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Focus of talk:
1. Pattern of nitrate loss from sediments as a 

result of water level management.   
(drawdown of Pool 8)

2. Patterns of nitrate removal in a flow-
controlled backwater lake – with implications 
for management of nitrate.                      
(Finger Lakes example)

3. Ongoing and future planned research:     

Pool 5 drawdown (role of macrophytes on 
N flux;                                  

Periphyton assimilation of NO3 in Finger 
Lakes;              



Management Issues:  What can be done on the flood 
plain to reduce local effects of nitrogen enrichment 
and reduce downstream loss of N?

1.  Water level management

2.  Alternate flow management



Water level management:
1. Attempt to simulate a more natural hydrograph; 

- by reducing summer water depth in a given 
navigation pool;

- facilitated by operation of the lock and dam system.

2. Expected outcomes:

- sediment drying: compaction, aeration, seed germination.

- increase depth of photic zone to promote plant growth.

- increase upper trophic production (e.g., fish & ducks) by 
increasing plant production and diversity.

- decrease sediment organic carbon and nitrogen through 
alternating oxic (drying) and anoxic (hydrating) conditions.

3.  Sites:  Pool 8; summer 2001 (40 days, variable depth, mixed 
duration) and 2002 (90 days, 0.5 m);  Pool 5: summer 
2005 (50+ d, ~0.5 m)
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Effect of water management for navigation:    

Water elevation at Winona, Minnesota
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Daily River Stage: 1890-1900

Daily River Stage: 1983-1993

Mean stage: 645, but variation 
extreme.

Resulted in more dynamic channel 
form, more variable light 
penetration, variable sediment 
wetting and drying.

Mean stage: 648, but low end of 
hydrograph truncated

“Water level management”
Designed to simulate historical 
low summer river stage.

1890-1900

1983-1993
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Preliminary results (low sample size):   Total 
sediment nitrogen during 2001 drawdown of Pool 8



= Sed. remained wet

= Dried and  re-wet
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Effect of drawdown on sediment nitrogen in 2002         
(more extensive study)

Plant growth during 
study:

Start of study: 0  g/m2

End of study  500 g/m2

Total N contained in plant       
biomass:     19 g/m2
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(a) Pre-drawdown: Coupled Den-
Nitr important in organic sed. of 
backwaters and impoundments; 
mineralization of ON drives NH4-
nitrification dynamics.

(b) Drawdown:  Den. Minimal; 
nitrification slowed; macrophyte-N 
dynamics increased – temporarily 
resulting in NHx decrease in sediment; 
senescence and mineralization likely 
release N for downstream flux in fall and 
spring floods.

(c )  Re-wetting: recovery of 
microbial processes is slow; role of 
mineralization, plant senescence, 
organic N loss is unknown.

Summary of drawdown effect on N loss.



Water Level Manipulations:  conclusions

2. Effect on nitrogen dynamics:  

Significant reduction of sediment porewater ammonium (UMR); 

Some reduction in total sediment N (UMR).  

Emergent macrophytes likely key to understanding N 
dynamics.

1. Positive response from emergent macrophytes (biomass, seed bank).

4.   Effective N management tool?  If combined with macrophyte
harvest might see significant effect. 

3.  Lack of water delivery to bioreactive sediments prohibits 
denitrification except that coupled with nitrification.



Nitrate in flow-through backwater lake:   
The Finger Lake system, Navigation Pool 5



POOL 4

Direction 
of flow

Flow regulation via valved
culverts at upper end of each 
lake; inflow ~1.0 m3s-1, max = 1.6 
m3s-1).

Upstream 
culvert

Upstream 
dike

Upper 
Third Lake



Biweekly sampling

Inflow/outflow,    
longitudinal
TN, NO3, NH4, POC

Denitrification (acetylene block),        
N+C limitation assays,             
nitrification (nitrapyrin method), water 
column NO3-, NH4+, 

Sampled 18 locations, low 
NO3 load (spring), high 
NO3 load (summer)

Sediment process sampling

Third Lake (2004)

Area = 15 ha,           
max depth = 2m, 
mean = 0.6m, 
volume=93,000m3
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Flow
Water residence time

River source 
water [NO3] low 
until June flood, 
increasing from 
<0.5 mg/l to 6 
mg/l.

Water residence 
time ranged 
from 1 to 5 d

Source water nitrate, inflow rates, and resident times
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Spatial variation of nitrate concentration in          
Third Lake through time
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a ) Nitrate retention on a mass 
basis (kg/d) increased linearly 
with load.

Average retention:   ~ 3.5 
kg/ha/d.

Nitrate retention, as a 
percent of load, declined at 
loads > ~75 kg/d to 40 %.

Loss of retention capacity 
likely a result of 
overshooting uptake length 
(>1500 m, with load > 200 
kg/d).

Nitrate retention capacity of Third Lake
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Nitrification: higher in spring, little 
spatial variation;  Denifiication: higher in 
summer, higher in upper part of lake.

Water column nitrate significantly higher in 
summer, higher in upper end of lake in 
summer; Porewaer nitrate higher in spring, 
no spatial variation.



Conclusions
• Nitrate losses in two floodplain lakes loaded by 

flooding or controlled inflow during summer was ~ 3 
to 5 kg/ha/d.

• Denitrification accounted for roughly 10 - 30% the 
nitrate retention in Third Lake.

• Assume assimilation accounts for  ~70 - 90% of 
nitrate retention. Long term fate of assimilated N 
currently unknown.

• Controlled inflows to backwater lakes could function 
to reduce nitrate movement downstream while also 
improving fisheries and wildlife habitat.



Current work in Finger Lakes:

1. Determine assimilation of NO3-N by periphyton using in-situ
15N tracer + NO3 uptake experiments in Finger Lakes.

2. Will relate assimilation estimates to loss via denitrification 
and mass flux of total N through backwater lakes.

3. Build simple models linking hydraulic function (N loading 
and flow paths) and biogeochemical processes.



Finger Lakes 15N chambers 7/18/05
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Preliminary results: NO3 uptake in plant beds of Third Lake





Current work on Pool 5 drawdown:
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Outflow

Inflow
Nitrate concentrations in 
Third Lake are dependent on 
inflow concentrations.

Elevated outflow 
concentrations due to 
backflooding from 
downstream.

Nitrate load dramatically 
increase with early 
summer flood; load 
elevated until August 
when River 
concentrations drop.

Nitrate inflow-outflow, loading, and retention in 
Third Lake



Overbank
flooding flows 
into Lawrence 
Lake

Root 
River

Pool 8: Lawrence Lake

Natural flooding of a flood plain 
lake:  Root River and Mississippi 
River flooding into Lawrence Lake 

Aerial of Lawrence Lake here



Main ChannelBackwaters

High Flow
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-
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and NO3
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-

Normal & Low Flow

very low NO3
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Current working model for hydrologic control of nitrate cycling in the UMR



Surface 
water nitrate 
(mg/L)

0 - 0.75
0.75-1.5

Spatial Distribution of 
Nitrate at Base Flow

Navigation Pool 8, 
Fall 1999

Nitrate concentrations are 
high in the main channel 
or side channel areas

Nitrate concentrations are 
lower in backwaters with 
aquatic macrophytes



Upper Mississippi River:  Flood plain river ecosystem with much 
connection remaining between main channels and floodplain 
lakes and wetlands.

Backwater lakes typically contain low concentrations of water 
column nitrate, with high potential for denitrification and 
assimilation, and high sediment ammonium. 

Backwater nitrate concentrations increase with flooding, 
concentrations tend to decline rapidly with falling hydrograph.



Nitrate removal Nitrate removal 
(denitrification) is linked to (denitrification) is linked to 
the spatial distribution of the spatial distribution of 
nitrate.nitrate.

Navigation Pool 8, Fall 1999

µg N/cm2/h
> 2.0
< 0.2

Denitrification

High rates near main channel

High rates in zebra mussel beds

Low rates in backwaters
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Variation in Mississippi River discharge at 
La Crosse, WI
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