*), Compression

INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design 35

Functionsto writethe node group data. The functions to write the node
group data are as follows:

C/C++

int xfSetNumberOfNodes (xid GroupId, int Num) ;

int xfWriteXNodeLocations (xid GroupId, double *Locs, int Compression) ;
int xfWriteYNodeLocations (xid Groupld, double *Locs) ;

int xfWriteZNodeLocations (xid Groupld, double *Locs) ;

FORTRAN

SUBROUTINE XF_ SET NUMBER OF NODES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: Num, Compression

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF WRITE X NODE LOCATIONS (GroupId, XLocs, Compression, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: Locs(*)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF WRITE Y NODE LOCATIONS (GroupId, YLocs, Error)

INTEGER (XID), INTENT(IN) :: Groupld
REAL (DOUBLE) , INTENT (IN) :: Locs (*)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF WRITE Z NODE LOCATIONS (GroupId, ZLocs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: Locs(*)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

// The locations can also be written as a single 2D array indexed by
// component then node index
SUBROUTINE XF WRITE LOCATIONS (GroupId, Locs, Compression, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: Locs (3, *)
INTEGER, INTENT (IN) :: Compression
INTEGER, INTENT (OUT) :: Error

4.9.5.2 Reading
Severa functions are provided to read the element group data.
The following function is used to get the number of elementsin amesh:

C/C++

int xfGetNumberOfElements (xid GroupId, int *NumElems) ;

FORTRAN

SUBROUTINE XF GET NUMBER OF ELEMENTS (GroupId, NumElems, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (OUT) :: NumElems, Error

Chapter 4 Implementation Design

Chapter 4

Retrieving the element types. These functions are used to get the element
types. If al of the elements have the same type, a single value can be retrieved
rather than an entire array.

C/C++

int xfAreAllElemsSameType (xid GroupId, xbool &Same) ;
int xfReadElemTypeSingleValue (xid GroupId, int *Type) ;
int xfReadElemTypes (xid GroupId, int *Types) ;

FORTRAN

SUBROUTINE XF ARE ALL ELEMS SAME TYPE (Groupld, Same, Error)
INTEGER (XID), INTENT (IN) :: GroupId

LOGICAL, INTENT (OUT) :: Same

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ ELEM TYPE SINGLE VALUE (GroupId, Type, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: Type
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF _READ ELEM TYPES (GroupId, Types, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Types (*)
INTEGER, INTENT (OUT) :: Error

Retrieving element connectivity infor mation. These functions are used to
get the element connectivity information. The first returns the maximum number
of nodes in any element in the mesh. Thisis used to dimension the connectivity
array returned by the second function.

C/C++

int xfGetMaxNodesInElem(xid GroupId, int *MaxNodes) ;
int xfReadElemNodelIds (xid GroupId, int *ElemNodes) ;

FORTRAN

SUBROUTINE XF_GET MAX NODES_IN ELEM (GroupId, MaxNodes, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (OUT) :: MaxNodes

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET MAX NODES IN ELEM(GroupId, ElemNodes, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: ElemNodes (*)
INTEGER, INTENT (OUT) :: Error

Reading the node group data. The following functions are used to read the
node group data:

Implementation Design

37

C/C++

int xfGetNumberOfNodes (xid GroupId, int *NumNodes) ;

int xfReadNodeLocationsX (xid GroupId, double *xLocs) ;
int xfReadNodeLocationsY (xid GroupId, double *yLocs) ;
int xfReadNodeLocationsZ(xid GroupId, double *zLocs) ;

FORTRAN

SUBROUTINE XF_GET NUMBER OF NODES (GroupId, NumNodes, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (OUT) :: NumNodes

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ NODE LOCATIONS X (GroupId, xLocs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: xLocs (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_READ NODE LOCATIONS_ Y (GroupId, yLocs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: yLocs (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ NODE LOCATIONS Y (GroupId, zLocs, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
REAL (DOUBLE) , INTENT (OUT) :: zLocs (*)
INTEGER, INTENT (OUT) :: Error

// To read all the same time similar to writing.
SUBROUTINE XF READ NODE LOCATIONS (GroupId, Locs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: Locs (3, *)
INTEGER, INTENT (OUT) :: Error

4.9.6 Properties

Properties can be specified for the mesh, the elements, or the nodes. These
properties are created using the methodology described in Section 4.8. The
properties group must be opened to read or write property data. The following
functions are used to open the property groups associated with amesh. Whenit is
no longer needed, the property group must be closed using xfCloseGroup.

C/C++

int xfGetMeshPropertyGroup (xid MeshGrouplId, xid *PropGroupId) ;

int xfGetMeshElementPropertyGroup (xid MeshGrouplId, xid
*PropGroupld) ;

int xfGetMeshNodePropertyGroup (xid MeshGroupId, xid *PropGroupId) ;

FORTRAN

SUBROUTINE XF GET_MESH PROPERY GROUP (MeshGroupId, PropGroupld, Error)
INTEGER (XID), INTENT(IN) :: MeshGroupId

INTEGER (XID), INTENT(OUT) :: PropGroupId

INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

Chapter 4

SUBROUTINE XF GET_ MESH ELEMENT PROPERY GROUP (MeshGroupId,
INTEGER (XID) ,
INTEGER (XID) ,
INTEGER, INTENT (OUT)

SUBROUTINE XF GET_MESH NODE PROPERY GROUP (MeshGroupId,
INTEGER (XID) ,
INTEGER (XID) ,
INTEGER, INTENT (OUT)

4.10 Grids

INTENT (IN) MeshGroupId
INTENT (OUT) PropGroupId
Error

INTENT (IN) MeshGroupId
INTENT (OUT) PropGroupId
Error

PropGroupId, Error)

PropGroupId, Error)

The grid group stores information associated with 2- or 3-D grids. This
information includes the geometric definition of the grid along with grid
properties and data sets associated with the grid.

4.10.1 Grid properties

Several properties, including the ones listed in Table 5, are associated with a

grid.

Table 5

Grid Properties

Item Description Required?

Dimension 2-D versus 3-D Yes

Grid type Cartesian, curvilinear, extruded Cartesian, extruded Yes
curvilinear

Extrusion type Type of extrusion used for K direction. Options include No
sigma stretch, Cartesian, curvilinear at corners, curvilinear
at midsides. Must be defined for extruded grids.

Global Used to position the grid in 3-D space. No

coordinate

system

Origin The coordinates of the grid origin (I=0, J=0, K=0) in the No
global coordinate system

Orientation Right-hand or left-hand rule Yes

Dip The angle of rotation about the global x-axis (this is 0.0 for No
plan view 2-D cases and 90 for vertically averaged 2-D
cases)

Bearing The angle of rotation about the global z-axis No

Computational The geometric corner of the grid that is the computational No

Origin origin. By default this is the geometric origin (location 1)

U Direction The direction of the u axis that defines the position of the 3- | No (applies
D grid triad on the geometric definition of the grid. This only to 3-D
value defaults to either 1 or —1 depending on the case)
computational origin.

Numl The number of cells in the | direction Yes

NumJ The number of cells in the J direction Yes

NumK The number of cells in the K direction (layers) Yes (3-D Grids

only)

Implementation Design

39

40

4.10.1.1 Cartesian grids

For Cartesian grids the local coordinate location of each row, column, and
layer (if 3-D) boundary is specified. The first boundary in each direction isthe
local origin. Figure 7 shows a 2-D Cartesian grid with the required grid cell
boundary locations. The origin is aways (0.0, 0.0) and therefore is not specified.

400

300

Origin (0, 0) 200 30.0 45.0 60.0 80.0

Figure 7. 2-D Cartesian grid with boundary locations

4.10.1.2 Curvilinear grids

Curvilinear grids must have all coordinates defined for each grid corner. For
a2-D grid, there are (Numl + 1) * (NumJ + 1) corners. A 3-D grid has
(Numl + 1) * (NumJ + 1) * (NumK + 1) corners. Figure 8 shows a 2-D curvi-
linear grid.

4.10.1.3 Extruded grids

Some numerical models use grids that are 2-D grids extruded in the K
direction to form 3-D grids. Both 2-D curvilinear and 2-D Cartesian grids can be
extruded. The methods to extrude 2-D grids include sigma-stretch, Cartesian,
curvilinear at corners, and curvilinear at midsides. Sigma-stretch grids have top
and bottom K values (elevations) that may vary from column to column. Each
layer of asigma-stretch grid is a constant percentage of the K thickness. Carte-
sian extruded grids define constant K values for each layer in the grid (thisis
used only for 2-D curvilinear grids because otherwise it would just be a 3-D
Cartesian grid). Curvilinear extrusion grids define the top and bottom K values
for each layer and each corner or cell.

Chapter 4 Implementation Design

Chapter 4

Figure 8.

-
N

2-D curvilinear grid

The CH3D hydrodynamic model supports 2-D curvilinear grids extruded

either by sigma-stretch or Cartesian. The groundwater model MODFLOW uses a
2-D Cartesian grid extruded curvilinear at cell centers.

4.10.2 APIfunctions

4.10.2.1 Defining the type of grid

The following function is used to define the type of grid. Grid type is one of
the following constants:

GRID_TYPE_CARTESIAN
GRID_TYPE_CURVILINEAR

GRID_TYPE_CARTESIAN_EXTRUDED
GRID_TYPE_CURVILINEAR_EXTRUDED

C/C++

int xfSetGridType (xid Groupld, int GridType) ;

FORTRAN

SUBROUTINE xfSetGridType (GroupId, GridType,
INTEGER (XID), INTENT (IN)

INTEGER, INTENT (IN)
INTEGER, INTENT (OUT)

Error)
: GroupId
:: GridType

: Error

Implementation Design

41

The following function is used only for extruded grids to define the type of
extrusion taking place. Extrudetype must be one of the following constants:

e EXTRUDE_SIGMA
e EXTRUDE_CARTESIAN

e EXTRUDE_CURV_AT CORNERS
e EXTRUDE_CURV_AT CELLS

C/C++

int xfSetExtrusionType (xid GroupId, int ExtrudeType) ;

FORTRAN

SUBROUTINE XF_SET_EXTRUSION_TYPE (GroupId, ExtrudeType, Error)
INTEGER (XID), INTENT(IN) :: GroupIld

INTEGER, INTENT (IN) :: ExtrudeType

INTEGER, INTENT (OUT) :: Error

4.10.2.2 Setting grid attributes

These functions are used to set attributes for a grid. The number of dimen-
sions must be 2 or 3. Orientation must be one of the following constants:
ORIENTATION_RIGHT_HAND, ORIENTATION_LEFT_HAND. The
computational origin isanumber between 1 and 4 for 2-D grids and between 1
and 8 for 3-D grids. The number corresponds to the corner of the grid that will be
the origin. Figure 9 shows the corresponding values. The u direction must be 1,

2, 3,-1, -2, or =3. This corresponds to the grid direction as labeled in Figure 9.
Negative direction values indicate the origin is at the other side of the grid. (For
more information on the grid computational origin, see Appendix B, Grid.)

Two-Dimensional Three-Dimensional
4 3 8 7
|
]
5 | 6
|
,_ _— e —_— -
s 4 3
/
1 2 1 2
Grid direction 1 — location 1 to location 2 Grid direction 1 — location 1 to location 2
Grid direction 2 — location 1 to location 4 Grid direction 2 — location 1 to location 4
Grid direction 3 — location 1 to location 5

Figure 9. Setting attributes for grid

Chapter 4 Implementation Design

C/C++

int xfSetNumberOfDimensions (xid GroupId, int NumDimensions) ;
int xfSetOrigin(xid GroupId, double x, double y, double z);
int xfSetOrientation (xid GroupId, int Orientation) ;

int xfSetBearing(xid GroupId, double Bearing) ;

int xfSetDip (xid GroupId, double Dip) ;

int xfSetComputationalOrigin(xid GroupId, int Origin);

int xfSetUDirection (xid GroupId, int Direction) ;

int xfSetNumberCellsInI (xid GroupId, int NumI) ;

int xfSetNumberCellsInd (xid GroupId, int NumdJ) ;

int xfSetNumberCellsInK(xid GroupId, int NumK) ;

FORTRAN

SUBROUTINE XF_SET_NUMBER_OF_DIMENSIONS (GroupId, NumDimensions, Error)
INTEGER (XID), INTENT(IN) :: GroupId

INTEGER, INTENT (IN) :: NumDimensions

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET ORIGIN (GrouplId, x, y, 2z, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
REAL (DOUBLE) , INTENT (IN) :: X, Yy, 2
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_ SET ORIENTATION (GroupId, Orientation, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Orientation
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET BEARING (GroupId, Bearing, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: Bearing
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET DIP(GroupId, Dip, Error)

INTEGER (XID) , INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: Dip
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET COMPUTATIONAL ORIGIN (GroupId, Origin, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Origin
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET U DIRECTION (GroupId, Direction, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Direction
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET NUM CELLS I (GroupId, NumCellsI, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT(IN) :: NumCellsI
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET NUM CELLS_J (GroupId, NumCellsJ, Error)

INTEGER (XID) , INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (IN) :: NumCellsJ
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET NUM CELLS K(GroupId, NumCellsK, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
REAL (DOUBLE) , INTENT (IN) :: NumCellskK
INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

4.10.2.3 Retrieving information about a grid

The following functions are used to retrieve information about a grid.
Optional parameters have afunction that can be used to determine whether the
parameter was set.

C/C++

int xfGetGridType (xid Groupld, int *GridType) ;

int xfGetExtrusionType (xid GroupId, int *ExtrudeType) ;

int xfGetNumberOfDimensions (xid GroupId, int *NumDimensions) ;
int xfOriginDefined (xid GroupId, xbool *bDefined) ;

int xfGetOrigin(xid GroupId, double *x, double *y, double *z);
int xfGetOrientation (xid GroupId, int *Orientation) ;

int xfBearingDefined (xid GroupId, xbool *bDefined) ;

int xfGetBearing(xid GroupId, double *bearing) ;

int xfDipDefined(xid GroupId, xbool *bDefined) ;

int xfGetDip (xid GroupId, double *dip);

int xfComputationalOriginDefined (xid GroupId, xbool *bDefined) ;
int xfGetComputationalOrigin (xid GroupId, int *Origin) ;

int xfGetUDirectionDefined (xid GroupId, xbool *bDefined) ;

int xfGetUDirection (xid GroupId, double *Direction) ;

int xfGetNumberCellsInI (xid GroupId, int *NumI) ;

int xfGetNumberCellsInJd (xid GroupId, int *NumJ) ;

int xfGetNumberCellsInK(xid GroupId, int *NumK) ;

FORTRAN

SUBROUTINE XF_GET_GRID_TYPE (GroupId, GridType, Error)
INTEGER (XID) , INTENT (IN) :: GroupId

INTEGER, INTENT (OUT) :: GridType

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET EXTRUSION TYPE (GrouplId, ExtrudeType, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: ExtrudeType
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER_ OF DIMENSIONS (GroupId, NumDimensions, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: NumDimensions
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF ORIGIN DEFINED (GroupId, Defined, Error)

INTEGER (XID), INTENT (IN) :: GroupId
LOGICAL, INTENT (OUT) :: Defined
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET ORIGIN (Groupld, x, y, z, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: x, y, 2
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET_ ORIENTATION (GroupId, Orientation, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: Orientation
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF BEARING DEFINED (GroupId, Defined, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
LOGICAL, INTENT (OUT) :: Defined
INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

Chapter 4

SUBROUTINE XF_GET_BEARING (GroupId, Bearing, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: Bearing
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF DIP DEFINED (GroupId, Defined, Error)

INTEGER (XID), INTENT(IN) :: GroupId
LOGICAL, INTENT (OUT) :: Defined
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET DIP(Groupld, Dip, Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT(OUT) :: Dip
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF COMPUTATIONAL ORIGIN DEFINED (GroupId, Defined, Error)

INTEGER (XID), INTENT (IN) :: GroupId
LOGICAL, INTENT (OUT) :: Defined
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_ GET COMPUTATIONAL ORIGIN (GroupId, Origin, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Origin
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF U DIRECTION DEFINED (Groupld, Defined, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
LOGICAL, INTENT (OUT) :: Defined
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET U DIRECTION (GroupId, Direction, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: Direction
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER CELLS IN I (GroupId, NumI, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: NumI
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_NUMBER_CELLS_ IN J(GroupId, NumJ, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: NumJ
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER CELLS IN K(GroupId, NumK, Error)

INTEGER (XID), INTENT(IN) :: GroupId
INTEGER, INTENT (OUT) :: NumK
INTEGER, INTENT (OUT) :: Error

4.10.3 Grid geometry

The next three functions are used to specify the grid geometry. For Cartesian
grids, the grid geometry is the locations of cell boundaries for each row, column,
and layer. The first row, column, and layer boundary is always assumed to be the
grid origin. When using these functions to set the grid geometry, NumValsis
equal to the number of cellsin the corresponding direction.

For curvilinear grids, each coordinate of the grid must be specified for each
corner of every cell in the grid. For a2-D curvilinear grid NumValsis equal to
(Numl + 1) * (NumJ + 1) for both xfSetGridCoordsl and xfSetGridCoor dsJ.

Implementation Design

45

46

For a3-D curvilinear grid NumValsisequal to (Numl + 1) * (NumJ+ 1) *
(NumK + 1) for al of these functions. The arrays are numbered in I, J, K order.

C/C++

int xfSetGridCoordsI (xid GroupId, int NumVals, double *iValues) ;
int xfSetGridCoordsd (xid GroupId, int NumVals, double *jValues) ;
int xfSetGridCoordsK(xid GroupId, int NumVals, double *kValues) ;

FORTRAN

SUBROUTINE XF SET GRID COORDS I (Groupld, NumVals,

INTEGER (XID), INTENT (IN) GroupId

INTEGER, INTENT (IN) NumVals

REAL (DOUBLE) , INTENT (IN) ivalues

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET GRID COORDS J(GroupId, NumVals,
INTEGER (XID), INTENT (IN) GroupId

INTEGER, INTENT (IN) NumVals

REAL (DOUBLE) , INTENT (IN) jVvalues

INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET GRID COORDS K (GroupId, NumVals,
INTEGER (XID), INTENT (IN) GroupId

INTEGER, INTENT (IN) NumVals

REAL (DOUBLE) , INTENT (IN) kValues

INTEGER, INTENT (OUT) Error

4.10.4 Grid coordinate values

ivalues,

jVvalues,

kValues,

Error)

Error)

Error)

The following functions are used to read the grid coordinate values from the
file. The number of valuesis passed specifying the size allocated for the arrays. If
the sizeisincorrect, the library will return a negative value for the error.

C/C++

int xfGetGridCoordsI (xid GroupId, int NumVals, double *iValues) ;
int xfGetGridCoordsdJd (xid GroupId, int NumVals, double *jValues) ;
int xfGetGridCoordsK (xid GroupId, int NumVals, double *kValues) ;

FORTRAN

SUBROUTINE XF GET_GRID COORDS I (GroupId, NumVals,

INTEGER (XID), INTENT (IN) GroupId
INTEGER, INTENT (IN) NumVals

REAL (DOUBLE) , INTENT (OUT) ivalues
INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET GRID COORDS J(Groupld, NumVals,

INTEGER (XID), INTENT (IN) GroupId
INTEGER, INTENT (IN) NumVals

REAL (DOUBLE) , INTENT (OUT) jValues
INTEGER, INTENT (OUT) Error

ivalues,

jVvalues,

Chapter 4

Error)

Error)

Implementation Design

Chapter 4

SUBROUTINE XF GET_ GRID COORDS K (GroupId, NumVals, kValues, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: NumVals

REAL (DOUBLE) , INTENT (OUT) :: kValues
INTEGER, INTENT (OUT) :: Error

4.10.5 Extruded layers

Using extrusion requires information about how the layers are defined. The
following function is used to define the layer information for extruded grids.
NumVals and Values have a different meaning depending upon which extrusion
option the grid is using. For this function the top-layer data are passed in first
down to the bottom layer of the grid. When using sigma-stretch extrusion the
variable Values s the percent thickness of each layer of the grid. NumVals
should correspond to NumL ayer s for sigma-stretch grids. When using Cartesian
extrusion the variable Values represents the cell face locations perpendicular to
the K direction. NumValswill be the NumLayers + 1 because each layer hasa
top and bottom face. When using curvilinear extrusion at corners, the variable
ValuesistheK location of every corner of the grid. NumValsin thiscaseis
(Numl + 1) * (NumJ + 1) * (NumLayers + 1). The valuesin the array loop on |
first, Jsecond, and layers (top—bottom) last. When using curvilinear extrusion at
cellsthe variable Valuesisthe K location of every cell face perpendicular to the
K direction. NumValsin this caseis Numl * NumJ* NumLayers. The valuesin
the array loop on | first, J second, and layers (top—bottom) last.

double

C/C++

int xfWriteExtrudelayerData (xid GroupId, int NumLayers, int NumVals,
*Values) ;

FORTRAN

SUBROUTINE XF WRITE EXTRUDE LAYER DATA (GroupId, NumLayers, NumVals, Values,
Error)

INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: NumVals

REAL (DOUBLE) , INTENT (IN) :: iValues

INTEGER, INTENT (OUT) :: Error

The following functions are used to read the extrude information from the
file. The number of valuesis passed in so that the library can check to see
whether the array was allocated to the correct size.

C/C++

int xfGetExtrudeNumLayers (xid GroupId, int *NumLayers) ;
int xfGetExtrudeValues (xid GroupId, int NumVals, *Values);

Implementation Design

47

FORTRAN

SUBROUTINE XF_GET_EXTRUDE NUM LAYERS (GroupId, NumLayers, Error)

INTEGER (XID) , INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: NumLayers
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_EXTRUDE_ VALUES (GroupId, NumValues, Values, Error)

INTEGER (XID), INTENT(IN) :: GroupId
INTEGER, INTENT (IN) :: NumValues
REAL (DOUBLE) , INTENT (OUT) :: Values
INTEGER, INTENT (OUT) :: Error

4.10.6 Cell and node properties

Properties can be specified for the grid, the cells, or the corners (mesh
values). These properties are created using the methodology described in
Section 4.8. The following functions are used to open the property groups
associated with a grid. After finishing, the group IDs must be closed using the
function xfCloseGroup.

C/C++

int xfGetGridPropertyGroup (xid GridGroupId, xid *PropGroupld) ;
int xfGetGridCellPropertyGroup (xid GridGroupId, xid *PropGroupId) ;
int xfGetGridNodePropertyGroup (xid GridGroupId, xid *PropGroupId) ;

FORTRAN

SUBROUTINE XF GET_GRID PROPERTY GROUP (GridGroupId, PropGroupId, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER (XID) , INTENT (OUT):: PropGroupId

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_GRID_ CELL_ PROPERTY GROUP (GridGroupId, PropGroupId, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER (XID) , INTENT (OUT) :: PropGroupId
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET_ GRID NODE PROPERTY GROUP (GridGroupId, PropGroupld, Error)

INTEGER (XID), INTENT(IN) :: GroupId
INTEGER (XID), INTENT (OUT) :: PropGroupId
INTEGER, INTENT (OUT) :: Error

4.10.6.1 Activity flags

One of the reserved property namesis activity. Thisis an array of on/off
values that must be the same size as the number of cellsin the grid. The activity
array indicates whether every cell is on or off (included in the grid computa-
tions). If no activity flags are specified, it will be assumed that all cells are on.
Activity can aso be defined on adata set level for cells that are computationally
active but are inactive at specific times. This occurs in hydraulic studies where
grid cells are allowed to go dry (inactive).

Chapter 4 Implementation Design

4.10.6.2 Null values

Curvilinear grids may have large sections of inactive space. Thisis especialy
truein riverine applications. In these casesit is often easier to build the grid
without including data in the empty spaces. Sometimes elevation data are
unavailable for areas outside the active portions of the grid. Empty areas can be
filled in with anull value rather than cell boundary locations. When anull value
isused, it is stored as a property of the grid. Figure 10 shows a situation where a
null value may be useful. The grid shown is of ariver that branches. For this
problem the null value would be used above and below the right branch of the
river (everything greater than 3 in the |-direction and not between 2 and 5 in the
J-direction).

Figure 10. 2-D curvilinear grid that branches

Chapter 4 Implementation Design

49

4.11 Cross-section Data

NOTE: CROSS-SECTION DATA ARE NOT SUPPORTED IN VERSION
1.00 OF XM DF

Cross sections will consist of five different groups of data (cross sections,
profiles, point properties, line properties, and cross-section geometry), which are
associated with one of two different kinds of geometric objects (apoint or line).

4.11.1 Cross sections

A cross-section group (Figure 11)
includes a cross-section entity defined
by the river/reach combination in which
it is associated. Cross sections are aso
associated with profile lines by these

/ names. They reference the cross-section
/ geometry (D, X-, y-, and z-values).
Cross-section properties include the type
/ of spatial reference (point, 2-D line, or
3-D line) and the spatia referencing
/ entity. Because a cross section may have
/ many point or line properties but each
point or line property has only one cross

— section, they are not referenced directly

—_— by the cross sections. Instead, each point
and line property references the cross
section.

Figure 11. Cross sections

The cross-section geometry isa 3-D

array (number of cross sections, by
maximum number of d-z pairs, by 2) that
hold the d-z pairs for each cross section.
The geometry of a cross section defined
by a 3-D line could be stored in the
Cross-section geometry, or it could be
left out with the calling application
generating the geometry “on the fly,” as
needed.
4.11.2 Profiles

Profile lines (Figure 12) define pro-
files such as center lines or bank lines
and can be either 2-D or 3-D. If they are
defined as 3-D, then the z-values that are

a part of the geometry can be used to
_ o _ derive the bathymetric cross-section
Figure 12. Profile lines for center line and banks geometry. Profile lines are identified by

50 Chapter 4 Implementation Design

ariver and reach name and can be associated with cross sections based on these

names.

4.11.3 Point properties

Point properties represent important locations along the cross-section geom-
etry. They may include such things as the thalweg or left or right banks. Point
properties are stored in a continuous list and reference the cross section (by 1D)

with which they are associated.

Points are defined by their IDs and x-, y-, z-coordinate pairs. Points will also
contain attributes according to the type of point being represented (i.e., node,

vertex, hydraulic structure, etc.). A point will be
referenced for each cross section whose spatial
origin definition is given as Paint.

4.11.4 Line properties

Line properties represent important lengths
along the cross section that can be associated
with material properties such as Manning's
roughness value. Line properties are stored in a
continuous list and reference the cross section
with which they are associated by the cross-
section ID.

Lines are defined by their IDs and avariable-
length list of point IDs. Lineswill also contain
attributes according to the type of line being
represented (2-D cross section, 3-D cross section,
profile bank, etc.). A line will be referenced for
each cross section whose spatia origin definition
isgiven as either 2- or 3-D, and by all profiles.

4.11.5 Group organization

The XSECS group will store the cross sec-
tion and profile information. Also shown here are
the point and line geometry, even though they
will eventually be a part of the map module
group. The XSECS group layout is shown in
Figure 13. It will include five subgroups, one for
cross sections, one for profiles, one for point
properties, one for line properties, and one for the
cross-section geometry (the point and line
subgroups are shown here but will eventually be
apart of the map module).

Implementation Design

- ¥ XsECS
i CrossSectionGeometry
@ Locations
i LineProperties
EEE BegMeasure
BEE EndMeasure
EEE [umLineProperties
BEE Type
EEE cecs
i FointProperties
EEE Megsure
EEE [NumPointProperties
BEE Type
EEE cecs
¥ Profiles
BEE [JumProfiles
EEE Origin
BEE Reach
EEE Rjver
BEE SpatialGeometry
IEE Type
¥ xsecs
EEE CrossSectionGeometry
EEE [umXsecs
EEE (Origin
EEE Reach
EEE Rjver
EEE SpatialGeometry
EEE Station

Figure 13. XSECS group layout

51

4.11.5.1 XSECS subgroup descriptions
The X SECS subgroup contains the following information:

o NumXsecs—Thisisasingleinteger representing the number of cross
sections.

e River—Thisisal-D array of text strings that store the river name the
cross section is associated with. This array is dimensioned by
NumXsecs.

e Reach—Thisisal-D array of text strings that store the reach name (this
would be a subriver name) the cross section is associated with. This array
is dimensioned by NumXsecs.

e Station—Thisisa1-D array of floating point numbers that hold linear
stations of the cross section along the defined River and Reach.

e Origin—Thisisal-D array of integer flags with the following possible
meanings. 1 —Point, 2—2-D Line, and 3—3-D Line. Thisarray is
dimensioned by NumXsecs.

e CrossSectionGeometry — Thisisa 1-D integer array of IDsthat reference
the X'secgeometry subgroup. This array is dimensioned by NumXsecs.

e SpatiaGeometry — Thisisa 1-D array of IDs that reference the point or
line to which the cross section istied for spatial referencing. If the Origin
flag is defined as Point, then the ID references into the point geometry
subgroup; and if it is defined as either a2-D line or a 3-D line, then it
references into the line geometry subgroup. If the origin typeis 2-D, then
the cross-section geometry must defined; but if the originis 3-D, then the
cross-section geometry can be defined or left blank (the CrossSection
geometry in this case would be NULL rather than some ID). Thisarray is
dimensioned by NumXsecs.

4.11.5.2 Profiles subgroup descriptions
The Profiles subgroup contains the following information:

e NumProfiles— Thisisasingle integer representing the number of
profiles.

e River—Thisisal-D array of text strings that store the river name the
profile line is associated with. This array is dimensioned by
NumPr ofiles.

e Reach-Thisisal-D array of text strings that store the reach name (this
would be a subriver name) the profile is associated with. Thisarray is
dimensioned by NumPr ofiles.

e Type-Thisisal-D array of integer flags with the following possible
meanings: 1 — Center Line, 2 — Left Bank, 3 — Right Bank, 4 — Other.
Thisarray isdimensioned by NumPr ofiles.

Chapter 4 Implementation Design

e Origin—Thisisal-D array of integer flags with the following possible
meanings: 2—2-D Line, and 3—3-D Line. Thisarray is dimensioned by
NumPr ofiles.

e SpatialGeometry - Thisisa1-D array of IDsthat reference thelineto
which the profileis defined. Thisarray is dimensioned by NumPr ofiles.

4.11.5.3 Point Properties subgroup descriptions

The Point Properties subgroup contains the following information:
e NumPointProperties— Thisis asingle integer representing the number of
point properties.

e Xsecs—Thisisan integer array that references the cross section to which
the point property belongs.

e Type-Thisisaninteger array of flags that represent the type of point
property. Initially the values will be 1 —thalweg, 2 — left bank, 3 —right
bank.

e Measure— Thisisthe distance from the beginning station of the cross
section to the point property.

4.11.5.4 Line Properties subgroup descriptions
The Line Properties subgroup contains the following information:
e NumLineProperties— Thisisasingle integer representing the number of
line properties.

e Xsecs—Thisisan integer array that references the cross section to which
the line property belongs.

e Type-Thisisaninteger array of flags that represent the type of line
property. Initially the values will be 1 — material.

o BegMeasure — Thisisthe distance from the beginning station of the cross
section to the beginning of the line property.

e EndMeasure — Thisis the distance from the beginning station of the cross
section to the ending of the line property.

41155 CrossSectionGeometry subgroup descriptions

The CrossSectionGeometry subgroup contains the Locations, a 3-D array of
doubles for the d- and z-locations of the cross-section points. The size of the
array is 2 by NumXsecs, by Maxnumdz. Actually Maxnumdz should be a
variable length, which is thought possible and will be looked into further.

Chapter 4 Implementation Design 53

4.11.6 API functions

The C and FORTRAN functions/subroutines for cross-section data are as

follows;

4.11.6.1 XSecs subgroup

C/C++

int xfSetNumberOfXsecs (xid GroupId, int Num) ;

int xfGetNumberOfXsecs (xid GroupId, int *Num) ;

int xfSetXsecRiverNames (xid GroupId, const char *Names) ;
int xfGetXsecRiverNames (xid GroupId, char **Names) ;

int xfSetXsecReachNames (xid GroupId, const char *Names) ;
int xfGetXsecReachNames (xid GroupId, char **Names) ;

int xfSetXsecStations(xid GroupId, double *Statiomns) ;
int xfGetXsecStations (xid Groupld, double *statiomns) ;
int xfSetXsecOrigins (xid GroupId, int *Origins) ;

int xfGetXsecOrigins (xid GroupId, int *Origins) ;

int xfSetXsecGeometryId(xid GroupId, int *IDs);

int xfGetXsecGeometryId(xid GroupId, int *IDs);

FORTRAN

SUBROUTINE XF_SET NUMBER OF XSECS (GroupId, Num, Error)
INTEGER (XID) , INTENT (IN) :: Groupld

INTEGER, INTENT (IN) :: Num

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER OF XSECS (GroupId, Num, Error)
INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: Num, Error

SUBROUTINE XF SET XSEC RIVER NAMES (Groupld, Names, Error)

INTEGER (XID), INTENT(IN) :: G;oupId
CHARACTER (len=%*), INTENT(IN) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET_XSEC RIVER NAMES (GroupId, Names, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
CHARACTER (len=%*), INTENT (INOUT) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET XSEC REACH NAMES (GroupId, Names, Error)

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_XSEC_REACH NAMES (GroupId, Names, Error)

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (INOUT) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET XSEC STATIONS (GroupId, Stations, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
REAL (DOUBLE) , INTENT (IN) :: Stations(*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_ GET_XSEC_STATIONS (GroupId, Stations, Error)
INTEGER (XID), INTENT(IN) :: GroupIld

Chapter 4

Implementation Design

REAL (DOUBLE) , INTENT (OUT) :: Stations(*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET XSEC ORIGINS (GroupId, Origins, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Origins (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET XSEC ORIGINS (GroupId, Origins, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Origins (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET XSEC GEOMETRY ID (GroupId, IDs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: IDs (%)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET XSEC GEOMETRY ID (Groupld, IDs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: IDs(*)
INTEGER, INTENT (OUT) :: Error

4.11.6.2 Profile subgroup

C/C++

int xfSetNumberOfProfiles (xid GroupId, int Num) ;

int xfGetNumberOfProfiles(xid GroupId, int *Num) ;

int xfSetProfileRiverNames (xid GroupId, char **Names) ;
int xfGetProfileRiverNames (xid GroupId, char **Names) ;
int xfSetProfileReachNames (xid GroupId, char **Names) ;
int xfGetProfileReachNames (xid GroupId, char **Names) ;
int xfSetProfileTypes (xid Groupld, int *Types);

int xfGetProfileTypes (xid Groupld, int *Types);

int xfSetProfileOrigins (xid GroupId, int *Origins) ;

int xfGetProfileOrigins (xid GroupId, int *Origins) ;

int xfSetProfileSpatialGeometryld(xid Groupld, int *IDs);
int xfGetProfileSpatialGeometryId(xid GroupId, int *IDs);
FORTRAN

SUBROUTINE XF SET NUMBER OF PROFILES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: Num

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_NUMBER OF PROFILES

INTEGER (XID) , INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Num, Error

SUBROUTINE XF SET PROFILE RIVER NAMES (GroupId, Names,

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET PROFILE RIVER NAMES (GroupId, Names,

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (INOUT) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET PROFILE REACH NAMES (GroupId, Names,

Chapter 4 Implementation Design

(GroupId, Num, Error)

Error)

Error)

Error)

55

56

INTEGER (XID), INTENT(IN) :: GroupId
CHARACTER (len=%*), INTENT(IN) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET PROFILE REACH NAMES (GroupId, Names, Error)

INTEGER (XID), INTENT (IN) :: GroupId
CHARACTER (len=%*), INTENT (INOUT) :: Names
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET PROFILE TYPES (GroupId, Types, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: Types (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET PROFILE TYPES (GroupId, Types, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (OUT) :: Types (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET PROFILE ORIGINS (GroupId, Origins, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Origins (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET PROFILE ORIGINS (GroupId, Origins, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Origins (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET PROFILE SPATIAL GEOMETRY ID (GroupId, IDs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: IDs (%)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET PROFILE SPATIAL GEOMETRY ID (GroupId, IDs, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: IDs(*)
INTEGER, INTENT (OUT) :: Error

4.11.6.3 Point Properties subgroup

C/C++

int xfSetNumberOfXsecPointProperties (xid GroupId, int Num) ;

int xfGetNumberOfXsecPointProperties (xid GroupId, int *Num) ;

int xfSetXsecPointPropertiesXsecs(xid Groupld, int *Xsecs);

int xfGetXsecPointPropertiesXsecs (xid Groupld, int *Xsecs);

int xfSetXsecPointPropertiesTypes (xid GroupId, int *Types);

int xfGetXsecPointPropertiesTypes (xid Groupld, int *Types) ;

int xfSetXsecPointPropertiesMeasures (xid Groupld, double *Measures) ;
int xfGetXsecPointPropertiesMeasures (xid Groupld, double *Measures) ;

FORTRAN

SUBROUTINE XF_SET NUMBER OF XSEC POINT PROPERTIES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: Num

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER OF XSEC POINT PROPERTIES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Num, Error

Chapter 4 Implementation Design

Chapter 4

SUBROUTINE XF SET XSEC POINT PROPERTIES XSECS (GroupId, Xsecs, Error)

INTEGER (XID) , INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: Xsecs(*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET XSEC POINT PROPERTIES XSECS (Groupld, Xsecs, Error)

INTEGER (XID), INTENT(IN) :: GroupId
INTEGER, INTENT (OUT) :: Xsecs (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF SET XSEC POINT PROPERTIES TYPES (GroupId, Types, Error)

INTEGER (XID), INTENT(IN) :: GroupIld
INTEGER, INTENT (IN) :: Types (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET XSEC POINT PROPERTIES TYPES (GroupId, Types, Error)

INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Types (*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_SET XSEC_ POINT PROPERTIES MEASURES (GroupId, Measures,
Error)

INTEGER (XID), INTENT(IN) :: GroupIld
REAL (DOUBLE) , INTENT (IN) :: Measures(*)
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_XSEC POINT PROPERTIES MEASURES (GroupId, Measures,
Error)

INTEGER (XID), INTENT (IN) :: GroupId
REAL (DOUBLE) , INTENT (OUT) :: Measures (*)
INTEGER, INTENT (OUT) :: Error

4.11.6.4 Line Properties subgroup

C/C++

int xfSetNumberOfXsecLineProperties (xid GroupId, int Num) ;

int xfGetNumberOfXsecLineProperties (xid GroupId, int *Num) ;

int xfSetXsecLinePropertiesXsecs (xid GroupId, int *Xsecs) ;

int xfGetXsecLinePropertiesXsecs (xid GroupId, int *Xsecs);

int xfSetXsecLinePropertiesTypes (xid GroupIld, int *Types);

int xfGetXsecLinePropertiesTypes (xid GroupId, int *Types);

int xfSetXsecLinePropertiesBegMeasures (xid GroupId, double *Measures) ;

int xfGetXsecLinePropertiesBegMeasures (xid GroupId, double *Measures) ;

int xfSetXsecLinePropertiesEndMeasures (xid GroupId, double *Measures) ;

int xfGetXsecLinePropertiesEndMeasures (xid GroupId, double *Measures) ;

FORTRAN

SUBROUTINE XF_SET NUMBER OF XSEC LINE_PROPERTIES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId

INTEGER, INTENT (IN) :: Num

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET NUMBER OF XSEC LINE PROPERTIES (GroupId, Num, Error)
INTEGER (XID), INTENT (IN) :: GroupId
INTEGER, INTENT (OUT) :: Num, Error

SUBROUTINE XF SET XSEC LINE PROPERTIES XSECS (GrouplId, Xsecs, Error)

INTEGER (XID) , INTENT (IN) :: GroupId
INTEGER, INTENT (IN) :: Xsecs(*)

Implementation Design

57

58

INTEGER, INTENT (OUT)

SUBROUTINE XF_GET XSEC LINE_

Error

PROPERTIES XSECS

INTEGER (XID), INTENT (IN) GroupId
INTEGER, INTENT (OUT) Xsecs (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET XSEC LINE_

PROPERTIES TYPES

INTEGER (XID), INTENT (IN) GroupId
INTEGER, INTENT (IN) Types (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_XSEC LINE PROPERTIES TYPES

INTEGER (XID), INTENT (IN) GroupId
INTEGER, INTENT (OUT) Types (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET XSEC_LINE PROPERTIES BEG MEASURES

Error)

INTEGER (XID), INTENT (IN) GroupId
REAL (DOUBLE) , INTENT (IN) Measures (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ GET_XSEC LINE PROPERTIES BEG MEASURES

Error)

INTEGER (XID), INTENT (IN) GroupId
REAL (DOUBLE) , INTENT (OUT) Measures (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET XSEC_LINE PROPERTIES END MEASURES

Error)

INTEGER (XID), INTENT (IN) GroupId
REAL (DOUBLE) , INTENT (IN) Measures (*)
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ GET_XSEC LINE PROPERTIES END MEASURES

Error)

INTEGER (XID), INTENT (IN) GroupId
REAL (DOUBLE) , INTENT (OUT) Measures (*)
INTEGER, INTENT (OUT) Error

4.11.6.5 CrossSectionGeom

C/C++

int xfSetXsecGeometry (xid Gr
int xfGetXsecGeometry (xid Gr

FORTRAN

SUBROUTINE XF SET XSEC GEOMETRY (GroupId, Locations,
INTEGER (XID), INTENT (IN) GroupId

REAL (DOUBLE) , INTENT (IN) Locations (*)

INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET XSEC GEOMETRY (GroupId, Locations,
INTEGER (XID), INTENT (IN) GroupId

REAL (DOUBLE) , INTENT (OUT) Locations (*)

INTEGER, INTENT (OUT) Error

etry subgroup

(GroupId, Xsecs,

(GroupId, Types,

(GroupId, Types,

(GrouplId,

(Groupld,

(GrouplId,

(Groupld,

oupId, double *Locations) ;
oupId, double *Locations) ;

Error)

Error)

Chapter 4

Error)

Error)

Error)

Measures,

Measures,

Measures,

Measures,

Implementation Design

4.12 Geometric Paths

Geometric paths store coordinate |ocations of nodes or particles. Also,

The position of each node (X, y, z) varys over time. This requires that the
array used to store these positions become a 3-D array rather than a2-D

array.
Since the position is moving, it is difficult to determine which entities

intersect a specific region. To address this, the Spatial Bins array can be
included.

There is no connectivity of elements, only strings of locations for a
specific geometric entity along its path.

Data sets may be associated with a geometric path group. Individual paths
may be inactive for portions of the time range represented by the data. This
inactive period could be at the beginning (particle does not start at the start of the
time range), in the middle of the time range (particle becomes static or inactive
for aperiod of time), or at the end (particle stops or leaves the domain). In these
cases, adata set would be used to store the velocity magnitude of each node at
each time. If the velocity magnitude is anull data flag, the node isinactive at that

time.

In some known applications the number of particles may increase over time.
The geometric paths group is set up in such away that particles may be added
after the group isinitialized. Data sets associated with these groups will aso need
to expand. The particle data are written one time-step at atime and are stored in a
chunked layout (necessary to allow for growth). It might be advantageous to
convert thisto a contiguous layout using the repack command-line utility for
faster data access (post-processing).

4.12.1 Group organization

The geometric path groups are described as follows:

NumPaths — Thisis a single integer representing the number of pathsin
the group.

NumTimes — Thisisthe number of times at which points can be saved
along a path.

Times—Thisisa 1-D array of the time values at which values are stored.
Thetime values are stored as Julian dates.

Locations—Thisisa 3-D array of doublesfor the x-, y-, and z-location
of the points on the geometric paths. The size of the array is 3 x
NumPaths x NumTimes.

Mins, Maxs — Single-dimensional size 3 arrays that store the minimum
and maximum X-, y-, and z-values encountered. This may be of interest
to users aswell as helpful for building spatia grids.

Chapter 4 Implementation Design 59

60

A geometric path group may have associated with it a2-D array of lists. This
isthe spatial bins array. Each entry in the 2-D array corresponds to a portion of
the domain covered by the paths. That array entry includes alist of path identi-
fiersthat crossthis spatial bin, along with arange of times when that path isin
thisbin. The spatial bins functionality may not be implemented until alater date.

4.12.2 API functions

When an API function is called that fillsin an array, the array must already
be allocated. The path used in al of these functions is the path to the geometric
path folder.

4,12.2.1 Writing

These functions are used to store the properties and attributes of a geometric
path group. Those using this API to read the geometric path group will have to
know thisin order to properly allocate their arrays.

The function xfCreateGeometricPath group creates the location in the
HDF5 file to store the geometric path group. This function requires a GUID
because GUIDs are used to match data sets to spatial objects. The NullLoc
argument must be an array of size 3 and is used to define the fill value for null
particles. If the number of nodes/particles increases in the time range, newly
created nodes are added to all time-steps, including previously stored time-steps.
Since these particles did not exist at these time values, their location for time-
steps before they became active will be stored as the NullLoc.

The function xfWriteParticleTimestep is used to write al of the particle
information for asingle time-step. The function first checks to determine whether
the number of particles (nPaths) has not changed (it can be increased but not
decreased). If the number of particles has increased, the function will extend the
HDF5 data set and fill in the previous time-steps for these elements with the
Nullvalue. The time-step dimension is then extended by one. Lastly, the datafor
the new locations are stored in the HDF5 data set. In C, the Locs array isa
single-dimensional double array that represents the x-, y-, and z-values for all of
the particles (the array is size number of particles* 3). The x-values are stored in
indices 0, 3, 6, etc. Likewise, the y-values are stored inindices 1, 4, 7, etc., and z
in2,5, 8, etc. In FORTRAN the Locs array is adouble-dimensional array 3 x
nParticles.

C/C++

int xfCreateGeometricPathGroup (xid ParentId, const char *Path,
const char *Guid, int Compression,
xid *PathGroup, double *NullLoc) ;
int xfWriteParticleTimestep (xid PathGroup, double Time, int nPaths,
double *Locs) ;

Chapter 4 Implementation Design

4.12.2.2 Reading

These functions are provided to read the properties and attributes of a
geometric path group.

Particle path locations can be read for multiple indices at a specific time or
for a specific particle at multiple times. In each case the Locs array must already
be allocated to the correct size.

C/C++

int xfGetNumberOfPaths (xid GroupId, int *NumPaths) ;
int xfGetNumberOfTimes (xid GroupId, int *NumTimes) ;
int xfGetPathTimesArray(xid GroupId, int NumTimes, double *Times) ;
int xfReadPathLocationsAtTime (xid GroupId, int TimeIndex,
int FirstPathIndex,
int NumIndicies, double *Locs) ;
int xfReadPathLocationsForParticle (xid GroupId, int PathIndex,
int FirstTimeIndex, int
NumTimes,
double *Locs) ;
int xfReadPathLocationsForParticles (xid GroupId, int NumPaths, int *PathIndices,
int FirstTimeIndex, int NumTimes,
double *Locs) ;

4.12.3 Spatial bins

Spatial queries are commonly performed upon dynamic particle paths. An
example would be to report all particles that end within a specific bounding box
or polygon. This can easily be determined by looking at the particle locations on
the final time-step. More difficult, however, are queries such as “find all particles
that pass through a specific polygon at any time.” This type of aquery would
require looking at every particle location for every time-step. This process can be
sped up considerably by storing some extra data.

Becauseit is desired to take advantage of HDF5 functionality supported only
when working with C and when the XM S programs will be doing the queries, the
spatial bins functionality will be available only in the C version of the library.

The proposed methodology is to divide the domain into aregular grid of
spatial bins, and for each bin store the particles that travel through it and for each
particle the time-step indices where the particle enters and leaves the bin. These
indices would actually be the time-step before entering the bin and the time-step
after leaving the bin so that reading these time-step indices for the particles will
have all the segments that pass through any part of the bin. Since a particle may
enter and leave a bin several times, there will be a variable number of pairs of
entering/exiting time-steps.

This additional information will make it very efficient to perform spatial
gueries on the particles. At least initially thisinformation will have to be
computed outside XMDF but can be stored and queried here. The advantage of
saving these data back to the file is that the information can be computed once
and used many times over. The extra data are not stored in RAM.

Chapter 4 Implementation Design 61

62

Current implementation will build only 2-D bins. Thiswill be expanded to 3-
D binsif necessary. Three-dimensional bins consume enough memory to delay
their implementation if possible.

The minimum and maximum values for the grid (which should correspond to
the minimum and maximum values for the particle paths) are used to define the
bins.

Particles on the boundary of bins should have entries placed in the bins on
both sides of the boundary. Likewise particles on a corner should have entries for
al bins touching the corner.

A bin may reference a particle even if none of the time-step valuesarein a
cell. Thiswould happen if the straight line path between successive time-steps
crosses over the cell.

C/C++

int xfDefineGrid(xid PartGroup, int nXBin, int nYBins, int *nPointsInBin,
int **PointsInBin)

int xfWriteParticleBins (xid PartGroup, int nTimesteps, int

*BinsTraversed)

These functions are used to read the spatial bins for making spatial inquiries
on the geometric path group. In every case, the memory should already be
allocated before calling the functions.

C/C++

int xfIsSpatialGridDefined(xid PartGroup, xbool *bDefined)
int xfGetNumCellsInXandY (xid PartGroup, int *nXCells, int *nYCells)

int xfGetNumParticlesInBin(xid PartGroup, int Bin, int *nParticles)
int xfGetParticlesInBin(xid PartGroup, int Bin, int nParticles, int
*PartIndicies)

int xfReadBinsParticleVisits (xid PartGroup, int PartIndex, int nTimesteps,
int *BinsTraversed)

4.13 Data Sets

Data sets are subgroups associated with another group (amesh, grid, or
geometric path group). They are stored in a special folder (group) (Figure 14)
that contains subfolders for individual data sets. Data sets can be either scalar (a
single value per geometric entity) or vector (two or three values per geometric
entity).

Scalar data sets are stored as a 2-D array where the first index is the time-step
index and the second index is the node or cell index.

Chapter 4 Implementation Design

Vector data sets are stored asa 3-D array.
Thefirst index is for the time-step, the second
index is for the node or cell, and the third index
isfor the individual components. The first index
(0inC, 1in FORTRAN) corresponds to the x-
component, the second index corresponds to the
y-component, and the third index correspondsto
the z-component. For grids the components may
beini-, j-, k-coordinates rather than x, vy, z.

The data locations for meshes are always at
mesh nodes. Data locations for grids may be at
centers, nodes, all faces, or only on facesin a
particular direction (one value per cell). The data
locations for vector data sets may be different for
each component. For example, the 2-D hydraulic
model M2D computes and reports velocities at
cell faces. Velocity in thei-direction is given at
cell faces perpendicular to thei-direction. Like-
wise, velocity in the j-direction is given at cell
faces perpendicular to the j-direction.

Particular elements or cells may have values
at one time-step but not have values at another.
This happens frequently in hydraulic models.
When flow rates are decreasing, areas that are
inundated can dry, leaving an area of the mesh
dry that was previously wet. These situations are
handled by an optional activity array. This activ-
ity array isa 2-D array of on/off valuesindi-

cating whether a specific element or cell is active

for agiven time-step and element or cell.

= (¥ Foldera
= [¥ Folderal

= (¥ velocity
@ DataTvpe
EI DatalocationI
@ Datalocationd
Active
EEE [Maxs
EEE Mins
EEE Reftime

=|-EEE Times

@ Yalues

- ﬁ] WaterSurfaceEleyation
@ Datalocation
@ DataTvpe

E Ackive

EEE [Maxs
EEE Mins
FEE Reftime
—|-EEE Times
B units
B values
- (¥ Folder

Figure 14. Schematic including data set
folders

Activity arrays are always done on a cell-centered basis regardless of whether the
data are mesh or cell-centered. The activity array isa2-D array where the first
index is the time-step index and the second index is the cell or element index.

Data sets stored using XM DF include the minimum and maximum values for
each time-step. Although this information is not necessary for adata set, it is
useful for visualization packages. The minimum and maximum values are
automatically determined when data sets are written using the XMDF API.

Because data sets can take up large amounts of disk space, XMDF allows
data sets to be compressed. Compression is performed using the default

compression algorithm in HDF5.

Implementation Design

63

64

4.13.1 API functions

4.13.1.1 Multiple data sets groups

A multiple data sets group stores data sets for a specific spatial data object
(mesh or grid). The mesh or grid that the data sets are to be used with is identi-
fied by agloba uniqueidentifier or GUID. The following functions are used to
create multiple data sets groups, retrieve paths to multiple data sets groups, and
retrieve the GUID for the spatial data object. The GUID string should be of size
XF_GUID_STRINGLENGTH as defined in the XM DF source code.

C/C++

int xfCreateMultiDatasetsGroup (xid ParentId, const char *Path,
const char *Guid) ;
int xfGetGroupPathsSizeForMultiDatasets (xid FileId, int *Num, int *MaxSize) ;
int xfGetAllGroupPathsForMultiDatasets (xid FileId, int Num, int Maxsize,
char *path);
int xfGetDatasetsSdoGuid (xid MultiDatasetsGroup, char *GUID) ;

FORTRAN

SUBROUTINE XF_CREATE MULTI_DATASETS_GROUP (ParentId, Path, Guid, Error)
INTEGER (XID), INTENT(IN) :: ParentId

CHARACTER (LEN=*) , INTENT (IN) :: Path, Guid

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_GROUP_PATHS SIZE FOR MULTI_ DATASETS (FileId, Num,
Maxsize, Error)

INTEGER (XID), INTENT (IN) :: FileId

INTEGER, INTENT (OUT) :: Num, Maxsize, Error

SUBROUTINE XF_GET_ALL_GROUP_PATHS FOR_MULTI_ DATASETS (FileId, Num, Size,
Paths, Error)

INTEGER (XID), INTENT(IN) :: FileId

INTEGER, INTENT(IN) :: Num, Size

CHARACTER (len=Size), DIMENSION (Size, Num), INTENT (INOUT) :: Paths
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET DATASETS SDO GUID (MultiDatasetsGroup, Guid)

INTEGER (XID), INTENT (IN) :: ParentId
CHARACTER (LEN=XF GUID STRINGLENGTH), INTENT (OUT) :: Guid
INTEGER, INTENT (OUT) :: Error

The multiple data sets group for a spatial data object is created automatically
upon first use. The following function is used to open the data sets group associ-
ated with a spatial data object. Note thisis the only case where a GUID is not
needed for a multiple data sets group because the spatial data object that the data
sets belong to is obvious.

C/C++

int xfOpenMultiDatasetsGroup (xid GridGroupId, xid *DatasetsGroupId) ;

Chapter 4 Implementation Design

FORTRAN

SUBROUTINE XF_OPEN MULTI_ DATASETS GROUP (GridGroupId, DatasetsGroupId, Error)

INTEGER (XID), INTENT(IN) :: GroupId
INTEGER (XID), INTENT (OUT):: DatasetsGroupId
INTEGER, INTENT (OUT) :: Error

4.13.1.2 Shortcut to setup writing to data sets

A shortcut is provided in XMDF to allow model developersto easily set up
the files and groups to write data sets. This shortcut is the function
xfSetupToWriteDatasets. This function should always be used by model
developers because it ensures that all models used with XM DF have a consistent
and easy-to-use method to begin writing data sets.

The arguments for xfSetupToWriteDatasets should be given to the model
using an external text file or command line arguments. The arguments include the
filename to save the data sets, the path to a special group called the multi-data-
sets group path, the path to start writing data setsin this path, the GUID for the
gpatial data object that all the data setswill be tied to, and the overwrite options.
The overwrite options are listed by number and the corresponding C/FORTRAN
constant (either the number or the constant may be used):

e XF_OVERWRITE_CLEAR_FILE —Fileisintended only for the data
sets being written by thismodel. If afile exists with the filename, delete
thefile.

e XF _OVERWRITE_CLEAR _DATASET_GROUP - Leave existing file
if one exists but clear any existing data sets or groups currently in the
path where data sets will be written (PathlnMultiDatasetsGroup).

o XF_OVERWRITE _NONE — Leave existing file and al data within the
file. When the data sets are created they will overwrite any data sets with
the same name and path.

C/C++

int xfSetupToWriteDatasets (const char *Filename,
const char *MultiDatasetsGroupPath,
const char *PathInMultiDatasetsGroup,
const char *SpatialDataObjectGuid,
int OverwriteOptions,
xid *FilelId,
xid *GroupId) ;

FORTRAN

SUBROUTINE XF SETUP_TO WRITE DATASETS (Filename,
MultiDatasetsGroupPath,
PathInMultiDatasetsGroup, SpatialDataObjectGuid,
FileId, GrouplId, Error)

INTEGER (XID), INTENT (IN) :: GroupId

CHARACTER (len=*), INTENT(IN) :: Filename, MultiDatasetsGroupPath

CHARACTER (len=%*), INTENT(IN) :: PathInMultiDatasetsGroup, SpatialDataObjectGuid
INTEGER (XID), INTENT (OUT) :: FileId, GroupId

Chapter 4 Implementation Design 65

INTEGER, INTENT (OUT) :: Error

4.13.1.3 Creating and writing data sets

The following functions are used to create data sets to write to HDF5. The
units for the data set are specified when the data set is created. The maximum
length for the unitsis 100 characters.

Valid time units are identified using the constants TS DAYS, TS HOURS,
TS MINUTES, TS SECONDS, or TS NOTAPPLICABLE. The compression
valueis applied to all arraysin the data set.

C/C++

int xfCreateScalarDataset (xid DatasetGroupId, const char *Path, const char *Units,
const char *TimeUnits, int Compression, xid *DatasetId) ;
int xfCreateVectorDataset (xid DatasetGroupId, const char *Path, const char *Units,
const char *TimeUnits, int Compression, xid *DatasetId) ;

FORTRAN

SUBROUTINE XF_ CREATE SCALAR DATASET (DatasetsGroupId, Path, Units, TimeUnits,
Compression, DatasetId, Error)

INTEGER (XID), INTENT (IN) :: DatasetsGroupId
CHARACTER (len=*), INTENT(IN) :: Path, Units, TimeUnits
INTEGER, INTENT (IN) :: Compression

INTEGER (XID), INTENT (OUT) :: DatasetId

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_CREATE_VECTOR_DATASET(DatasetsGroupId, Path, Units, TimeUnits,
Compression, DatasetId, Error)

INTEGER (XID), INTENT (IN) :: DatasetsGroupId

CHARACTER (len=%*), INTENT(IN) :: Path, Units, TimeUnits
INTEGER, INTENT (IN) :: Compression

INTEGER (XID), INTENT(OUT) :: DatasetId

INTEGER, INTENT (OUT) :: Error

All date/time values stored in XM DF should be stored as Julian dates for
consistency. A Julian day is the absolute count of days that have elapsed since
Noon Universal Time on January 1, 4713 BCE on the Julian calendar
(http://aa.usno.navy.mil/data/docs/JulianDate.html). While Julian dates are a
good standard date format to follow, they are not very meaningful to most
people. XMDF contains functions to convert calendar days to Julian days and
Julian days to calendar days. The conversion algorithms were adapted from code
on aWeb site maintained by the U.S. Naval Observatory
(http://aa.usno.navy.mil/data/docs/JulianDate.html).

C/C++

int xfCalendarToJulian (xbool a bBceEra, int a yr, int a mo, int a day,
int a _hr, int a min, int a sec, double *a julian);
int xfJulianToCalendar (xbool *a bBceEra, int *a yr, int *a mo, int *a_day,
int *a_hr, int *a min, int *a_sec, double a_julian);

Chapter 4 Implementation Design

http://aa.usno.navy.mil/data/docs/JulianDate.html
http://aa.usno.navy.mil/data/docs/JulianDate.html

Chapter 4

FORTRAN

SUBROUTINE XF_CALENDAR_TO_JULIAN (era, yr, mo, day, hr, &
min, sec, julian, error)

INTEGER, INTENT (IN) :: era
INTEGER, INTENT (IN) 1 yr
INTEGER, INTENT (IN) HES (1(e)
INTEGER, INTENT (IN) :: day
INTEGER, INTENT (IN) :: hr
INTEGER, INTENT (IN) :: min
INTEGER, INTENT (IN) :: sec
REAL (DOUBLE) , INTENT (OUT) :: julian
INTEGER, INTENT (OUT) :: error

SUBROUTINE XF_JUL IAN_TO_CALENDAR (era, yr, mo, day, hr, &
min, sec, julian, error)
INTEGER, INTENT (OUT era

i yr

)
INTEGER, INTENT (OUT)
INTEGER, INTENT (OUT) :: mo
INTEGER, INTENT (OUT) :: day
INTEGER, INTENT (OUT) :: hr
INTEGER, INTENT (OUT) :: min
INTEGER, INTENT (OUT) :: sec
REAL (DOUBLE) , INTENT (IN) :: julian
INTEGER, INTENT (OUT) :: error

The following function is used to store areference time for adata set. This
reference time should be a double precision float specifying the Julian day of
time zero for the simulation. The data set times are an array of offset values from
the reference time.

C/C++

int xfDatasetReftime (xid DatasetId, double Reftime) ;

FORTRAN

SUBROUTINE XF DATASET REFTIME (DatasetId, Reftime, Error)
INTEGER (XID), INTENT (IN) :: DatasetsGroupId

REAL (DOUBLE) , INTENT (IN) :: Reftime

INTEGER, INTENT (OUT) :: Error

Data sets are written as single precision floats by default. When data set
values are appended, the number of values must match the number of values
previously written. The time-steps must be written in chronological order. Scalar
value arrays are 2-D arrays of size NumValues. Vector value arrays are 3-D
arrays of size NumValues X NumComponents (reversed for FORTRAN). For
the C library, al arrays must be contiguous arrays of the correct size.

XMDF stores the minimum and maximum values for each time-step in the
data set. The minimum and maximum values can be specified or they are deter-
mined automatically from the values arrays. For vector data sets the minimum
and maximum values are the minimum and maximum values for vector
magnitudes.

Implementation Design

67

68

C/C++

int xfWriteScalarTimestep(xid DatasetId, double Time, int NumValues,
float *Values) ;
int xfWriteScalarTimestepMinMax (xid DatasetId, double Time, int NumValues,
float *Values, float Min, float Max) ;

int xfWriteVectorTimestep (xid DatasetId, double Time, int NumValues,
int NumComponents, float *Values);
int xfWriteVectorTimestepMinMax (xid DatasetId, double Time, int NumValues,
int NumComponents, float *Values, float Min,
float Max) ;

FORTRAN

SUBROUTINE XF _WRITE_SCALAR_TIMESTEP (DatasetId, Time, NumValues, Values, Error)
INTEGER (XID), INTENT(IN) :: DatasetId

REAL (DOUBLE) , INTENT (IN) :: Time

INTEGER, INTENT (IN) :: NumValues

REAL, DIMESNION (NumValues), INTENT (IN) :: Values

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_WRITE_SCALAR_TIMESTEP_WITH_MIN_MAX(DatasetId, Time, NumValues,
Values,
Min, Max, Error)

INTEGER (XID), INTENT (IN) :: DatasetId

REAL (DOUBLE) , INTENT (IN) :: Time

INTEGER, INTENT (IN) :: NumValues

REAL, DIMENSION (NumValues), INTENT (IN) :: Values
REAL, INTENT (IN) :: Min, Max

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF WRITE VECTOR_TIMESTEP (DatasetId, Time, NumValues, Values, Error)
INTEGER (XID), INTENT (IN) :: DatasetId

REAL (DOUBLE) , INTENT (IN) :: Time

INTEGER, INTENT (IN) :: NumValues

REAL, DIMESNION (NumComponents, NumValues), INTENT (IN) :: Values
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_WRITE_VECTOR_TIMESTEP_WITH_MIN_MAX(DatasetId, Time, NumValues,
Values, Min, Max, Error)

INTEGER (XID), INTENT (IN) :: DatasetId

REAL (DOUBLE) , INTENT (IN) :: Time

INTEGER, INTENT (IN) :: NumValues

REAL, DIMENSION (NumComponents, NumValues), INTENT (IN) :: Values
REAL, INTENT (IN) :: Min, Max

INTEGER, INTENT (OUT) :: Error

4.13.1.4 Activity information

Activity/Inactive data set values can be specified in two ways. With the first
method, anull value is defined for a data set. Any time a data set value is the null
value, any elements or cells containing the data value will be considered inactive
for that time-step. When null values are used, they must be set before writing the
data set values or else the minimum and maximum values may be incorrect. A
null valueis set by writing a float property to the data-set group using the defined
name PROP_NULL_VALUE. The second method to storing active/inactive data
set locationsis by using an activity array. For C, activity arrays are 2-D arrays of
unsigned characters of size number of times X the number of active values. For

Chapter 4 Implementation Design

Chapter 4

FORTRAN, the activity arrays are read/written using integers. The number of
active values is based upon the number of cells or elementsin the grid or mesh.

C/C++

int xfWriteActivityTimestep (xid DatasetId, int NumActiveVals, xbool *Active);

FORTRAN

SUBROUTINE XF_WRITE_ACTIVITY_TIMESTEP(DatasetId, NumActiveVals, ActiveVals,
Error)

INTEGER (XID), INTENT (IN) :: DatasetId

INTEGER, INTENT (IN) :: NumActiveVals

INTEGER, DIMENSION (NumActiveVals), INTENT (IN) :: ActiveVals

INTEGER, INTENT (OUT) :: Error

4.13.1.5 Reading data sets

To read data sets from an XMDF file, first open the data-set group and get a
group ID. If the file contains only data sets, thisgroup ID isthefile ID. The
following function is used to get the data-set group 1D from amesh or grid. The
variable Entityld isthe group ID for the mesh or grid.

C/C++

int xfGetDatasetGroupId(xid EntityId, xid *DatasetsGroupId) ;

FORTRAN

SUBROUTINE XF_GET DATASET_GROUP_ID (EntityId, DatasetsGroupld, Error)
INTEGER (XID), INTENT(IN) :: EntityId

INTEGER (XID), INTENT (OUT) :: DatasetsGroupId

INTEGER, INTENT (OUT) :: Error

Thefollowing function is called to get the number of scalar data sets and the
maximum path length for scalar data sets inside a data sets folder. Thisinforma-
tion is necessary to alocate the arrays necessary to retrieve the scalar data set
paths.

C/C++

int xfGetScalarDatasetsInfo(xid DatasetsId, int *Number,
int *MaxPathLength) ;

FORTRAN

SUBROUTINE XF_GET_SCALAR_DATASETS_INFO(DatasetSId, Number, MaxPathLength,
INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (OUT) :: Number, MaxPathLength

INTEGER, INTENT (OUT) :: Error

Implementation Design

Error)

69

70

The next function is used to get the paths to all scalar data sets inside a folder
of data sets. These paths are the subsequent group paths to get to a data set
divided by backward slashes “\”. Paths must be allocated to a size of
NumbDataSets X MaximumPathL ength as obtained from
GetScalar Datasets! nfo.

C/C++

int xfGetScalarDatasetPaths (xid DatasetsId, NumDatasets, MaxPathLength,
char *Paths) ;

FORTRAN

SUBROUTINE XF_GET_SCALAR_DATASET_PATHS(DatasetsId, NumDatasets, MaxPathLength,
Paths, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: NumDatasets, MaxPathLength
CHARACTER (len=MaxPathLength), DIMENSION (NumDatasets) :: Paths
INTEGER, INTENT (OUT) :: Error

The following functions are used to obtain paths to vector data sets and work
just like their scalar data set counterparts.

C/C++

int xfGetVectorDatasetsInfo(xid DatasetsId, int *Number,
int *MaxPathLength) ;

int xfGetVectorDatasetPaths (xid DatasetsId, int NumDatasets, int MaxPathLength,
char *Paths) ;

FORTRAN

SUBROUTINE XF GET_VECTOR_DATASETS INFO (DatasetsId, Number, MaxPathLength, Error)
INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (OUT) :: Number, MaxPathLength

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_GET_VECTOR_DATASET_PATHS(DatasetsId, NumDatasets, MaxPathLength,
Paths, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: NumDatasets, MaxPathLength
CHARACTER (len=MaxPathLength), DIMENSION (NumDatasets) :: Paths
INTEGER, INTENT (OUT) :: Error

The variable units must be a string of length at least 100.

C/C++

int xfGetDatasetUnits (xid DatasetId, char *Units) ;

Chapter 4 Implementation Design

FORTRAN

SUBROUTINE XF_GET_DATASET UNITS (DatasetsId, Units, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
CHARACTER (1len=100) , INTENT(OUT) :: Units
INTEGER, INTENT (OUT) :: Error

The following functions are used to read time val ues.

C/C++

int xfGetDatasetReftime (xid DatasetId, double *Reftime) ;
int xfGetDatasetNumTimes (xid DatasetId, int *NumTimes) ;
int xfGetDatasetTimeUnits (xid DatasetId, UnitType *Units) ;

FORTRAN

SUBROUTINE XF_GET DATASET_REFTIME (DatasetsId, Reftime, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

REAL (DOUBLE) , INTENT (OUT) :: Reftime

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET DATASET NUMTIMES (DatasetsId, NumTimes, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER), INTENT (OUT) :: NumTimes
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET_ DATASET REFTIME (DatasetsId, Units, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
CHARACTER (len=100) , INTENT (OUT) :: Units
INTEGER, INTENT (OUT) :: Error

Thisfunction is used to retrieve the time offsets for every time-step in the
data set. The variable Times must already be allocated to the number of time-

steps.

C/C++

int xfReadDatasetTimes (xid DatasetId, int NumTimes, double *Times) ;

FORTRAN

SUBROUTINE XF_READ DATASET TIMES (DatasetsId, NumTimes, Times, Error)
INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: NumTimes

REAL (DOUBLE) , DIMENSION (NumTimes), INTENT (OUT) :: Times

INTEGER, INTENT (OUT) :: Error

Minimum and maximum values at each time are written out automatically
when a data set is stored. Thisinformation is used to develop contour intervalsin
visualization packages. The following functions are used to retrieve the minimum
and maximum values for the time-steps. The arrays must already be allocated to
the number of time-steps.

Chapter 4 Implementation Design 71

72

C/C++

int xfGetDatasetMins (xid DatasetId, float *Mins);
int xfGetDatasetMaxs (xid DatasetId, float *Maxs) ;

FORTRAN

SUBROUTINE XF_GET_DATASET MINS (DatasetsId, NumTimes, Mins, Error)
INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: NumTimes

REAL (DOUBLE) , DIMENSION (NumTimes), INTENT (OUT) :: Mins

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET DATASET MINS (DatasetsId, NumTimes, Maxs, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: NumTimes

REAL (DOUBLE) , DIMENSION (NumTimes), INTENT (OUT) :: Maxs
INTEGER, INTENT (OUT) :: Error

The following function is used to determine the number of valuesin each
time-step of adata set.

C/C++

int xfGetDatasetNumVals (xid DatasetId, int *NumVals) ;

FORTRAN

SUBROUTINE XF_GET DATASET_NUM_VALS (DatasetsId, NumVals, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

INTEGER, INTENT (OUT) :: NumvVals

INTEGER, INTENT (OUT) :: Error

The number of values in an activity array is not necessarily the same as the
number of values in adata set. Thisfunction is used to determine the number of
valuesin the activity array.

C/C++

int xfGetDatasetNumActiveVals (xid DatasetId, int *NumActiveVals) ;

FORTRAN

SUBROUTINE XF_GET_DATASET_NUM_ACTIVE_VALS(DatasetsId,
NumActiveVals, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER, INTENT (OUT) :: NumActiveVals
INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

The following function is used to retrieve the activity status for the data set.
The variable Active must aready be allocated to hold the number of active
values.

C/C++

int xfReadActivityTimestep (xid DatasetId, int Timestep, int NumActive,
xbool *Active) ;

FORTRAN

SUBROUTINE XF_READ_ACTIVITY_TIMESTEP(DatasetSId, Timestep, NumActive, Active,
Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: Timestep, NumActive

INTEGER, DIMENSION (NumActive), INTENT (OUT) :: Active

INTEGER, INTENT (OUT) :: Error

The next two functions are used to retrieve values for a particular time-step.
The values arrays must be allocated at |east as big as the variable NumVals.

C/C++

int xfReadScalarValuesTimestep (xid DatasetId, int Timestep, int NumVals,
float *Values) ;

int xfReadVectorValuesTimestep (xid DatasetId, int Timestep, int NumVals,
int NumComponents, float *Values) ;

FORTRAN

SUBROUTINE XF_READ_SCALAR_VALUES_TIMESTEP(DatasetsId, Timestep, NumVals, Vals,
Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: Timestep, NumVals

REAL, DIMENSION (NumVals), INTENT (OUT) :: Vals

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ VECTOR VALUES TIMESTEP (DatasetsId, Timestep, NumVals,

NumComponents,
Vals, Error)
INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER, INTENT (IN) :: Timestep, NumVals, NumComponents
REAL, DIMENSION (NumVals), INTENT (OUT) :: Vals
INTEGER, INTENT (OUT) :: Error

The next function is used to retrieve values for a data set index for one or
more time-steps. The array Vaues must be a one-dimensional array of size at
least as great as NumTimesteps.

C/C++

int xfReadScalarValuesAtIndex(xid DatasetId, int Index, int FirstTimestep,
int NumTimesteps, float *Values) ;

Chapter 4 Implementation Design 73

74

int xfReadVectorValuesAtIndex(xid DatasetId, int Index, int FirstTimestep,
int NumTimesteps, int NumComponents,
float *Values) ;

FORTRAN

SUBROUTINE XF_READ_SCALAR_VALUES_AT_INDEX(DatasetsId, Index, FirstTimestep,
NumTimesteps, Values, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: Index, FirstTimestep, NumTimesteps
REAL, DIMENSION (NumTimesteps), INTENT (OUT) :: Values

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF READ VECTOR VALUES AT INDEX (DatasetsId, Index, FirstTimestep,
NumTimesteps, NumComponents,
Values, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: Index, FirstTimestep, NumTimesteps
REAL, DIMENSION (NumTimesteps, NumComponents), INTENT (OUT) :: Values
INTEGER, INTENT (OUT) :: Error

One can also retrieve activity values at specific locations just like data set
values. These functions work just like their data set value counterparts. Remem-
ber that activity indices are based upon elements and cells and may not be the
same as the |ocations where the data set values exist.

C/C++

int xfReadActivityValuesAtIndex (xid DatasetId, int Index, int
FirstTimestep,

int NumTimesteps, xbool
*Activity) ;

FORTRAN

SUBROUTINE XF READ ACTIVITY VALUES AT INDEX (DatasetsId, Index,
FirstTimestep,
NumTimesteps, Activity,

Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: Index, FirstTimestep, NumTimesteps
INTEGER, DIMENSION (NumTimesteps), INTENT (OUT) :: Activity
INTEGER, INTENT (OUT) :: Error

4.13.2 Properties

There are afew “reserved” properties when dealing with data sets. Datatype,
Datal ocation, Datal ocationl, Datal ocationJ, DatalocationK, and Componentsl K.
The datatype attribute specifies whether the data set is for scalar data, 2-D vector
data, or 3-D vector data, and is stored automatically when the data set is created.

Data sets on grids may be at various locations. The Datal ocation attributes
are used to indicate where the data are stored for each cell. These include the grid
centers, corners, faces, or on facesin a particular direction. Also, a3-D or
Extruded 2-D grid may have a data set for each column rather than for each cell

Chapter 4 Implementation Design

(for example, CH3D uses a 2-D water surface elevation for each column). For
vector data sets, each component may have adifferent datalocation. The follow-
ing functions are used to set the data locations for a data set. The following
locations are supported for data sets GRID_LOC_CENTER,
GRID_LOC_CORNER, GRID_LOC_FACES, GRID_LOC_FACE_l,
GRID_LOC_FACE_J, GRID_LOC_FACE K, and GRID_LOC_COLUMN.

C/C++

int xfScalarDatalocation(xid DatasetId, int DataLocation) ;

int xfVector2DDatalocations (xid DatasetId, int DataLocationI, int

DataLocationd) ;

int xfVector3DDatalLocations (xid DatasetId, int DatalocationI, int DatalLocationd,
int DataLocationK) ;

FORTRAN

SUBROUTINE XF SCALAR DATA LOCATION (DatasetsId, DataLocation, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

INTEGER, INTENT (IN) :: DataLocation

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_VECTOR_2D_DATA LOCATIONS (DatasetsId, DataLocationI, DatalLocationd,

Error)

INTEGER (XID), INTENT (IN) :: DatasetsId

INTEGER, INTENT (IN) :: DatalLocationI, DataLocationd
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF VECTOR 3D DATA LOCATIONS (DatasetsId, DataLocationI, DatalLocationd,
DataLocationK, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER, INTENT (IN) :: DataLocationI, DatalLocationd, DatalLocationK
INTEGER, INTENT (OUT) :: Error

These functions get the data locations for a data set.

C/C++

int xfGetScalarDatalLocation (xid DatasetId, int *DatalLocation) ;
int xfGetVector2DDatalocations (xid DatasetId, int *DatalLocationI,
int *DatalLocationd) ;
int xfGetVector3DDatalLocations (xid DatasetId, int *DatalLocationI,
int *DataLocationd, int *DataLocationK) ;

FORTRAN

SUBROUTINE XF_GET SCALAR DATA LOCATION (DatasetsId, DataLocation, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

INTEGER, INTENT (OUT) :: DataLocation

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF _GET_ VECTOR_ 2D DATA LOCATIONS (DatasetsId, DataLocationI,

DataLocationd,
Error)
INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER, INTENT (OUT) :: DataLocationI, DataLocationd

Chapter 4 Implementation Design 75

76

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF GET VECTOR 3D DATA LOCATIONS (DatasetsId, DataLocationI,
DataLocationd,
DataLocationK, Error)

INTEGER (XID), INTENT (IN) :: DatasetsId
INTEGER, INTENT (OUT) :: DataLocationI, DatalLocationd, DataLocationK
INTEGER, INTENT (OUT) :: Error

Vector data sets on Cartesian grids may have componentsin local i-, j-, and
k-coordinates rather than global x, y, and z. This function should be called for all
vector data sets that use local coordinates.

C/C++

int xfVectorsInLocalCoords (xid DatasetId) ;

FORTRAN

SUBROUTINE XF_VECTORS_IN_LOCAL_COORDS (DatasetsId, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

INTEGER, INTENT (OUT) :: Error

Thisfunction is used to determine whether vector dataare giveninlocal i-,
j-» k-coordinates or the default x-, y-, z-coordinates.

C/C++

int xfAreVectorsInLocalCoords (xid DatasetId, int *LocalCoords) ;

FORTRAN

SUBROUTINE XF ARE VECTORS_ IN LOCAL_ COORDS (DatasetsId, LocalCoords, Error)
INTEGER (XID), INTENT(IN) :: DatasetsId

LOGICAL, INTENT (OUT) :: LocalCoords

INTEGER, INTENT (OUT) :: Error

4.14 Coordinate Systems

Coordinate system groups can be associated with mesh, grid, or cross-section
groups to define their relative locations.

The values for each of the group variables are listed in Appendix A. Each
variable is defined briefly:

e Horizontal datum: The horizontal coordinated system (Geographic,
UTM, State Plane...)

o Horizontal units: The units of the horizontal system (ft, m...)

Chapter 4 Implementation Design

If amember of the Coordinate group

e Vertical datum: The vertical coordinate system (NGVD 29, NGVD
88...)

e Vertica units: The units of the vertical system (ft, m...)

o Latitude: A flag to indicate whether coordinates are entered as north
or south latitude.

e Longitude: A flag to indicate whether coordinates are entered as east
or west longitude.

e Universal Transverse Mercator (UTM) zone: The UTM zone of the
coordinates.

e State Plane Caoordinate (SPC) zone: The state plane zone of the
coordinates.

e HPGN: The high-precision geodetic network (HPGN) area
(Alabama, Arizona, California,...)

o CPP latitude/longitude: Factors used to convert from a latitude/
longitude coordinate system to a CPP (Carte Parallel o-Grammatique
Projection) system.

e Ellipse: The ellipsoid for non-North American Datum (NAD)/HPGN
coordinate systems.

e MaorR: Themajor radius for a user-defined ellipsoid.

e MinorR: The minor radius for a user-defined ellipsoid.

isnot defined, then adefault value, listed | Table 6
in Table 6, will be substituted. Default Values for Coordinate Systems
Variable Type Default Value
A list of acceptable values for the Horizontal datum | int 0
Coordinate group can be found in Appen- Horizontal units -~ o
dix A. In order to specify a coordinate Vertioal datum -~ 5
system, the horizontal datum must be : : -
specified. The following must be specified || ertical units int 0
for different coordinate systems. Latitude int 0
Longitude int 0
e Latitude/longitude: Horizontal UTM zone int 0
datum, horizontal units, latitude, SPC zone int 0101 (Alabama)
longitude HPGN int 0
e UTM: Horizonta datum, CPP latitude double | O
horizontal units, UTM zone CPP longitude double |0
e State plane: Horizontal datum, E'"PSE int 5 (Clark 1866)
horizontal uni ts, SPC zone MajorR double 6378206.4 (Clark 1866)
MinorR double 6356583.8 (Clark 1866)

HPGN: Horizontal datum,
horizontal units, HPGN area

CPP: Horizontal datum, horizontal units, CPP latitude, CPP longitude

Chapter 4 Implementation Design 77

78

Ellipse is used with non-NAD geographic and UTM systems as well as user-
defined projections. MaorR and MinorR are used with user-defined projections.

The coordinate system information may be stored with each spatial data

object within an XMDF file. The following functions are used to create or

retrieve the coordinate system group ID for a spatial data object. Thisgroup ID is
used for the rest of the coordinate system functions to set or get the information

for the coordinate system.

C/C++

int xfCreateCoordGroup (xid Spatialld, xid *CoordId) ;

int xfOpenCoordGroup (xid Spatialld, xid *CoordId) ;
FORTRAN

SUBROUTINE XF_CREATE_COORD_GROUP(SpatialId, CoordId, Error)
INTEGER (XID), INTENT (IN) :: Spatialld

INTEGER (XID), INTENT (OUT) :: CoordId

INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF OPEN COORD_GROUP (SpatialId, CoordId, Error)

INTEGER (XID), INTENT (IN) :: Spatialld
INTEGER (XID), INTENT(OUT) :: CoordId
INTEGER, INTENT (OUT) :: Error

The API will provide functions to get and set the various parts of the
coordinate group.

C/IC++

int xfGetHorizDatum(xid CoordId, int *val) ;
int xfGetHorizUnits (xid CoordId, int *val) ;
int xfGetVertDatum(xid CoordId, int *val) ;
int xfGetVertUnits (xid CoordId, int *val) ;
int xfGetlLat (xid CoordId, int *val);

int xfGetLon (xid CoordId, int *val) ;

int xfGetUTMZone (xid CoordId, int *val) ;
int xfGetSPCZone (xid CoordId, int *val) ;
int xfGetHPGNArea (xid CoordId, int *val) ;
int xfGetCPPLat (xid CoordId, double *val) ;
int xfGetCPPLon (xid CoordId, double *val) ;
int xfGetEllipse (xid CoordId, int *val);
int xfGetMajorR (xid CoordId, double *val);
int xfGetMinorR (xid CoordId, double *val) ;
int xfSetHorizDatum(xid CoordId, int wval) ;
int xfSetHorizUnits (xid CoordId, int wval);
int xfSetVertDatum (xid CoordId, int wval);
int xfSetVertUnits (xid CoordId, int wval);
int xfSetLat (xid CoordId, int wval) ;

int xfSetLon (xid CoordId, int wval);

int xfSetUTMZone (xid CoordId, int val);
int xfSetSPCZone (xid CoordId, int wval) ;
int xfSetHPGNArea (xid CoordId, int wval);
int xfSetCPPLat (xid CoordId, double wval);
int xfSetCPPLon (xid CoordId, double val) ;

Chapter 4

Implementation Design

int xfSetEllipse (xid CoordId, int wval) ;
int xfSetMajorR (xid CoordId, double wval) ;
int xfSetMinorR (xid CoordId, double val) ;
FORTRAN

SUBROUTINE XF_GET_HORIZ DATUM (CoordId, Val, Error)

INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (OUT) Val
INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET HORIZ UNITS (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_VERT_DATUM(CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_VERT_UNITS(CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF _GET_LAT (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET_ LON (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_UTM_ZONE(CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (OUT) Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_SPC_ZONE(CoordId, Val, Error)

INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (OUT) Val
INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET_HPGN_ AREA (CoordId, Val, Error)

INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (OUT) Val
INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET CPP_LAT (CoordId, Val,

INTEGER (XID), INTENT (IN) CoordId
REAL (DOUBLE) , INTENT (OUT) :: Val
INTEGER, INTENT (OUT) Error

SUBROUTINE XF _GET_CPP_LON (CoordId, Val,

INTEGER (XID), INTENT (IN) CoordId
REAL (DOUBLE) , INTENT (OUT) :: Val
INTEGER, INTENT (OUT) Error

SUBROUTINE XF GET_ELLIPSE (CoordId, Val,

INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (OUT) Val
INTEGER, INTENT (OUT) Error

Chapter 4 Implementation Design

Error)

Error)

Error)

79

80

SUBROUTINE XF GET MAJOR R (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

REAL (DOUBLE) , INTENT (OUT) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_GET MINOR_R (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

REAL (DOUBLE) , INTENT (OUT) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET HORIZ DATUM (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET HORIZ UNITS (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET VERT DATUM (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET_VERT_UNITS (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET LAT (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ SET LON (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET UTM ZONE (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET_SPC_ZONE (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET HPGN AREA (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId
INTEGER, INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_ SET CPP_LAT (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

REAL (DOUBLE) , INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF SET CPP_LON (CoordId, Val, Error)
INTEGER (XID), INTENT (IN) CoordId

REAL (DOUBLE) , INTENT (IN) :: Val

INTEGER, INTENT (OUT) Error

SUBROUTINE XF_SET_ELLIPSE (CoordId, Val, Error)

INTEGER (XID), INTENT (IN) CoordId

Chapter 4

Implementation Design

INTEGER, INTENT (IN) :: Val
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_ SET MAJOR R(CoordId, Val, Error)

INTEGER (XID), INTENT (IN) :: CoordId
REAL (DOUBLE) , INTENT (IN) :: Val
INTEGER, INTENT (OUT) :: Error

SUBROUTINE XF_ SET MINOR R (CoordId, Val, Error)

INTEGER (XID), INTENT (IN) :: CoordId
REAL (DOUBLE) , INTENT (IN) :: Val
INTEGER, INTENT (OUT) :: Error

Chapter 4 Implementation Design

Appendix A
Coord Group

This appendix includes the constants that are used to store coordinate system
information inside an XMDF file as discussed in Section 4.14.

Horizontal datum:

0 - Local

1 - Geographic

2 - Geographic NAD27 (US)
3 - Geographic NAD83 (US)
4 - Geographic HPGN (US)
5 - UTM

6 - UTM NAD27 (US)

7 - UTM NAD83 (US)

8 - UTM HPGN (US)

9 - State Plane NAD27 (US)
10 - State Plane NADS83 (US)
11 - State Plane HPGN (US)
12 - CPP (Carte Parallelo-Grammatique Projection)

Horizontal units:

0 - US survey feet

1 - international feet
2 - meters

Vertical datum:
0 - Local

1 - NGVD 29

2 — NGVD 88

Vertical units;
0 - US survey feet

1 - international feet
2 - meters

Latitude:

0 - North

1 - South

Longitude

0 - East

1 - West

UTM zone:

Value from 1 to 60

Appendix A Coord Group Al

A2

SPC Zone:
NAD27 only

NAD83 only
Both

Alabama East - 0101
Alabama West - 0102
Arizona East - 0201
Arizona Central - 0202
ArizonaWest - 0203
Arkansas North - 0301
Arkansas South - 0302
California1-0401
California 2 —0402
California 3-0403
California4 —0404
California 5 - 0405
California 6 - 0406
California 7 - 0407
Colorado North - 0501
Colorado Central - 0502
Colorado South - 0503
Connecticut - 0600
Delaware - 0700
District of Columbia - 1900
Florida East - 0901
Florida West - 0902
Florida North - 0903
Georgia East - 1001
Georgia West - 1002
Idaho East - 1101
Idaho Central - 1102
Idaho West - 1103
Illinocis East - 1201
IllinoisWest - 1202
Indiana East - 1301
Indiana West - 1302
lowa North - 1401
lowa South - 1402
Kansas North - 1501
Kansas South - 1502
Kentucky North - 1601
Kentucky South - 1602
Louisiana North - 1701
L ouisiana South - 1702
Louisiana Offshore - 1703
Maine East - 1801
Maine West - 1802
Maryland - 1900
Massachusetts Mainland -
2001

Massachusetts I land — 2002
Michigan East - 2101
Michigan Central - 2102
Michigan West - 2103
Michigan North - 2111
Michigan Central - 2112
Michigan South - 2113
Minnesota North - 2201
Minnesota Central - 2202
Minnesota South - 2203
Mississippi East - 2301
Mississippi West - 2302
Missouri East - 2401
Missouri Central - 2402
Missouri West - 2403
Montana - 2500

Montana North - 2501
Montana Central - 2502
Montana South - 2503
Nebraska - 2600

Nebraska North - 2601
Nebraska South - 2602
Nevada East - 2701
Nevada Central - 2702
Nevada West - 2703

New Hampshire - 2800
New Jersey - 2900

New Mexico East - 3001
New Mexico Central - 3002
New Mexico West - 3003
New York East - 3101

New York Central - 3102
New York West - 3103
New York Long Island - 3104
North Carolina - 3200
North Dakota North - 3301
North Dakota South - 3302
Ohio North - 3401

Ohio South - 3402
Oklahoma North - 3501
Oklahoma South - 3502
Oregon North - 3601
Oregon South - 3602
Pennsylvania North - 3701
Pennsylvania South - 3702
Rhode Island — 3800

South Carolina - 3900

South Carolina North - 3901
South Carolina South - 3902
South Dakota North - 4001
South Dakota South - 4002

Tennessee - 4100

Texas North - 4201

Texas North Central - 4202
Texas Central - 4203
Texas South Central - 4204
Texas South - 4205

Utah North - 4301

Utah Central - 4302

Utah South - 4303
Vermont - 4400

Virginia North - 4501
Virginia South - 4502
Washington North - 4601
Washington South - 4602
West Virginia North - 4701
West Virginia South - 4702
Wisconsin North - 4801
Wisconsin Central - 4802
Wisconsin South - 4803
Wyoming | - 4901
Wyoming |1 - 4902
Wyoming |11 - 4903
Wyoming 1V - 4904
Wyoming East - 4901
Wyoming East Central - 4902
Wyoming West Central - 4903
Wyoming West - 4904
Alaska 1 - 5001

Alaska 2 - 5002

Alaska 3 - 5003

Alaska 4 - 5004

Alaska 5 - 5005

Alaska 6 - 5006

Alaska 7 - 5007

Alaska 8 - 5008

Alaska 9 - 5009

Alaska 10 - 5010

Hawaii 1 - 5101

Hawaii 2 - 5102

Hawaii 3 - 5103

Hawaii 4 - 5104

Hawaii 5 - 5105

Puerto Rico/Virgin Islands -
5200

Puerto Rico/Virgin Islands -
5201

St. Croix — 5202

American Samoa - 5300
Guam Isdand — 5400

Appendix A Coord Group

HPGN:

0 - Alabama 19 - New Mexico

1 - Arizona 20 - New York

2 - California (Northern) 21 - North Dakota

3 - California (Southern) 22 - Ohio

4 - Colorado 23 - Oklahoma

5 - Florida 24 - Puerto Rico/Virgin
6 - Georgia Islands

7 - Hawaii 25 - South Dakota

8 - Idaho/Montana (Eastern) 26 - Tennessee

9 - Idaho/Montana (Western) 27 - Texas (East)
10 - Kansas 28 - Texas (West)
11 - Kentucky 29 - Utah
12 - Louisiana 30 - Virginia
13 - Maine 31 - Washington/Oregon
14 - Maryland/Delaware 32 - West Virginia
15 - Michigan 33 - Wisconsin
16 - Mississippi 34 - Wyoming

17 - Nebraska
18 - New England (CT,MA,NH,VT)

CPP Latitude, CPP Longitude;
Carte Parallelo Grammatique Projection
Factor for converting the latitude/longitude

Ellipse:

0 - Airy 1830 17 - Helmert 1906

1 - Airy Modified 1849 18 - Hough 1909

2 - Australian National 1965 19 - Indonesian National
3 - Bessel 1841 1974

4 - Bessel (Namibia) 1841 20 - International 1909
5 - Clarke 1866 21 - International 1924
6 - Clarke 1880 22 - International 1967
7 - Everest 1830 23 - Krassovsky 1940

8 - Everest (India) 1956 24 - Mercury 1960

9 - Everest (Malaysia) 1969 25 - Mercury Modified 1968
10 - Everest (Malay & Singapr) 26 - Southeast Asia
1948 27 - South American 1969
11 - Everest (Pakistan 28 - WGS 1960
12 - Everest (Sabah & Sarawak) 29 - WGS 1966
13 - Everest Modified 1830 30 - WGS 1972
14 - Fischer Modified 1960 31 - WGS 1984
15 - GRS 1980 32 - User defined
16 - Hayford 1909
MajorR:

User-defined ellipse major radius

MinorR;

User-defined ellipse minor radius

Appendix A Coord Group

A3

Appendix B

Appendix B

API Types and Functions

This appendix summarizes all the types and functions defined for the XMDF

API.
Type Description
xid Anidentifier. Can point to afile or agroup. Equivaent to
HDF5' s hid_t type.
Function | Description

Version I nformation

xfGetLibraryVersion

Get the XMDF library version for
linked AP

xfGetLibraryVersionFile

Get the XMDF library version that
wrote afile

Creating and Opening Files

xfCreateFile Create and open an XMDF file

xfOpenFile Open an existing XMDF file

xfCloseFile Close and open XMDF file
Groups

xfCreateGroupForMesh Create agroup to store amesh

xfCreateGroupForGrid

Create agroup to storeagrid

xfCreateGroupForXsecs

Create agroup to store a set of cross
sections

xfOpenGroup Open agroup (returns the group path)
xfCloseGroup Close agroup
Browsing Entities

xfGetGroupPathsSizeForMeshes

Get the number of mesh groupsin a
file

xfGetAllGroupPathsForMeshes

Get the paths to mesh groupsin afile

xfGetGroupPathsSizeForGrids

Get the number of grid groupsin a
file

xfGetAllGroupPathsForGrids

Get the pathsto grid groups in afile

xfGetGroupPathsSizeForXsecs

Get the number of cross-section
groupsin afile

xfGetAllGroupPathsForXsecs

Get the paths to cross-section groups
inafile

API Types and Functions

Bl

B2

Function |

Description

Properties

xfWritePropertyInt

Create an integer property with a
specified namein a group

xfWritePropertyFloat

Create afloat property with a
specified name in a group

xfWritePropertyDouble

Create adouble property with a
specified namein a group

xfWritePropertyString

Create a string property with a
specified name in a group

xfDoesPropertyeWithNameExist

Find out if a property with a specified
name exists

xfGetNumberOfProperties

Get the number of properties defined
for agroup

xfGetPropertyNames Get the names of all the properties for
agroup

xfGetPropertyType Get the type of a property

xfGetPropertyStringLength Get the length of the longest string in
aproperty

xfGetPropertyNumber Get the number of entriesin a
property array

xfGetPropertylInt Get integer property value(s)

xfGetPropertyFloat Get float property value(s)

xfGetPropertyDouble Get double property value(s)

xfGetPropertyString Get String property value(s)

M eshes

xfGetNumberOfElements Get the number of elementsin a mesh
group

xfAreAllElemsSameType Determine whether all elementsin a
mesh are the same type

xfGetElemTypeSingleValue Get the type of all elementsif they
are the same type

xfGetElemTypes Get an array of element types

xfGetMaxNodesInElem Get the maximum number of nodesin
any element

xfGetElemNodeIds Get the element connectivity arrays

xfGetNumberOfNodes Get the number of nodesin amesh

xfGetXNodelLocations

Get an array of node X locations

xfGetYNodeLocations

Get an array of node Y locations

xfGetZNodeLocations

Get an array of node Z |locations

xfSetNumberOfElements

Store the number of el ementsin a
mesh

xfSetAllElemsSameType

Store the type for all elementsin a
mesh

xfSetElemTypes Store the typesfor all elementsin a
mesh

xfSetElemNodeIds Store the element connectivity arrays

xfSetNumberOfNodes Store the number of nodesin a mesh

xfSetXNodelLocations

Store the X locations of the nodes

Appendix B API Types and Functions

Appendix B

Function

Description

xfSetYNodeLocations

Storethe Y locations of the nodes

xfSetZNodeLocations

Store the Z locations of the nodes

xfGetMeshPropertyGroup

Get the group ID for the mesh
property group

xfGetElementPropertyGroup

Get the group ID for the mesh
element property group

xfGetNodePropertyGroup

Get the group 1D for the mesh node

property group
Grids
xfSetGridType Set the grid type
xfSetExtusionTYpe Set up agrid to use some type of

extrusion

xfSetNumberOfDimensions

Set the number of dimensions for a
grid (2 or 3)

xfSetOrigin Set the grid origin

xfSetBearing Set the angle to rotate about the z-
axis

xfSetDip Set the angle to rotate about the x-

axis

xfSetComputationalOrigin

Set the grid computational origin

xfSetUDirection

Set the u-direction

xfSetNumberOfCellsInI

Set the number of cells along thei-
axis of the grid

xfSetNumberOfCellsInd

Set the number of cells along the -
axis of the grid

xfSetNumberOfCellsInK

Set the number of cells along the k-
axis of the grid

xfGetGridType

Set the grid type

xfGetExtusionTYpe

Set up agrid to use some type of
extrusion

xfGetNumberOfDimensions

Set the number of dimensions for a
grid (2 or 3)

xfGetOrigin Set the grid origin

xfGetBearing Set the angle to rotate about the z-
axis

xfGetDip Get the angle to rotate about the x-

axis

xfGetComputationalOrigin

Get the grid computational origin

xfGetUDirection

Get the u-direction

xfGetNumberOfCellsInI

Get the number of cellsaong thei-
axis of the grid

xfGetNumberOfCellsInd

Get the number of cellsaong the j-
axis of the grid

xfGetNumberOfCellsInK

Get the number of cells along the k-
axis of the grid

xfSetGridCoordsI

Set the grid geometry information for
i-axis

API Types and Functions

B3

B4

Function

Description

xfSetGridCoordsJ Set the grid geometry information for
j-axis

xfSetGridCoordskK Set the grid geometry information for
k-axis

xfGetGridCoordsI Get the grid geometry information for
i-axis

xfGetGridCoordsJ Get the grid geometry information for
j-axis

xfGetGridCoordsk

Get the grid geometry information for
k-axis

xfWriteExtrudelLayerData

Set the layer extrusion datafor a2-D
extruded grid

xfGetExtrudeNumLayers

Get the number of extruded layers for
an extruded grid

xfGetExtrudeValues

Get the extruded grid values; the
meaning depends upon the type of
grid

xfGetGridPropertyGroup

Get the property group associated
with agrid as awhole

xfGetGridCellPropertyGroup

Get the property group associated
with the cells of agrid

xfGetGridNodePropertyGroup

Get the property group with
properties that are associated with the
nodes (corners) of agrid.

Data Sets

xfCreateMultiDatasetsGroup

Create afolder to contain data sets for
a specific spatial data object

xfGetGroupPathsSizeForMulti
Datasets

Find the paths to all multi-data-set
folders within afile or group

xfGetAllGroupPathsForMulti
Datasets

Read the paths for all the multi-data
set folders within afile or group

xfGetDatasetsSdoGuid

Get the GUID for the associated
spatial data object for a multi-data set
folder

xfOpenMultiDatasetsGroup

Open the multi-data sets group
associated with amesh or grid

xfSetupToWriteDatasets

Shortcut function to set everything up
to start writing data sets

xfCreateScalarDataset

Create a data set to write scalar values
to

xfCreateVectorDataset

Create a data set to write vector
valuesto

xfCalendarTodulian

Convert a calendar date to aJulian
date

xfJulianToCalendar

Convert a Julian date to a calendar
date

xfDatasetReftime

Set the reference time for a data set.
Time-steps are offsets from thistime

Appendix B API Types and Functions

Appendix B

Function

Description

xfWriteScalarTimestep

Write a scalar time-step datato a data
set

xfWriteVectorTimestep

Write avector time-step datato a data
set

xfWriteActivityTimestep

Write the activity datafor atime-step

xfGetDatasetGroupId

Open the data sets folder for amesh
or grid

xfGetScalarDatasetsInfo

Determine the number and maximum
path length for scalar data sets below
agroup

xfGetScalarDatasetPaths

Get the pathsto al scalar data sets
below a group

xfGetVectorDatasetsInfo

Determine the number and maximum
path length for vector data sets below
agroup

xfGetVectorDatasetPaths

Get the pathsto al vector data sets
below a group

xfGetDatasetUnits

Get the units used in a data set

xfGetDatasetReftime

Get the reference time for a data set

xfGetDatasetNumTimes

Get the number of timesin a data set

xfGetDatasetTimeUnits

Get the time units for a data set

xfGetDatasetTimes

Get the times for a data set

xfGetDatasetMins Get the minimum values for each
time-step

xfGetDatasetMaxs Get the maximum values for each
time-step

xfGetDatasetNumVals Get the number of valuesin a data set

xfGetDatasetNumActiveVals

Get the number of active values
(elements or cells) associated with a
data set

xfReadActivityTimestep

Read the activity values for a specific
time-step

xfReadScalarValuesTimestep

Read the scalar values for a specific
time-step

xfReadVectorValuesTimestep

Read the vector values for a specific
time-step

xfReadActivityValuesAtIndex

Read the activity values for a specific
index for one or more time-steps

xfReadScalarValuesAtIndex

Read the scalar values for a specific
index for one or more time-steps

xfReadVectorValuesAtIndex

Read the vector values for a specific
index for one or more time-steps

xfScalarDatalLocation

Define the location that a scalar data
set isassigned to (Grid centers,
corners, etc.)

xfVector2DDatal.ocations

Define the locations for each
component of a 2-D vector data set

API Types and Functions

B5

B6

Function

Description

xfVector3DDatalocations

Define the locations for each
component of a 3-D vector data set

xfGetScalarDataLocation

Get the location that a scalar data set
is assigned to (Grid centers, corners,
etc.)

xfGetVector2DDatalocations

Get the locations for each component
of a2-D vector data set

xfGetvector3DDatalocations

Get the locations for each component
of a 3-D vector data set

xfVectorsInLocalCoords

Identifies that a vector datasetisin
local grid coordinates (Cartesian grids

only)

Coordinate Systems

xfGetHorizDatum Horizontal coordinate system
(Geographic, UTM, ...)

xfGetHorizUnits Horizontal units (ft, m)

xfGetVertDatum Vertical datum (NGVD 29, NGVD
88, ...)

xfGetVertUnits Vertical units (ft, m)

xfGetLat Indicate whether coordinates are
north or south latitude

xfGetLon Indicate whether coordinates are east
or west longitude

xfGetUTMZone UTM zone

xfGetSPCZone State plane zone

xfGetHPGNArea High precision geodetic network area
(Alabama, Arizona, California, etc.)

xfGetCPPLat Factorsto convert from a
latitude/longitude system to a Carte
Parallel o-Grammatique Projection
system

xfGetCPPLon Factorsto convert from a
latitude/longitude system to a Carte
Parallel o-Grammatique Projection
system

xfGetEllipse Ellipsoid for non-NAD/HPGN
coordinate systems

xfGetMajorR Major radius for a user-defined
ellipsoid

xfGetMinorR Minor radius for a user-defined
ellipsoid

xfSetHorizDatum Horizontal coordinate system
(Geographic, UTM, ...)

xfSetHorizUnits Horizontal units (ft, m)

xfSetVertDatum Vertical datum (NGVD 29, NGVD
88, ..)

xfSetVertUnits

Vertical units (ft, m)

Appendix B API Types and Functions

Function Description

xfSetLat Indicate whether coordinates are
north or south latitude

xfSetLon Indicate whether coordinates are east
or west longitude

xfSetUTMZone UTM zone

xfSetSPCZone State plane zone

xfSetHPGNArea High precision geodetic network area
(Alabama, Arizona, California, etc.)

xfSetCPPLat Factorsto convert from a
latitude/longitude system to a Carte
Parallelo-Grammatique Projection
system

xfSetCPPLon Factorsto convert from a
latitude/longitude system to a Carte
Parall el o-Grammatique Projection
system

xfSetEllipse Ellipsoid for non-NAD/HPGN
coordinate systems

xfSetMajorR Major radius for a user-defined
elipsoid

xfSetMinorR Minor radius for a user-defined
elipsoid

Appendix B API Types and Functions

B7

REPORT DOCUMENTATION PAGE OMB NG oA 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2007 Final report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

eXtensible Model Data Format (XMDF)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Cary D. Butler, David R. Richards, Robert M. Wallace, Norman L. Jones, Russell Jones 122401 and 122425
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

U.S. Army Engineer Research and Development Center
Information Technology Laboratory and Coastal and Hydraulics Laboratory ERDC SR-07-1
3909 Halls Ferry Road, Vicksburg, MS 39180-6199;
Environmental Modeling Research Laboratory, 242 Clyde Building
Brigham Y oung University, Provo, Utah 84602

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
U.S. Army Corps of Engineers

Washington, DC 20314-1000
11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army Engineer Research and Development Center, in conjunction with the Environmental M odeling Research Laboratory
(EMRL) at Brigham Y oung University (BY U), is developing an efficient Application Programming Interface (API) for handling multi-
dimensional data produced for water resource computational modeling. This API, in conjunction with a corresponding data standard, is
being implemented within ERDC computational models to facilitate rapid data access, enhanced data compression and data sharing, and
cross-platform independence. The APl and data standard are known as the eXtensible Model Data Format (XMDF), and version 1.0 is
available for public use and free dissemination. This report presents the purpose and architecture of the XMDF APl and data format.

15. SUBJECT TERMS

Databases Finite element method Two-dimensional methods
Finite difference method Three-dimensional methods
16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE
OF ABSTRACT | OF PAGES PERSON
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include
area code)
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 98

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Abstract
	Contents
	List of Figures
	List of Tables

	 Preface
	1 Introduction
	2 Overview
	2.1 Overcoming Binary Portability Issues
	2.2 HDF5 Methodology
	2.3 HDF5 Viewer
	2.4 XMDF Organization
	2.4.1 Mesh groups
	2.4.2 Grid groups
	2.4.3 Cross-section groups
	2.4.4 Geometric path groups
	2.4.5 Data-set groups
	2.4.6 Coordinate system groups

	2.5 API Overview

	3 Quick Start for Model Developers
	3.1 XMDF File Paths
	3.2 Reading Geometry
	3.2.1 Meshes
	3.2.2 Grids

	3.3 Writing Data Sets

	4 Implementation Design
	4.1 XMDF Functions/Subroutines
	4.1.1 C/C++ Interface
	4.1.2 FORTRAN Interface

	4.2 Compression
	4.3 Version Number
	4.4 Creating and Opening Files
	4.5 Float Variable Types
	4.6 XMDF Groups
	4.7 Determining All Entities in a File
	4.8 Properties
	4.8.1 Reserved property names
	4.8.2 API functions for properties

	4.9 Meshes
	4.9.1 Nodal coordinates
	 4.9.2 Elements
	4.9.3 Coordinate system
	4.9.4 Group organization
	4.9.5 API Functions
	4.9.6 Properties

	4.10 Grids
	4.10.1 Grid properties
	4.10.2 API functions
	4.10.3 Grid geometry
	4.10.4 Grid coordinate values
	4.10.5 Extruded layers
	4.10.6 Cell and node properties

	 4.11 Cross-section Data
	4.11.1 Cross sections
	4.11.2 Profiles
	4.11.3 Point properties
	4.11.4 Line properties
	4.11.5 Group organization
	4.11.6 API functions

	4.12 Geometric Paths
	4.12.1 Group organization
	4.12.2 API functions
	4.12.3 Spatial bins

	4.13 Data Sets
	4.13.1 API functions
	4.13.2 Properties

	4.14 Coordinate Systems

	Appendix A Coord Group
	Appendix B API Types and Functions
	Report Documentation Page

