
PURPOSE:  This System-Wide Water Resources Program (SWWRP) technical note presents 
the theoretical development and implementation of the equations and techniques necessary to 
simulate stationary ice-covered flow in ADaptive Hydraulics (ADH). This implementation 
includes the application of a surface pressure field to simulate the weight of floating ice cover on 
the flow, as well as a method developed at the U.S. Army Engineer Research and Development 
Center (ERDC) for the calculation of drag resulting from combined bed roughness and ice cover.  
 
BACKGROUND:  The presence of ice cover over flowing water complicates the hydraulic 
properties of the flow by modifying the available flow cross-sectional area (via the floating ice 
cover), and by modifying the resistance to flow (by increasing the surface area available to shear 
forces and contributing unique roughness characteristics associated with the ice cover to the 
development of the shear profile) (Ashton 1986). The two-dimensional shallow-water (SW2) 
module of ADH has been extended to include changes to the flow due to the pressure imposed 
by an ice field as well as modifications to the shear forces. The techniques employed to account 
for these changes are described in detail in this technical note. 
 
SHEAR STRESS INDUCED BY BOTH BED AND ICE COVER:  In general, the presence 
of ice cover significantly affects the hydraulic roughness associated with a flow. If one applies 
classic hydraulic velocity profile theory to the ice cover problem, the complete velocity profile 
can be represented by two hydraulically independent profiles, which share a single, maximum 
velocity (for a review of classical hydraulic theory, see Schlichting 1979). These profiles divide 
the total flow into two distinct regions, the ice region and the bed region. The ice region and the 
bed region are the flow regions above and below the maximum velocity line, respectively 
(Figure 1). 
 
Several researchers have questioned the validity of this two-layer theory (e.g., Ettema 2002). The 
classical theory dictates that the eddy viscosity coinciding with the maximum velocity should be 
exactly zero, but observations indicate this eddy viscosity is generally non-zero (Krishnappan 
1983). Also, observations of the shear stress profile indicate that the location of zero shear stress 
does not necessarily coincide with the maximum velocity (Parthasarathy and Muste 1994). These 
observations imply that, contrary to the claims of classical theory, some energy is exchanged 
between profiles, and hence, the profiles are not hydraulically independent.  
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Figure 1.   Schematic Representation of the Velocity and Shear Profiles under Ice Cover  

 
In order to develop a new expression for shear stress under ice cover, the classical hydraulic 
theory is assumed valid and the classical theory for turbulent rough flow between two parallel 
surfaces with different hydraulic roughnesses is developed. An approximation term is added for 
the cross-profile exchange of turbulent shear by assuming that this quantity is small relative to 
the total drag and can be approximated with a linear superposition of a correction term derived 
from the classical theory.  
 
Approach. First, the classical theory for turbulent rough flow between two parallel surfaces 
with different hydraulic roughnesses is developed. The following three assumptions arise from 
the classical theory: 
 
1. The ice region and bed region have the same maximum velocity, which is located at the 

junction of the profiles. 
2. Since the vertical velocity gradient at the maximum velocity height is zero, the shear stress at 

the maximum velocity height must also be zero. 
3. Since no energy can be exchanged across a horizontal plane of zero shear stress, the two 

velocity profiles are hydraulically independent. Therefore, the total shear is equal to the sum 
of ice and bed shear stresses, which can be evaluated independently. 

 

 x BED.x ICE.xτ τ τ= +  (1) 

 
 y BED.y ICE.yτ τ τ= +  (2) 

 
The shear stresses in x- and y-directions are given as follows: 
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Variables are defined at the end of this technical note. 
 
Note that Equations 11 and 12 are expressions of the form of the velocity profile given by 
Christensen (1972). This velocity profile is identical to the traditional velocity profile, except for 
the addition of the “+1” term. This additional term only has a significant effect on the profile for 
small values of the roughness ratio (z/k). It ensures that the velocity magnitude v is greater than 
zero for all possible values of z/k (the traditional profile approaches –∞ for z/k →  0). 
 
According to the classical theory, the shear profile is linear for both the bed and ice profiles, and 
the shear at zmv must equal zero (since the velocity at zmv is the maximum velocity and hence, the 
inflection point of the total velocity profile). This assumption can be used to express the ratio of 
the bed and ice shear stresses as a linear function of zmv and d. 
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Consider the force balance for the total depth: 
 

 EGLρgdSτ =
 (14) 

 
Now, consider the force balance for just the bed friction: 
 

 EGLmvBED Sρgzτ =
 (15) 

 
Equation 15 must be the equation for the bed force, because no energy transfer can occur across 
the zero shear stress line, which occurs at zmv. Hence, the bed shear can only resist the weight of 
the water from zero to zmv. The remainder of the energy (from zmv to d) is absorbed by the ice 
shear. Next, note that: 
 

 ICEBED τττ +=
 (16) 

 
Substituting Equation 16 into Equation 14 and divide Equation14 by Equation 15 yields: 
 

 ICE

BED

mv

mv

τ

τ

zd

z =
−  (17) 

 
Combining Equations 7, 8, and 17 can obtain an equation for zmv. 
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where: 
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Equations 18 and 19 must be solved iteratively, but the solution converges rapidly. A good initial 
estimate of zmv to begin the iterations is zmv = d/2. 
 
The location of zmv is now known and is used to determine the ice and bed drag coefficients. 
They are found by solving Equations 3–6 for the drag coefficients, invoking Equations 9 and 10 
to express the shear stresses in terms of friction velocities, and then integrating the velocity 
profile to derive an expression for αv/uf in terms of β. 
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The mean velocity correction factors adjust for the ratio between the mean velocities of each 
profile individually and the mean velocity over the entire water depth. These relationships are 
derived from Equations 3–6, Equations 9 and 10, as well as the ratio given in Equation 17. 
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Now that the classical theory has been developed, an approximate method can be derived from 
the classical theory to account for the energy transfer between profiles. The theoretical 
development given here is derived with the implicit assumption that no energy can be exchanged 
between velocity profiles. However, several researchers have noted that the eddy viscosity is 
generally nonzero at the profile interface (Krishnappan 1983). Figure 2 is a schematic of the 
difference between the theoretical and observed eddy viscosity profiles.  
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Figure 2.   Schematic Representation of the Eddy Viscosity Profile under Ice Cover. 

 
The nonzero eddy viscosity at the profile interface can cause some energy exchange across the 
interface. Further, the differences in the bulk momentum of each profile will cause some 
momentum transfer via the finite mixing length associated with the nonzero eddy viscosity at the 
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profile interface. This contribution is exactly zero when both profiles are identical, and increases 
as the difference in the profiles increases. If one makes the simplifying assumption that this bulk 
momentum transfer across profiles can be superimposed onto the existing theory (which was 
developed assuming no energy transference), the cross-profile energy exchange can be accounted 
for in an approximate sense with the following relations. 
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Note that this cross-profile exchange of momentum has no effect on the total combined bed and 
ice shear stress, since it only passes momentum from one profile to the other. Therefore, the total 
shear is fully-described by the classical development, and only the partitioning of the shear 
between the bed and the ice cover is affected.  
 
Comparison to Observed Data. Flume experiments for simulated ice cover were conducted 
by Parthasarathy and Muste (1994). Calculations using the proposed ERDC-Coastal and 
Hydraulics Laboratory (CHL) method were compared to these experimental results for several 
values of the ice-to-bed roughness ratio. The results are given in Figure 3. 
 
The comparisons show that the proposed method is in good agreement with the experimental 
values for the total shear. The comparison for the partition of the shear stress between the bed 
and ice shear is not as good, which may indicate that the approximation of the cross-profile 
exchange could be improved. However, the experimenters noted that, for the case with the 
highest ice-to-bed-roughness ratio, they observed significant secondary currents. They postulated 
that these currents may have arisen from sidewall effects in the flume experiments. Such currents 
would increase the cross-profile exchange of momentum. Hence, the difference between the 
predicted and observed values may be partially attributable to the additional mixing introduced 
by the secondary currents. Further experimentation and analyses are needed to quantify the 
accuracy of the cross-profile exchange approximation. 
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Figure 3.   Comparison of the Proposed ERDC-CHL Method to the Experimental Data of Parthasarathy 

and Muste (1994) 

 
Expression for Manning’s n. Traditionally, the shear stress has often been expressed in 
terms of Manning’s n. For example, the Sabaneev equation (Nezhikovskiy 1964) gives an 
expression for Manning’s n for the composite ice-bed roughness as a function of Manning’s n for 
the bed roughness alone. The equation is derived by invoking both velocity profile relationships 
and Manning’s equation. It is effectively a simplified form of the more robust development given 
by Larsen (1969). The Sabaneev equation is given as follows: 
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An analogous relationship for the method developed in this technical note is given as follows:  
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where: 
 
CD.BED.ONLY is CD.BED calculated for zmv = d/2.  
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IMPOSITION OF PRESSURE FIELD TO SIMULATE FLOATING ICE COVER:  The 
presence of ice cover imposes pressure in addition to the fluid hydrostatic pressure on the fluid 
underneath. This pressure is a function of the ice thickness, as well as the ice density 
(Equation 32).  
 
 iceiceice gtρP =  (32) 

 
IMPLEMENTATION INTO ADH:  Implementing stationary ice effects on fluid hydraulics in 
ADH was done by specifying a card in the ADH boundary conditions file (*.bc) using one of two 
approaches – by material type or by a radius.  
 
To specify the presence of ice by material type, one must use three cards, FR ICE, FR IRH, and 
FR BRH (Tables 1, 2, and 3, respectively).  
 

Table 1 
FR ICE Card Description 

Field Type Value Description 

1 Character FR Card type 

2 Character Ice Card type 

3 Integer > 0 Ice material string 

4 Real # Ice thickness 

5 Real #  Ice density 

6 Integer 0 Stationary ice 

 
 

Table 2 
FR IRH Card Description 

Field Type Value Description 

1 Character FR Card type 

2 Character IRH Card type 

3 Real # Ice roughness height 

 
 

Table 3 
FR BRH Card Description 

Field Type Value Description 

1 Character FR Card type 

2 Character BRH Card type 

3 Real # Bed roughness height 
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To specify the presence of ice by overlapping circular regions, the INS (ice node string) card 
must be included (Table 4), in addition to the three cards used when specifying ice by material 
type.  
 

Table 4 
INS Card Description 

Field Type Value Description 

1 Character INS Card type 

2 Real # X coordinate of circle center 

3 Real # Y coordinate of circle center 

4 Real # Radius of ice circle 

5 Integer 0 Stationary ice 

 
 
ADDITIONAL INFORMATION:  For additional information, contact Gary L. Brown, Coastal 
and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls 
Ferry Road, Vicksburg, MS 39180 at 601-634-3628, e-mail: Gary.L.Brown@usace.army.mil, or 
Dr. Gaurav Savant, P.E., Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and 
Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 at 601-634-3628, e-mail: 
Gaurav.Savant@usace.army.mil. This effort was funded through the System–Wide Water 
Resources Program (SWWRP). For information on SWWRP, please consult 
https://swwrp.usace.army.mil/ or contact the Program Manager, Dr. Steven L. Ashby: 
Steven.L.Ashby@usace.army.mil. This SWWRP technical note should be cited as follows:  
 

Brown, G. L., G. Savant, C.; Berger, and D. S. Smith. 2009. Considerations for 
stationary ice covered flows in ADaptive Hydraulics (ADH) ERDC TN-SWWRP-
09-4. Vicksburg, MS: U.S. Army Engineer Research and Development Center. 
https://swwrp.usace.army.mil/. 
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VARIABLES 
 
 CD.BED = the bed shear stress drag coefficient 
 CD.BED.ONLY = the bed shear stress drag coefficient, assuming zmv = d/2 
 CD.ICE = the ice shear stress drag coefficient 
 d  = the water depth 
 g = the gravitational acceleration 
 kBED  = the equivalent bed roughness height 
 kICE  = the equivalent ice roughness height 
 nBED  = the Manning’s n for the bed 
 nCOMPOSITE = the Manning’s n for the combined ice-bed roughness 
 nICE  = the Manning’s n for the ice 
 Pice = pressure induced by the ice cover 
 tice = ice thickness 
 v  = the depth-averaged velocity magnitude 
 vx  = the depth-averaged velocity in the x-direction 
 vy  = the depth-averaged velocity in the y-direction 
 vMAX.BED  = the maximum velocity for the bed profile 
 vMAX.ICE  = the maximum velocity for the ice profile 
 uf.BED  = the friction velocity for the bed profile 
 uf.ICE  = the friction velocity for the ice profile 
 zmv = the depth at which the maximum velocity is located (i.e. the location of the 

transition from the bed induced velocity profile to the ice induced velocity 
profile) 

 αBED = the mean velocity correction factor for the bed shear stress 
 αICE = the mean velocity correction factor for the ice shear stress 
 αIBR = the ratio of the mean velocity for the ice-induced velocity profile to the mean 

velocity for the bed-induced velocity profile 
 εMAX.BED  = the maximum eddy viscosity for the bed profile 
 εMAX.ICE  = the maximum eddy viscosity for the ice profile 
 δmv = the normalized fraction of the distance to the centroid of the velocity profile 
 κ  = the Von Kárman constant 
 ρ  = the density of water  
 ρice  = the density of ice 
 SEGL = the slope of the energy grade line 
 τBED  = the boundary shear at the flow-bed interface 
 τICE  = the boundary shear at the flow-ice interface 
 τCPE  = the approximate cross-profile exchange of shear stress 
 τ  = the total shear stress 

NOTE: The contents of this technical note are not to be used for advertising, publication, or 
promotional purposes. Citation of trade names does not constitute an official endorsement or 

approval of the use of such products. 
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