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Organic Carbon Inputs From RiversOrganic Carbon Inputs From Rivers
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Discharge Patterns of Mississippi, Discharge Patterns of Mississippi, 
Ohio, and Missouri RiversOhio, and Missouri Rivers
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Particulate Organic Carbon and ChlorophyllParticulate Organic Carbon and Chlorophyll--aa
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Temporal Changes in the Suspended Temporal Changes in the Suspended 
Particulate Matter and Nitrate Concentration in Particulate Matter and Nitrate Concentration in 

the Lower MRthe Lower MR

•• SPM concentration decrease SPM concentration decrease 
from 800 mg/L in 1950 to 250 from 800 mg/L in 1950 to 250 
mg/L in 1990 due to dam mg/L in 1990 due to dam 
construction in the upper river construction in the upper river 
((USACE dataUSACE data in in 
http://http://gulfsci.usgs.gov/missgulfsci.usgs.gov/miss
riv/reports/ofrshelfriv/reports/ofrshelf//))

•• Average nitrate concentration Average nitrate concentration 
increase from 0.6increase from 0.6--0.7mg/L in 1950s 0.7mg/L in 1950s 
too 1.5 mg/L in 2000s because of too 1.5 mg/L in 2000s because of 
utilization of chemical fertilizers utilization of chemical fertilizers 
(USGS data in (USGS data in co.water.usgs.govco.water.usgs.gov/ / 
hypoxia/html/graphics4.html)hypoxia/html/graphics4.html)



Phytoplankton AbundancePhytoplankton Abundance
(represented by (represented by chlchl--a)a)

Mississippi River
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Pearl River
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Dissolved Organic Carbon and NitrogenDissolved Organic Carbon and Nitrogen

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

A S O N D J F M A M J J A S O N D J F M A M J J A

Di
sc

ha
rg

e 
(m

3  s
-1

)

0

100

200

300

400

500

600

700

800

DO
C 

(u
M

) D
O

N 
(u

M
/1

0)

DOC
DON

c

----2001---- -----------------2002------------------ ----------2003------------



HighHigh--Molecular Weight (> 1 Molecular Weight (> 1 kDakDa) (colloidal) and ) (colloidal) and 
Low Molecular (< 1kDa) Organic CarbonLow Molecular (< 1kDa) Organic Carbon

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

A S O N D J F M A M J J A S O N D J F M A M J J A

Di
sc

ha
rg

e 
(m

3  s
-1

)

0
50
100
150
200
250
300
350
400
450

HM
W

/L
M

W
 D

O
M

 (u
M

)

HMW DOC
LMW DOC

----2001---- -----------------2002------------------ ----------2003--------------

d



Stable Isotopic Composition of HMW DOMStable Isotopic Composition of HMW DOM
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C and N Stable Isotopic Composition of HMW DOM
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δδ1313C and C and δδ1515N of HMW DOMN of HMW DOM
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•• HMW DOM in the lower MR was more enriched in 15N than the PR, paHMW DOM in the lower MR was more enriched in 15N than the PR, partly rtly 
due to preferential loss of light isotopes during longdue to preferential loss of light isotopes during long--term term inin--situsitu processing processing 
of organic matter in large river systems.of organic matter in large river systems.



1313CC--NMR Analysis of HMW DOMNMR Analysis of HMW DOM
Carbon Functionality of HMW DOM
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Bacteria Producation and Abundance
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Lignin Phenol of HMW DOM
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Spatial SamplingSpatial Sampling

Mississippi River
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During June 2003, a period 
of mid-level discharge 
(17,400 m-3 s-1), a parcel of 
water in the lower 
Mississippi River was 
sampled every 2 h during 
its 4 d transit from river-
mile 225 near Baton 
Rouge, Louisiana, USA to 
river-mile 0 at Head of 
Passes, Louisiana, USA. 



POC in Lower MS River

r2 = 0.3958
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Contribution of Amino Acids to POC and PN
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Chl-a in Lower MS River

r2 = 0.7604
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Phytoplankton Assemblage in the Lower MS River

r2 = 0.5704
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Phytoplankton Phytoplankton 
Abundance in Abundance in 
Primary Tributaries Primary Tributaries 
of the MRof the MR

Exportation of Exportation of 
phytoplankton biomass phytoplankton biomass 
from backwater from backwater 
reservoirs, navigation reservoirs, navigation 
locks, and wetland of locks, and wetland of 
tributaries during hightributaries during high--
flow periodsflow periods

(EPA EMAP GRE (EPA EMAP GRE chlchl--a a 
data, 2004)data, 2004)
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Contribution of Amino Acids to DOC
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•• DOC gradually decreases, most of the decrease occurred in upper DOC gradually decreases, most of the decrease occurred in upper 
MR (by 30MR (by 30--48%), very little (648%), very little (6--8%) in lower river8%) in lower river

•• Large decrease in DOC below the confluence of the Missouri RiverLarge decrease in DOC below the confluence of the Missouri River
and Ohio River, likely from dilution effect and and Ohio River, likely from dilution effect and inin--situsitu processingprocessing

)Confluence of Ohio River

Confluence of 
Missouri River

USGS Data

This study



Reference DOC POC TOC
Smith and Hollibaugh (1993)

DOC POC TOC

Mean Annual  Fluvial Loadings of Organic Carbon from 
the Mississippi River

Units = 1011 mol C yr-1

Bianchi et al. (2003)

(July 1998 - June 1999) 3.0 (62%) 1.8 (38%)          4.8

164 197                386

Global Percent: 1.8 0.9 1.2

Units = 1011 mol C yr-1

This Study-

Mean Global Fluvial Loadings of Organic Carbon to the Oceans



Background: Seasonal Sediment 
Storage in Rivers 

 
Presently, only about 10% of the sediments eroded
from land are being discharged directly to the
oceans by rivers, while the bulk of particulate
terrestrial materials is being stored somewhere
within the river system--between the uplands and
the sea (Meade et al., 1990).  
 
The seasonal storage and remobilization of
sediments in rivers is a worldwide phenomenon
that has been observed and described for rivers
ranging in size from small streams to the Amazon,
the world's largest river.   
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Most of the terrestrial materials 
(organic carbon, 
macronutrients, 
micronutrients, major/minor 
elements, mineral matter) 
transported to the oceans 
enter via these margin 
environments

River-Dominated Ocean Margins 
(RiOMars)



If a mass-balance 
approach is taken 

(using stable isotopes), 
the conclusion is that 

only 30% of the 
terrestrial organic 

carbon delivered to this 
depocenter over the 

past 100 years is 
preserved— the rest is 
remineralized (Eadie et 
al., 1994; Trefrey et al., 

1994).

Other vascular plant 
sources or transported 

offshore?



Aller R.C. (2002) - modified by McKee et al. (2003)



Aller R.C. (1998)



N 

April, 2000

October, 2000

(Wysocki and 
Bianchi, 
unpublished)



Lambda = TMAH products per 100 mg of sedimentary 
organic carbon

Lignin in Surface Sediment



• Distribution of terrestrial organic matter as a percentage of total organic carbon according to 
equation 1.

• Mean values were 41.3% ± 9.9 in April (high flow) and 32.5% ± 15.7 in October (low flow).

Using mixing model equations to calculate the relative amounts of 
C3 and C4 sources in the total terrestrial pool, it was determined that
~ 30-40% of the terrestrial inputs to the Louisiana shelf are from C3

sources.



Chlorophyll a in surface sediments (μg/g dry wt)

Ad/Al ratios in surface sediments

April  October
range:  0 – 2 μg/g range:  0– 12 μg/g 
mean:   0.44 ± 0.09 mean:   1.75 ± 0.67

Wysocki et al. 
(unpublished)



Co-metabolism:  the set of processes whereby refractory 
organic material (e.g. terrestrial OC) is broken down more 
efficiently when mixed with labile material (e.g. marine 
OC),via higher microbial turnover rates

Lohnis (1926); Canfield (1993); Aller (1998)



Radiocarbon 
ages of this 
peat material 
ranged from 
2,140 to 
4,210 yr BP 
in to 32,580 
yr BP in 
Pleistocene 
clay layers 
below.Galler et al., 2003, EOS



Decreases in the extent 
of relict outcropping 
down-stream is due to 
the seaward dip of the 
layer caused by it 
overlaying the dipping 
continental shelf.



We estimated that 366, 857 m3/yr are eroded from these 
peat layers in the lower river.  If we use the average molar 
carbon content of the peat layers, and a wet peat density of 
887 kg/m3 , we estimate that 1.81 x 109 mol C are eroded 
from these layers annually.  

If we assume that much of this material becomes 
incorporated into the suspended POC and that it is 
transported to the coast, relict carbon inputs in the lower 
river represent 3.0% of the total annual POC flux (0.9 x 
1011 mol C/yr) from the Mississippi River. 



July Cruise Sampling Scheme
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Cross-Shelf Stations

McKee et al. (submitted)
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For the cross-shelf transect designated as transect A in 
Figure 5, sedimentation rates are relatively constant at 
0.1 to 0.3 cm y-1 but increase to > 1 cm y-1 a the shelf 
break near the Mississippi Canyon. 



Sedimentary Lignin: Canyon Transect (0-1)
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Clinoform Prograding over Relict 
Sands



Bacteriochlorophyll-e

1. Characterized based on UV spectra (HPLC/PAD) and mass 
spectra (HPLC/MS)

2. Produced by anaerobic photosynthetic green sulfur bacteria, 
Chlorobium phaeobacteroides and/or phaeovibroides

N N

NN

Mg

O
C

1
2

3
4 5 6 7

8
9

10

11 12
13141516

17
18

19

20

21 22

23
24

CH 3

HO
O

O

O

R
R: C 2 H 5

C 3 H 7

C 4 H 9

(ethyl)

( N -propyl)

( iso -butyl)

Bacteriochlorophyll-e



Down-core Distribution of 
Bchlorophyll-e and Bpheophytin-e
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We investigated seasonal variability in organic 
carbon (OC) budgets using a physical-biological 
model for the Mississippi River turbidity plume 

(MRTP).  Plume volume was calculated from mixed 
layer depth and area in each of four salinity 

subregions based on an extensive set of cruise data 
and satellite-derived suspended sediment 

distributions.  These physical measurements were 
coupled with an existing food web model to 

determine seasonally-dependent budgets for labile 

(reactive) OC in each salinity subregion.
Our model was also used to calculate O2 demand 
for the development of regional hypoxia, and our 
spring and early summer budgets indicated that 

sedimentation of autochthonous OC from the 
immediate plume contributed ~23% of the O2 

demand necessary for establishment of hypoxia in 

the region.



Other sources of OC to the Hypoxic 
Region?
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