Overview of Nitrogen Cycling Rates and
Controls in the Upper Mississippi River
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The Nitrogen Cycle

nitrification
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Take Home

= Floodplain rivers have
huge potential to
process and remove
nitrogen, but capacity Is
overwhelmed by N load.
N-cycling is tightly
linked to river hydrology
and geomorphology.

Management options to
control N are limited, but
possible, on the
floodplain.
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Spatial Heterogeneity — UMR Pools

Upper Mississippi River
Navigation Pool 8
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River floodplains are ideal sites for
bacterially mediated nitrogen removal:

Sediments tend to be —

highly organic, moist,
and combination of
aerobic and anaerobic
conditions.

Connections with main
channel water can
replenish nitrate in
backwater wetlands.
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Variation in river discharge

1. Redistribution of -
nltr(_)gen’ Oxygen and —— 32-year median discharge (1970-2001)
sediment throughout __ggp | — actud discharge

) = e sampling events
the flood plain.

2. Sediment
moisture, oxygen,
and redox
dynamics.
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3. Plays arolein
temperature
dynamics.
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Nitrate and total N loading to Pool 8
(1993 — 1997; LTRMP data)

Pool 8 inputs
Pool 8 outputs

Variation in discharge
determines loading patterns.

Some nitrate is retained in Pool
8 during floods.
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Pattern suggests either nitrate
uptake or deposition increases
during floods.
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Pattern also suggests some

nitrate management potential on
the floodplain.
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Nitrate concentrations have a
distinct spatial distribution

during base flow

Nitrate concentrations
extremely low In
backwaters

Navigation Pool 8, Fall 1999
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Linking discharge and spatial variability of
nitrate concentrations

Low Flow High Flow
Fall 2001 ,Spring 2001
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Nitrate removal
(denitrification) iIs linked to
the spatial distribution of
nitrate.

Low rates in backwaters

High rates near main channel

High rates in zebra mussel beds

Navigation Pool 8, Fall 1999




Denitrification Enzyme Activity
(DEA)

Estimate of potential denitrification
under optimal conditions (excess NOg,
C, anaerobic water saturated sediments).

Backwaters and impounded areas with
high DEA (longer retention times, high
sediment C, relatively low nitrate).

0-1

1-2
2.3 Channels with generally low DEA (short

® >3 retention times, low C sediments, but
May and August 2000 [RAICLANATI{g=T{)




What [imits denitrification in the UMR?

Experimental evaluation of Low carbon sediment

carbon and nitrate
limitation:

day-)

Carbon addition (10 mg/l —
glucose) had little effect on
denitrification rates except in
low carbon sediments.

Nitrate additions (2 mg/l)
resulted in dramatic
iIncreases in denitrification in
all sediments.

High carbon sediment

C

Supports “nitrate delivery”
hypothesis.
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Coupled nitrification-denitrification: Nitrification
as a source of nitrate for denitrification during low
flows In backwaters and impounded areas
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Major points: Annual nitrate budget

UMR inflow
Pool-wide: 20 % gross

removal of nitrate.

Nitrate generation via
nitrification nearly
balanced losses via >
denitrification N Denitrification
- 6,939 (= 341) mt
' 7% of inputs

_ Nitrification

13% of nitrate loss 6,986 (+ 428) mt

unaccounted: 7.0%of inputs - >
assimilation, burial, NN \NO; uptake and

temporary storage in other NOj; losses
12736 mt
plant mass. .

UMR outflow
79,920 mt
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Current working model for hydrologic control of
nitrate cycling in the UMR

High Flow

v Iowvmoderate Noy high NO,
vV W

lateral plant beds

Normal & Low Flow

very low NO; ‘ l! moderate NO;
\

lateral plant beds

Main Channel
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N loss rate of lotic systems
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Nitrogen loss in the UMR
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Effect of denitrification potential
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Conclusions:

1. Rates of NO3 removal in the UMR are limited by NO3 delivery to carbon
rich areas of the flood plain.

2. Coupling of nitrification-denitrification is important during base-flow
periods.

3. With current river management, NO3 load overwhelms the capacity of
the river-flood plain ecosystem to remove more than ~ 10% of total N
load.

4. There may be some greater capacity to promote N removal through

manipulation of N-rich water to C-rich backwaters and impounded
areas.
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Future Direction of Nutrient Research in the UMR

. Determine the role of assimilation, plant
scenescence, and mineralization in nitrogen flux
In flood plain rivers.

. Develop linked hydraulic-biogeochemical process
models to better predict nutrient and carbon
dynamics.

. Determine linkages between primary production
and loading of N & P.

. Develop models predicting effectiveness of river
management actions on N removal and biologic
responses.
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END of TALK




Nitrate Depletion
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Nitrification in Pool 8
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Results

— nitrification was low In
or near main channel

— nitrification was
variable away from
main channel

—no strong seasonal
pattern




Nutrients In large rivers

Local stimulatory effects

Local inhibitory effects
Downstream effects

N v P cycling




