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Abstract 
 

We discuss how a Reaction-Based, Differential-
Algebraic Equation (RB-DAE) approach can provide 
robust numerical solutions for biogeochemical systems 
that are composed of fast, slow, reversible, and irrever-
sible reactions.  We also discuss several numerical strat-
egies for solving reactive transport equations using high 
performance computing (HPC). 
 
1 Problem Specification  
 

Computer simulation of flow and transport is an essen-
tial component in the rigorous analysis of water supply, 
contamination, environmental cleanup, and ecosystem 
restoration.  Simulation of coupled equations for trans-
port and biogeochemical reactions based on the principle 
of conservation is the only quantitative approach to date 
for integrating multiple, complex, environmental pro-
cesses into an internally consistent conceptual model 
with which to assess water quality and to design engi-
neered solutions for remedial alternatives.  A reactive 
transport (RT) model in a more general sense treats a 
multi-component, multi-species system in which a num-
ber of equilibrium-controlled (fast reversible) and per-
haps kinetic (slow) and instantaneous (fast irreversible) 
reactions occur simultaneously.  In a typical hydrologic 
cycle, water moves on, above, or below the surface of 
the earth, and its speed can vary over many orders of 
magnitude.  Similarly, the rate of a biogeochemical reac-
tion, whether natural or man-induced, can change dras-
tically over time and space. The combination of these 
two facts makes RT modeling in hydrologic systems an 
extremely difficult task. 
 
1.1 RT Equations in Primitive Form.  A typical set of 
RT equations include transport processes (e.g., advection, 
diffusion, dispersion), biogeochemical reactions, and 
sources/sinks.  They can be written in the so-called pri-
mitive form as 
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++=

∂
∂ L

t
  

 
* Supported by the System-Wide Water Resources Program 
(SWWRP) of U.S. Army Corps of Engineers; Allowed to 
present by the chief of US Army Corps of Engineers.  
†Coastal and Hydraulics Laboratory, US Army Engineer 
Research and Development Center, Vicksburg, MS. 
 

where C is the species concentration vector; L() denotes 
the linear transport operator that accounts for advection, 
diffusion, and dispersion; SSR represents nonlinear 
sources/sinks due to biogeochemical reactions; and SSC 
represents linear sources/sinks due to other activities, 
such as injection or extraction.  For immobile species, 
the transport and source/sink terms in Eq. (1.1) may be 
neglected. 
 As previously mentioned, L(C), SSR, and SSC in Eq. 
(1.1) may vary over wide ranges.  While L(C) and SSC 
fall in specific ranges as defined by the associated hydro-
logic system, the range of SSR depends on the charac-
teristics of the reactions taken into account.  The relative 
importance of reaction and transport at a specific dis-
tance scale L can be described by the non-dimensional 
DamKöhler number [1], Da, which is defined as    
   

(1.2) , 
rxn

transDa
τ
τ

=  

 

where τtrans is the transport characteristic time required 
for water to traverse the specific distance L and τrxn is the 
reaction characteristic time required for a reaction to 
reach equilibrium [2].  Each reaction, if reversible, has 
its own τrxn.  The values of Da can change drastically 
over space and time in an RT system, which implies both 
transport processes and biogeochemical reactions must 
be resolved adequately in space and time so that Eq. (1.1) 
can be solved accurately.   
 
1.2 Reaction Model.  A biogeochemical reaction model 
can be represented in the primitive form as 
 

(1.3) . RSSC
=

dt
d  

 

 No matter which solution technique is used in 
solving RT equations, it is vital to model biogeochemical 
reactions and solve for concentration distributions 
among species accurately and efficiently.  Bethke [2] 
discussed the conceptual model, mathematical formu-
lations, and numerical solutions for reaction processes 
and systems of various kinds.  His discussion demon-
strates the capabilities of a reaction model and deter-
mines the model’s effect on the performance of reactive 
transport modeling, which includes solute transport.  For 
this reason, a powerful biogeochemical reaction model 
should be general enough to account for a wide spectrum 
of reactions.  Some reactions are slow and others are fast 
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relative to the temporal components of the model [3], 
(e.g., modeling time step and the residence time within a 
model element or cell).  Therefore, the reaction model 
must approximate systems that are combinations of 
equilibrium-controlled, instantaneous, and kinetic reac-
tions.   
 
1.3 Challenges in Solving RT Equations.  The RT 
equations must be approximated in a way that maintains 
non-negative concentrations, preserves mass conserva-
tion, maintains steep gradients, and provides answers in 
a reasonable simulation time.  Non-negativity of concen-
tration is essential in RT computation [2].  Negative con-
centrations caused by inadequate numerical solutions 
will migrate through transport computation and may 
cause convergence issues or nonrealistic results in the 
reaction computation.  Mass conservation is another re-
quirement in RT computation.  Mass must be conserved 
both in the solute transport and reaction computations at 
all times.  Treatment limits for many contaminants are 
very small. For example, the maximum contamination 
level set by the US Environmental Protection Agency for 
both tetrachloroethylene (PCE) and trichloroethylene 
(TCE) is 5.0 ppb, while their solubility limits are 1.5x105 
and 1.28x106 ppb, respectively.  Compared with initial 
plume concentrations, even small errors in mass conser-
vation may lead to invalid conclusions about the success 
of remedial measures.  Sharp fronts are common in RT 
due to reactions [4], boundaries, and sources or sinks.  
Excessive numerical spreading when approximating 
these fronts [4] may produce misleading simulation re-
sults.  Fang et al. explained seven drawbacks associated 
with solving the primitive form of reaction equations [5].  
One drawback concerning computational efficiency is 
that time step size must be sufficiently small to resolve 
the fastest reaction when solving the primitive-form re-
action model.  Otherwise, incorrect solutions or 
convergence issues will appear.  As a consequence, the 
primitive RT equations can require tremendous com-
putational resources when using small time steps to 
resolve fast reactions.  In hydrogeological systems, 
where most reactions are equilibrium-controlled, or 
when instantaneous reactions are introduced for cleanup 
purposes, it may be impractical, even with high perfor-
mance computing, to solve the primitive RT equations 
for multi-year simulations because extremely small time 
steps would be needed to resolve very fast reactions.      
 To summarize, negative concentrations, mass con-
servation errors, and non-physical spreading must be 
avoided for robust and accurate RT computation; effi-
cient RT computation cannot be achieved in solving the 
primitive RT equations when equilibrium-controlled 
and/or instantaneous reactions exist.  In the following 
sections, we first discuss how a reaction-based differ-

ential-algebraic equation (RB-DAE) approach can over-
come the afore-mentioned time-step drawback associ-
ated with the pri-mitive RT equations.  Then we discuss 
the pros and cons of some solution techniques related to 
solving the RT equations in HPC when the RB-DAE 
approach is employed.  Although it is beyond the scope 
of this paper, solving advection-diffusion-dispersion 
transport equations is a prerequisite to RT computation.  
There are many research papers discussing the pros and 
cons of various solution techniques for solving transport 
equations.  Yeh provided a comprehensive discussion on 
several main-stream numerical methods to solve advec-
tion-dominant transport equations [4]. 
   
2 Primitive Approach vs. RB-DAE Approach 
 

2.1 Reaction Equations.  The DAE approach [5, 6] 
models equilibrium-controlled reactions with mass ac-
tion equations to overcome the time step drawback 
associated with the primitive approach.  Fang et al. [7, 8] 
proposed a general paradigm to generate and solve 
reaction equations automatically and systematically, 
where an RB-DAE approach was presented.  In their 
RB-DAE approach, the governing equations consist of 
reaction-based rate equations and mass conservation 
equations, which are mathematically equivalent to the 
species-based rate equations used in the primitive ap-
proach.  We extended their RB-DAE approach to con-
struct the governing equations for multi-species, multi-
reaction biogeochemical modeling systems [9], which 
include  
• one equilibrium equation for each independent 

equilibrium-controlled reaction, 
• one constraint equation for each independent 

instantaneous reaction,  
• one rate equation for each independent kinetic 

reaction,  
• one total mass conservation equation for each 

basis (component) species, 
where equilibrium and constraint equations are alge-
braic equations, the rate and mass conservation equa-
tions are ordinary differential equations, and the number 
of basis species is equal to the total number of species 
minus the number of independent reactions. 
 To demonstrate this extended RB-DAE approach, 
we consider a hypothetical reaction system that contains 
12 species and five independent reactions.  The 12 spe-
cies are labeled A, B, C, D, E, F, G, H, M, N, P, and Q.  
Among the five reactions, (R3) and (R4) are 
equilibrium-controlled reactions, (R5) is an instanta-
neous reaction, and (R1) and (R2) are kinetic reactions. 
 

(R1) C2BA →+  (kinetic) 
 

(R2) F2ED ↔+  (kinetic) 
 

(R3) H2G2FC +↔+  (equilibrium-controlled) 
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(R4)  (equilibrium-controlled) N2MH ↔+
 

(R5)  (instantaneous) Q2PN →+
 

 The species-based rate equations for the governing 
equation using the primitive approach are 
 

(2.1) [ ] ,1R
dt
Ad

−=  
 

(2.2) [ ] ,2 1R
dt
Bd

−=  
 

(2.3) [ ] ,31 RR
dt
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−=  
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dt
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(2.5) [ ] ,2 2R
dt
Ed

−=  
 

(2.6) [ ] ,2 32 RR
dt
Fd
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(2.7) [ ] ,2 3R
dt
Gd

=  
 

(2.8) [ ] ,43 RR
dt
Hd

−=  
 

(2.9) [ ] ,2 4R
dt
Md

−=  
 

(2.10) [ ] ,54 RR
dt
Nd

−=  
 

(2.11) [ ] ,2 5R
dt
Pd

−=  
 

and 
 
 

(2.12) [ ] ,5R
dt
Qd

=  
 

where [ ] denotes concentration and R1 through R5 are 
reaction rates of (R1) through (R5), respectively.  In gen-
eral, R1 through R5 are functions of the concentrations of 
species which are associated with the corresponding 
reactions.  Eqs. (2.1) through (2.12) pose a set of non-
linear ordinary differential equations. 
 The reaction equations constructed with the RB-
DAE approach can be obtained by preprocessing with 
matrix decomposition.  We briefly describe this prepro-
cessing here, while the details of the preprocessing can 
be found elsewhere [9]. 
 Eqs. (2.1) through (2.12) can be written in matrix 
form as 
 

(2.13) ,νRGI =
dt
d  

 

where I is the identity matrix of size 12; G is the con-
centration vector representing the 12 species; R is the 
vector representing the 5 reaction rates, i.e., {R1, R2, R3, 
R4, R5}T; and ν is the reaction stoichiometry matrix, 
which can be written as 
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In the preprocessing, we decompose Eq. (2.13) to 
generate reaction-based rate equations corresponding to 
the five independent reactions and mass conservation 
equations associated with seven (= 12 - 5) basis species.  
To achieve this, we first pick basis species, followed by 
implementing Gauss-Jordan elimination with full pi-
voting to decompose the reaction network.  The selection 
of basis species can be arbitrary [7].  Different selections 
will produce different decomposition results, but all the 
decomposition results are mathematically equivalent.  
Such decomposition will generate the following matrix 
equation.   
 

(2.14) , I
2

1 R
0
DG

A
A

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
dt
d  

 

where A1 is a 5x12 coefficient matrix; A2 is a 7x12 
coefficient matrix, D is a 5x5 coefficient matrix; and 0 is 
a 7x5 zero-coefficient matrix. 

Fang et al. [7] have described detailed step-by-step 
decomposition procedures, and we do not repeat the 
lengthy description here.  Although they did not include 
instantaneous reactions, the essential details concerning 
decomposition were clearly explained in their paper. 

When we pick species A, B, D, E, H, N, and P as 
basis species, the coefficient matrices in Eq. (2.15) are  
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where Eqs. (2.15) through (2.19) are the reaction-based 
rate equations corresponding to (R3), (R4), (R5), (R1), 
and (R2), respectively, and Eqs. (2.20) through (2.26) 
are the total mass conservation equations of basis species 
A, B, D, E, H, N, and Q, respectively.  To avoid using 
extremely small time steps in biogeochemistry compu-
tation, equilibrium-controlled and instantaneous reac-
tions are represented by equilibrium and constraint equa-
tions, respectively, rather than by rate equations.  Eqs. 
(2.15) through (2.17) are thus replaced by 

 

and 
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(2.27) [ ] [ ] [ ] [ ]( ),,,,3 FCHGfK eq =  
 

(2.28) [ ] [ ] [ ]( ),,,4 MHNgK eq =  
 

and 
 

(2.29) [ ] [ ] ,0or          0 == PN  
   

 Eq. (2.14) represents a set of ordinary differential 
equations comprising five reaction-based rate equations 
and seven mass conservation equations, as given below. 

where f and g are functions used to describe equilibrium 
for (R3) and (R4), respectively; K3

eq
 and K4

eq are the cor-
responding equilibrium constants; and Eq. (2.29) is the 
constraint equation for (R5).  In this case, nonlinearity 
appears in only four equations: (2.18), (2.19), (2.27), and 
(2.28), rather than all the 12 reaction equations.  This 
suggests the RB-DAE equations may produce faster con-
vergence than the primitive equations, even though they 
are mathematically equivalent. 

 

(2.15) [ ] ,3R
dt
Gd

−=  
 

(2.16) [ ] ,2 4R
dt
Md

−=  
 

(2.17) [ ] ,5R
dt
Qd

=   Algebraic equations (2.27) through (2.29) are em-
ployed to represent fast (reversible and irreversible) re-
actions, and R3 through R5 do not appear in the reaction 
equations when the RB-DAE approach is employed.  As 
a result, time steps need to be small enough only to 
resolve slow reactions (R1) and (R2), rather than all fast 
and slow reactions.   

 

(2.18) [ ] [ ] ,22 1R
dt
Gd

dt
Cd

−=−−  
 

(2.19) [ ] [ ] ,2R
dt
Gd

dt
Fd

=+  
 Figure 1 compares the computed concentration 
profiles of species N, P, and Q when four different time 
steps (i.e., dt = 10, 1, 0.1, and 0.01) were used in the 
primitive approach (top) and in the RB-DAE approach 
(bottom), where the Newton-Raphson method was used 
to solve the reaction equations.  It shows that when the 
intuitive scheme [10] was used to deal with instan-
taneous reaction in the primitive approach, the numerical 
solutions were reasonable when very small time steps 
(i.e., dt = 0.1 and 0.01) were used but were erroneous 
when larger time steps were used (i.e., dt = 10 and 1).  
On the other hand, the RB-DAE approach provides
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dt
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dt
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Figure 1: Comparison of the computed concentrations from the primitive and the RB-DAE approaches. 
 
 

 
 

Figure 2:  Comparison of the computed concentrations when different rate constants are used to represent  
fast reactions. 

 
 

accurate solutions even a large time step (i.e., dt = 10) 
was used. 

 The forward and backward rate constants were set to 
1010 and 109, respectively, to mimic fast reactions in the 
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primitive approach to obtain numerical results in Figure 
1.  When the rate constants were set to 106 and 105 (i.e., 
smaller values) to mimic fast reactions, however, signi-
ficant differences on the concentration profiles of species 
P and Q exist (Figure 2), indicated that the simulation 
result was inaccurate if reaction rate constants were not 
large enough to represent fast reactions using the primi-
tive approach. 
 Through this example, we demonstrate (1) reaction 
rate constants need to be set large enough to adequately 
mimic fast reactions in the primitive approach, and (2) 
the RB-DAE approach provides accurate solutions even 
when using large time steps for fast reactions. 
 
2.2 RT Equations.  If there are n mobile species in the 
aforementioned hypothetical reaction system, there are n 
transport-reaction equations and (12-n) rate equations to 
solve simultaneously when the primitive approach is 
used.  They can be written as given in Eq. (1.1) where 
SSR = (-R1, -2R1, R1-R3, -R2, -2R2, R2-2R3, R3, R3-R4, -R4, 
R4-R5, -2R5, R5).    
 Suppose species M, N, and Q are immobile species 
(i.e., not subject to transport), the RT equations associ-
ated with the RB-DAE approach are  
 

(2.30)  [ ] [ ] [ ] [ ]( ),,,,3 FCHGfK eq =
 

(2.31)  [ ] [ ] [ ]( ),,,4 MHNgK eq =
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(2.40) [ ] [ ] [ ] ,022 =++
dt
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dt
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dt
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and 
 

(2.41) [ ] [ ] [ ]( ) [ ],2 PSSPL
dt
Qd

dt
Pd

=++   
 

where L() is the transport operator; SS is the prescribed 
source/sink term; the subscript SS defines the compo-
sition of the source/sink term in each of Eqs. (2.33) 
through (2.41).   
 Among these 12 RT equations associated with the 
RB-DAE approach, Eqs. (2.30) through (2.32) charac-
terize the three fast reactions: (R3), (R4), and (R5); Eqs. 
(2.33) and (2.34) describe the transport of kinetic var-
iables [11] associated with the two slow reactions: (R1) 
and (R2), where the kinetic variable is (-2[C]-[G]) in Eq. 
(2.33) and ([F]+[G]) in Eq. (2.34); Eqs. (2.35) through 
(2.38) are transport equations for the total mass of basis 
species A, B, D, and E, respectively, where the total 
mass remains in the mobile phase; Eqs. (2.39) and (2.41) 
account for the conservation of the total mass of basis 
species H and P, respectively, where only the dissolved 
mass is transportable (i.e., retardation exists); and Eq. 
(2.40) is the conservation of the total mass of basis 
species N, where all the associated species (i.e., M, N, 
and Q) are immobile.  As a result, the 12 RT equations 
include two nonlinear equilibrium equations: Eqs. (2.30) 
and (2.31), one linear constraint equation: Eq. (2.32), 
four nonlinear transport equations: Eqs. (2.33), (2.34), 
(2.39), and (2.41), four linear transport equations: Eqs. 
(2.35) through (2.38), and one conservation equation: Eq. 
(2.40).  It is noted that the number of nonlinear transport 
equations with the RB-DAE approach is four, which is 
fewer than nine with the primitive approach (the three 
immobile species are not subject to transport). 
 Our discussion in this section indicates that the RB-
DAE approach is superior to the primitive approach in 
RT computation because (1) the RB-DAE approach does 
not need extremely small time steps to resolve fast re-
actions but the primitive approach does, and (2) the RB-
DAE approach contains fewer nonlinear reaction equa-
tions as well as fewer nonlinear transport equations.  
 
3 RT Solution Techniques.   
 

The RT equations in the RB-DAE approach can be writ-
ten as the combination of   
 

(3.1) ( )  ,0 =Φ C  
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(3.2) ( )  , , mKC,KRm SSSSKK
++=

∂
∂ L

t
 

 

and 
 

(3.3) ( )  , , mTCm SSTT
+=

∂
∂ L

t
 

 

where Eq. (3.1) represents algebraic equations used to 
describe equilibrium-controlled and instantaneous reac-
tions; Eq. (3.2) states the reactive transport of kinetic 
variables (K) where only the mobile part (Km) is trans-
portable; and Eq. (3.3) describes the transport of the total 
mass of basis species (T) where the mobile portion (Tm) 
is subject to transport.   
 When a kinetic variable contains only mobile spe-
cies, we have Km = K for that variable.  When the total 
mass of a basis stays in the mobile phase, we have Tm = 
T for that total mass.  When a total mass involves only 
the immobile species, we have L(Tm) = 0 and SSR,Tm = 0.  
Based on this, Eq. (3.2) can be further written as the 
combination of   
 

(3.4) ( ) ( )  , , K1C,K1R SSSSK1K1
++=

∂
∂ L

t
 

 

and 
 

(3.5) ( ) ( )  , , mK2C,K2Rm SSSSK2K2
++=

∂
∂ L

t
 

 

where K1 denotes all kinetic variables that contain mo-
bile species only; K2 denotes all kinetic variables that 
contains both mobile and immobile species.  Likewise, 
Eq. (3.3) can be written as the combination of 
 

(3.6) ( ) ( )  , ,T1CSST1T1
+=

∂
∂ L

t
 

 

(3.7) ( ) ( )  , , mT2Cm SST2T2
+=

∂
∂ L

t
 

 

and 
 

(3.8) ( )  ,0 =
∂

∂
t

T3  
 

where T1 denotes all total masses that stay in the mobile 
phase; T2 denotes all total masses that involves both 
mobile and immobile species; T3 denotes all total 
masses that are associated with immobile species only.   
 For research applications, accuracy is essential for 
helping to study processes and design reaction systems.  
For large field-scale problems, on the other hand, effici-
ency and robustness are needed to maintain accuracy 
within the bounds of uncertainty associated with model 
parameters.  Although high performance computing can 
reduce run time considerably, it is still essential to use 
adequate numerical strategies to achieve modeling pur-
poses. 

3.1 SNIA, SIA, and DSA.  The sequential non-iterative 
approach (SNIA), the sequential iterative approach (SIA), 
and direct substituting approach (DSA) are three ap-
proaches commonly used for solving RT equations [4].  
The SNIA solves first for transport for each mobile spe-
cies then for biogeochemistry independently at each 
node or cell at each time step [12].  Explicit SNIA is 
easy to implement for high performance computing but 
requires small time steps to avoid stability problems.  
SIA executes nonlinear iterations between transport and 
biogeochemistry computation until convergence at each 
time step to obtain accurate results [4, 12].  In the DSA, 
the equilibrium equations are substituted into the reac-
tive transport equations to solve Np nonlinear partial 
differential equations simultaneously. Np is the number 
of primary dependent variables (PDV) that is equal to 
the total number of species minus the number of 
secondary species that can be represented by basis 
species through the equilibrium equations [4].  In serial 
computation, DSA is not practical for multi-dimensional 
simulation because it requires a simultaneous solution of 
a significant number of field equations, which demands 
excessive CPU memory and time.  DSA may be 
affordable in high performance computing if the number 
of PDV is small.  In this regard, iterative approaches are 
still more practical than the DSA in high performance 
RT computing. 
 In the following, we focus on three sequential ap-
proaches for the RT system composed of Eqs. (3.4) 
through (3.8).  These three approaches are operator split-
ting (OS), predictor-corrector (PC), and complete itera-
tion (CI), where OS and PC are SNIA schemes, and CI is 
an SIA approach. 
 
3.2 Operator Splitting.  With OS, the discretized equa-
tions solved in the transport step include  
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where ∆t is time interval; and  are the im-
mobile part of K2 and T2, respectively, at the old time 
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step; superscript OS is used to represent the inter-
mediate concentration; and superscripts (n) and (n+1) 
are used to represent the old and the new time steps, res-
pectively.  The solutions of Eqs. (3.9) through (3.12) are 
then taken to solve the following three equations plus the 
conservation equations of the total mass of basis species 
in the reaction step.   
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 The equations included in the reaction step are 
solved simultaneously on a node-by-node or cell-by-cell 
basis, which is easily parallelized for high performance 
computing.  The full-pivoting direct solver is probably 
the best way to ensure numerical stability in solving bio-
geochemistry, where species concentration can range 
over many orders of magnitude.  The computed species 
concentrations at the current time step are used to up-
date and , which will be used in the trans-
port step of the next time interval. 
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3.3 Predictor-Corrector.  The PC technique differs 
from the OS technique in that the source/sink terms due 
to reactions from the old time step (i.e., and 

) are used as the predicted reaction contribution 
in solving for K1 and K2.  Therefore, the equations in-
cluded in the transport step are Eqs. (3.11), (3.12) and 
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where superscript PC is used to represent the inter-
mediate concentration.  The equations solved in the reac-
tion step are Eq. (3.13), the conservation equations of the 
total mass of basis species, and  
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Cheng et al. [13] suggested PC is almost as efficient as 
OS and can provide much more accurate solutions than 
OS.   
 
3.4 Complete Iteration.  The CI technique can produce 
very accurate approximations.  With CI, Eqs. (3.6) and 
(3.8), both linear, are solved first to get T1(n+1) and 
T3(n+1), respectively.  Then Eqs. (3.1), (3.4), (3.5), and 
(3.7) are solved in a nonlinear iteration loop until a 
convergent solution is reached, where the Picard method 
[14] is usually employed.  At each nonlinear iteration, 
the transport part of Eqs. (3.4), (3.5), and (3.7) is solved 
first to get K1trans, K2trans, and T2trans.  These, along with 
T1(n+1) and T3(n+1) are then used to solve the three 
equations below plus the conservation equations of the 
total mass of basis species to yield the concentration of 
all species at the current iteration. 
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 All of the computed species concentrations, i.e., C, 
are then used to update K2m, T2m, , and  
for use in the successive nonlinear iteration.  The foot-
note indexing `m' is to represent the mobile part of K2 
and T2, which appear in Eqs. (3.5) and (3.7), respect-
tively.  
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 Zhang et al. [11] suggested that OS, PC, and CI be 
provided as options for various purposes of RT modeling.  
One unified way to achieve this is using PC as the 
backbone.  By setting both  and  to zero, 
the method becomes OS.  The method becomes CI by 
turning on nonlinear iteration that includes the transport 
and reaction steps, but keeps all linear equations outside 
the nonlinear iteration loop. 
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4 Summary 
 

We compared reaction-based differential algebraic equa-
tion and primitive approaches for reactive transport 
computation using a hypothetical, 12-species reaction 
system containing equilibrium-controlled, instantaneous, 
and kinetic reactions.  We explained why the RB-DAE 
approach can handle fast reactions and provide accurate 
solutions without the need for very small time steps.  We 
also discussed three RT solution approaches: SNIA, SIA, 
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and DSA.  We then proposed using the predictor-correc-
tor technique as the backbone scheme which allows for 
easy switching to the operator splitting or the complete 
iteration techniques, ensuring that the best strategy is 
used to meet modeling goals within constraints on com-
putational resources, funding, and time.    

The US Army Engineer Research and Development 
Center has used the RB-DAE approach successfully to 
construct a numerical simulator for biogeochemistry mo-
deling [9], and is incorporating it into ERDC’s ADaptive 
Hydrology/Hydraulics (ADH) Model System [15] for 
large-scale RT simulation using high performance com-
puting.  Both the biogeochemistry and RT simulations 
are used to help identify effective remediation strategies 
for solvent, explosive, and heavy metal contamination at 
current and formerly-used military sites.  Typically, si-
mulations to design remediation schemes involve 
meshes of more than 100,000 elements and simulation 
times of one to several years.  Concentrations must be 
accurate to about one microgram per liter (part per 
billion) while initial concentrations may be near one 
gram per liter.  Fast and accurate simulators are required. 
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