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The parallel WASH123D, which is supported by the DoD CHSSI (Department of De-
fense Common High Performance Computing Software Support Initiative), is designed to
solve watershed problems on scalable computing systems. WASH123D is a first-principle,
physics-based model to compute water flow and/or contaminant and sediment transport
within a watershed system. In the WASH123D model, a watershed is conceptualized
as a coupled system of one-dimensional (1-D) channel network, two-dimensional (2-D)
overland regime, and three-dimensional (3-D) subsurface media. It aims to address the
environmental issues concerning both water quantity and quality. To reach numerical
solutions with reasonable and tolerable computer time for simulations that embrace large
meshes, numerical algorithm improvement and code parallelization are two essential tasks.
Mathematically, 1-D channel flow and 2-D overland flow are described with the St. Venant
equations, which are solved with either the Semi-Lagrangian or the Eulerian finite ele-
ment method. The 3-D subsurface flow is governed by the modified Richards equation,
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which is solved with the Eulerian finite element method. The contaminant transport and
sediment transport equations, which are solved with the Lagrangian-Eulerian finite ele-
ment method, are derived based on the mass conservation principle. A parallel in-element
particle-tracking algorithm for unsteady flow is applied to backtrack fictitious particles
from global nodes to determine the so-called Lagrangian values when the Semi-Lagrangian
or the Lagrangian-Eulerian method is used.
This paper addresses the parallelization of such a complex numerical model. In phase

I, tasks including data structure and software design, software tool development, as well
as tool integration are accomplished. The 2- and 3-D flow modules are expected to be
employed in the production stage.

1. INTRODUCTION

WASH123D is a numerical model designed to simulate density-dependent water flow,
salinity transport, and sediment and water quality transport in watershed systems. It
includes seven modules: 1-D river/stream network module, 2-D overland module, 3-D
subsurface module, coupled 1- and 2-D module, coupled 2- and 3-D module, coupled 1-
and 3-D module, and coupled 1-, 2-, and 3-D module. It can be used to simulate flows
alone, sediment transport alone, water quality transport alone, or flow and sediment and
water quality transport simultaneously. When both flow and transport are simulated, the
flow fields are computed first. Then the transport is calculated using the computed flow
fields at respective times. Salinity-dependent flow is also considered.
In WASH123D, three approaches—the kinematic, diffusive, and dynamic wave—are

equipped to characterize the overland flow equations. The kinematic wave equations
are solved using the semi-Lagrangian method (backward particle tracking). The diffu-
sion wave equations are approximated with either the Galerkin finite element method
or the semi-Lagrangian method. The dynamic equations can first be transformed into
the characteristic wave form, which is then solved with the Lagrangian-Eulerian method.
The subsurface flow governing equations are discretized with the Galerkin finite element
method.
The parallelization of such a complex model starts with the data structure design and

then tackles the programming paradigm. The software design targets the four elements—
abstraction, encapsulation, modularity, and hierarch—in Booch’s object model [1]. This
paper describes how this goal is achieved. The byproduct of this project is the development
of the software tool named DBuilder (Domain Builder). The DBuilder serves as a parallel
data manager, whose duty includes hiding all the communication, partitioner, and cross-
domain coupling. In addition, the software tool named Parallel Particle Tracking (PT) is
also linked to perform particle-tracking tasks required by the Lagrangian method.
In this paper, the authors first describe how the Semi-Lagrangian and the Eulerian finite

element methods are incorporated in WASH123D. Then code parallelization is stated, fol-
lowed by demonstrating its scalability in solving the 2-D overland and the 3-D subsurface
flow problems on the scalable parallel high performance computers at the Engineer Re-
search and Development Center Major Shared Resource Center (ERDCMSRC) facilitated
by the DoD High Performance Computing Modernization Program. The topographic data
near the south Miami-Dade County are used to generate the test problem. Performance
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measurement is conducted, and the results are analyzed and discussed.

2. MATHEMATICAL FORMULATION

The governing equations of 2-D overland flow and 3-D subsurface flow are described in
the following subsections. The numerical methods that this paper presents are those used
for demonstration in Section 4.

2.1. Water Flow in 2-D Overland Regime

The governing equations for 2-D overland flow can be derived based on the conservation
law of water mass and linear momentum [2] on the physical domain described by the (x, y)
coordinate system. This paper is focused on using the diffusive wave model to solve for
the overland flow. The continuity equation is written as follows.
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where t is time, the velocity V is represented by a tuple (u, v), h is water depth, S is the
man-induced source, R is the source due to rainfall, E is the sink caused by evapotran-
spiration, and I is the sink resulting from infiltration. When the diffusion wave model
is considered, the inertia in the momentum equations is assumed not important when
compared with others. With the further assumption that eddy viscosity is insignificant
as well as the momentum impulse gained from artificial sources/sinks, from rainfall, and
that lost to evapotranspiration, to the subsurface media due to infiltration, the velocity
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where H is water stage. Substituting (2) into (1), the following equation can then be
obtained.
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To perform transient simulations, either water depth or stage must be given as the ini-
tial condition. In addition, appropriate boundary conditions need to be specified to
describe the corresponding physical system. WASH123D can have the following three
types of boundary conditions: (1) Dirichlet boundary condition with prescribed water
depth or stage, (2) flux boundary condition with prescribed flow rate, and (3) water
depth-dependent boundary condition with prescribed rating curve.
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2.2. Water Flow in 3-D Subsurface Media

The governing equation of subsurface-density-dependent flow through saturated-unsaturated
porous media can be derived based on the conservation law or water mass [3]. It is written
as follows.

ρ
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where ρ is the density of water, ρ0 is the reference density of water, h is the pressure head,
K is the hydraulic conductivity tensor, z is the potential head, ρ∗ is the density of source
water, q is the source and/or sink, and F is the water capacity given by

F = α′ θ

ne

+ β′θ + ne
dS

dh
. (6)

In the above equation, θ is the moisture content, α′ is the modified compressibility of the
media, β ′ is the compressibility of water, ne is the effective porosity, and S is the degree
of saturation. The Darcy’s velocity is written as

V = −K ·

(

ρ0

ρ
∇h+∇z

)

. (7)

The following boundary conditions can be specified: (1) Dirichlet boundary condition, (2)
Neumann boundary condition, (3) Cauchy boundary condition, and (4) variable boundary
condition. Details can be found in [4].

3. PARALLEL SOFTWARE TOOL DEVELOPMENT

Parallel distributed-memory applications are an integral part of high performance com-
puting. As more serial applications are converted to the parallel paradigm, algorithm
studies and tool development to assist in the process of migrating these applications will
be a valuable asset to the application developers. The parallelization of the WASH123D
code aims to develop software tools, which are portable and reusable, to benefit the DoD
High Performance Computing community. In addition, the programming paradigm is
changed to comply with the object-oriented concept. Therefore, the software design fo-
cuses on the data structure design, parallel software tool development, and parallel tool
integration.

3.1. Data Structure Design

The serial version of the WASH123D code is written in FORTRAN 77. Quite often
the debate on the language used for scientific computing leads nowhere, because the
performance is determined not only by the adopted language but also by the interaction
between the application and the computer system. Since C has better software engineering
features than FORTRAN 77 and excellent library support, C is thus the language used to
develop the parallel WASH123D. The original serial computational kernel is maintained
as what it was to shorten the development time, as there is no parallelization involved
and FORTRAN 77 also has its pros. Therefore, the data structure design becomes very
important when the goals of object orientation, parallelization, software integration, and
language interoperability need to be reached.
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To account for problem domains that may include 1-D river/stream network, 2-D over-
land regime, and 3-D subsurface media, three WashMesh objects are constructed. These
objects describe the three subdomains, on which a set of partial differential equations
(PDEs) is derived to mathematically characterize flow and transport behaviors, within
the entire domain. The object WashDomain, as sketched in Figure 1, embraces the com-
putational domain. The WashDomain also includes a coupling object named WashCouple.
Moreover, the common phenomena are described by a WashGlobal object, and the par-
allel environmental context is set up by a WashProcinfo object. Each subdomain is
partitioned, based on its favorite partitioning criteria, to processors by the DBuilder de-
veloped for the DoD HPC users community. Hence, each WashMesh object may include
vtxDomain and elementDomain, which are created and managed by the DBuilder, to
maintain consistent data structures among processors via ghost vertices/elements on a
given mesh. The WashCouple may include the coupler for (1-D,2-D), (1-D,3-D), and/or
(2-D, 3-D). Again, the coupler hides all the implementation of a Message Passing Inter-
face (MPI) scheme for communication/synchronization between different dimensions of
meshes. The merit of this approach is that the partitioning dependency between meshes
can be avoided.

WashMesh

1-D


WashMesh

2-D


WashMesh

3-D


WASH123D


WashDomain
WashGlobal
 WashProcinfo


WashCouple

(1-D, 2-D)

(2-D, 3-D)

(1-D, 3-D)


WashGeo_Mesh


WashComp
 WashBCS

PTlists


PTmesh


vtxDomain


elementDomain


DBuilder
 P
T


Figure 1. Data structures designed in Wash123D

3.2. Software Tool Development

A majority of scientific applications requires a computational mesh, which is a dis-
cretization form of the spatial domain. There are a variety of data that can be associated
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with the mesh, represented by sets of vertices, edges, or elements. The associated data
perhaps sit on vertices or elements. When the parallelism is employed, the key is to
partition the mesh evenly to processors, maintain consistent data among processors, and
apply parallel efficient parallel algorithms to reduce communication overhead. DBuilder
is thus developed to provide a simple set of Application Programming Interface (API) for
users to leverage the work of knowing MPI, graph theorem, and parallel algorithms. In
fact, the embedded partitioner in DBuilder is the ParMETIS [5].
Figure 2 shows a section of code implemented in WASH123D to illustrate the use of the

DBuilder. DBuilder can build vertex domain, element domain, or both. In this case, both
vertex and element domains are built for the finite element method to maintain a balanced
number of vertices among processors. The first two function calls pass some geometric
information to DBuild Init for building vertex and element domains, respectively. Then,
the function DBuild Get file part can be called to retrieve the values of local count of
entity on the processor. The local count of geometry data is read from a data file. Two
times of DBuild Domains are called to build the vertex domain followed by the element
domain, whose partition rule is based on the built vertex domain. These two domains
have their own local entities and ghost entities, which are owned by other processors. Two
steps are required to fill in the element array (i.e., element indices) that is not owned.
They are as follows: (1) DBuild Set Type is called to set the MPI data type for the
element array; and (2) DBuild Global update brings in the values to the array. Based
on the built element domain, some vertices may need to live on this processor as a ghost,
because one ghost layer is mandatory in the algorithm. DBuild Add ghosts is developed
to achieve this purpose. DBuild Set Type and DBuild Global update are then called to
bring in the vertex coordinates for the vertex domain. At the bottom, DBuild Set type is
called to set up the data type for updating the data on ghost vertices. Obviously, the data
are associated with vertices because the data type is set on the vertex domain. After the
domains are built, the rest of parallelization is basically to place DBuild Global update

at appropriate locations in the code.

3.3. PT Tool Integration

With the Picard method dealing with nonlinearity of the 2-D overland flow, the lin-
earized equation can be solved by using particle tracking to compute the total-time-
derivative term and by manipulating integration along the tracking path for the source/sink
term. Since the dependent variable, either water depth or water stage, can be obtained
by solving the linearized equation independently, the nature of this application is per-
fectly suited for parallel implementation. In this paper, the PT software [6] is facilitated
with a new pathline computation kernel to accurately track particles under unsteady
flow fields. The design goal of the PT software development is to interface to differ-
ent software libraries such as Scalable Unstructured Mesh Algorithms and Applications
(SUMAA3d)[7] in addition to application codes (e.g., FEMWATER and WASH123D).
This goal is achieved through a software architecture specifying a lightweight functional
interface. API maintains the full functionality required by particle-mesh methods. To
efficiently incorporate different mesh (structured or unstructured) programming environ-
ments, the PT software uses an abstract particle-mesh interface (PMI) to interact with the
parallel mesh software programming environment. This interface is illustrated in Figure
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/*** Initialization for vtxDoamin and elementDomain ***/

ierr = DBuild_Init(num_global_vertices, num_ghost_layer, 0,point2neighbor_list,

proc_set,&vtx_neighbor_list,&vtx_neighbor_list,

&vtx_coord,total_bytes_of_each_vtx, vtxDomain);

ierr = DBuild_Init(num_global_elements, num_ghost_layer,num_neighbors_per_elm,

&num_entries_per_elm,proc_set,&element_array,&elm_neighbor_list,

NULL,0, elementDomain);

/*** Read mesh from a file --- partial file is read on each processor ***/

ierr = WashRead_geom3(fd, mesh); /** fill in coord and element arrays

in mesh and then create neighbor list **/

/*** Build domains ***/

ierr = DBuild_Domains(1, NULL, vtxDomain);

ierr = DBuild_Domains(3, vtxDomain, elementDomain);

/*** update element_array for ghost elements ***/

ierr = DBuild_Set_type(num_entries_per_elm*sizeof(int), &dType, elementDomain);

ierr = DBuild_Global_update(element_array,dType,elementDomain);

/*** add ghost vertices based on elementDomain ***/

ierr = DBuild_Add_ghosts(element_array,num_local_vertices,num_neighbors_per_elm,

num_entries_per_elm,vtxDomain);

/*** bring in the coordinates for ghost vertices ***/

ierr = DBuild_Set_type(num_dir*sizeof(double), &dType, vtxDomain);

ierr = DBuild_Global_update(coord,dType,vtxDomain);

/*** build data types for data gathering or scattering ***/

ierr = DBuild_Set_type(sizeof(double), &mesh->doubleType, vtxDomain);

Figure 2. Code containing DBuilder APIs

3. The PT software architecture [8,9] contains the particle-tracking software implementa-
tion, which encapsulates the functionality required by most particle-tracking applications.
In this way, details of the parallel implementation are hidden from the application pro-
grammer. In addition, a particle API is provided to allow users to specify methods to
create, retrieve, or modify particle attributes. The gateway between the PT software and
the selected mesh programming environment (e.g., SUMAA3d), which may include an
API to increase interoperability, is the abstract PMI that has been developed [8].
To integrate with the PT software tool, a set of PMI and particle API have been built

in WASH123D. Most of them require a couple of lines such as
PTparticle *PMIget_part_list_from_tri(void *mesh,PTelm *tri)

{ /*@ PMIget_part_list_from_tri - get the particle list from

the tri.

@*/

tri_data *dptr;

int j = ((int *)tri-((WashGeo_Mesh *)mesh)->ie) / ie_dim1;

dptr = ((tri_data *)((WashGeo_Mesh *)mesh)->tri_user_data)+j;

return (PTparticle *)(dptr->pt_list);
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Figure 3. The particle-tracking software architecture and its interface to an existing mesh
programming environment

}

The above demonstrates that the effort of developing the well-designed PT software
tool not only saves implementation time but also allows for the leverage of this work in
the development of the parallel WASH123D code.

4. EXPERIMENTAL RESULTS

The Biscayne Bay and the Florida Bay rely on substantial amounts of distributed fresh
water to sustain the estuarine ecosystem. During the past century, field observations
suggest that the delivery of fresh water to the bays has changed from overland sheet
flow to one controlled by releases of surface water at the mouth of canals. The existing
freshwater delivery system is stressful to fish and benthic invertebrates in the bays near the
canal outlets. Current restoration efforts in southern Florida are underway for alternative
freshwater management plans that could change the quantity, the timing, and quality of
freshwater delivery to the bays by restoring coastal wetlands along the western shoreline
of the Biscayne Bay and the northeastern shoreline of the Florida Bay.
Topographic data at the south of Homestead, Florida, are used to demonstrate how the

parallel computation code is more efficient than a single-processor system in the regional-
scale watershed system. Figure 4 shows the location of the application site. Figure 5
shows the colored contour of land surface elevation. The 2-D overland domain, which
covers about 530 square miles, is discretized with 31,484 vertices and 62,409 elements.
The underlying 3-D domain contains 686,499 elements and 377,808 nodes.
The Manning’s roughness was set to 0.02 for the overland flow. The subsurface medium

is sandy loam and is assumed isotropic, where the saturated hydraulic conductivity was
1,000 ft/day. The soil retention curves for the unsaturated zone were generated with the
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Figure 4. Location of the application site Figure 5. Color-shaded land surface ele-
vation of 2-D overland domain

van Genuchten functions.
In computing 2-D overland flow, on the upstream boundary a time-dependent stage

was specified, and a depth-dependent flux (rating curve) was given on the downstream
boundary. Figure 6 shows the boundary conditions for 2-D overland flow. As the transient
simulation started, a constant rainfall rate of 2.3 × 10−7ft/s was applied for the first 12
hours and no rainfall for the rest of simulation period of 2 days. In performing the 4-
day simulation of 3-D subsurface flow, an impermeable boundary condition was assumed
for the bottom boundary face; a time-dependent head was specified at the upstream
boundary and at the downstream boundary. Figure 7 shows the boundary conditions for
3-D subsurface flow.

Figure 6. Boundary conditions of 2-D over-
land flow

Figure 7. Boundary conditions of 3-D sub-
surface flow

Figures 8 shows the simulated overland water depth at the time = 48 hours. Figure 9
shows the simulated subsurface pressure head at the end of the third day.
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Figure 8. Simulated overland water depth at
time = 48 hours

Figure 9. Simulated subsurface pressure
head at time = 72 hours

Figure 10 plots the wall clock time vs. number of processors for 2-D overland flow
simulation and 3-D subsurface flow simulation. The Compaq AlphaServer SC45 machine
is configured with 128 nodes connected by a 64-port, single-rail Quadrics high-speed
interconnect switch. Each node contains four 1 GHz Alpha EV 68 processors and four
gigabytes of RAM. In addition to the Compaq machines at ERDC MSRC, there are
three SGI Origin 3000 machines, and each of them is composed of a shared-memory
multiprocessor 512-processor system. One of them is an Origin 3900 system containing
512, 700-MHz R16000 CPUs. Each system contains 512 GB of RAM. From this figure,
one can observe that the SC45 outperforms the Origin when the simulation runs on less
than 128 processors. As for the 128-processor simulation, the parallel efficiency is around
50 percent on the Origin, listed in Table 2, and less than 30 percent on the SC45 (see
Table 1). Therefore, the Origin has better scalability than the SC45. The cause can
be the interconnection switch configuration and the file system because the simulation
involves I/O access and communication. For the 3-D simulation, the parallel efficiency
drops to 20 precent, shown in Table 3, when 128 processors are used. Obviously, one can
observe from this table that the bottleneck is set at 32 processors. Further investigation
of parallel solver efficiency is demanded. More sophisticated parallel solvers are currently
integrated to DBuilder.

5. CONCLUSION AND FUTURE WORK

The software tool DBuilder has successfully embedded MPI implementation so that ap-
plication users do not need to know the MPI library and parallel algorithms. The following
tasks for the CHSSI project have been completed: implementation of dynamic memory
allocation, DBuilder functionality enrichment, parallel PT software integration, and the
parallel performance evaluation. From the experimental demonstration, verification and
speedup have been investigated. Further improvement of the parallel linear solver is an
ongoing task to break the bottleneck at 32 processors. The WASH123D team is pushing
forward the development of the coupling module as well. Large-scale field problems are
also desired for a large number of processors.
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Figure 10. Wall clock time for 2-D overland flow simula-
tion (left) and for 3-D subsurface flow simulation (right)

Table 1
Scalability on the Compaq SC45: timings for 2-D overland flow simulation

Number of processors Time (sec) Speedup Parallel efficiency
1 52628.88 - -
2 26259.75 2.004 1.002
4 13173.48 3.995 0.999
8 6984.73 7.535 0.942
16 3866.91 13.610 0.851
32 2356.91 22.350 0.698
64 1611.9 32.650 0.510
128 1429.63 36.813 0.288
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